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Abstract

This paper investigates absolute and relative pose esti-
mation under refraction, which are essential problems for
refractive structure from motion. We first present an ab-
solute pose estimation algorithm by leveraging an efficient
iterative refinement. Then, we derive a novel refractive
epipolar constraint for relative pose estimation. The epipo-
lar constraint is established based on the virtual camera
transformation, making it in a succinct form and can be ef-
ficiently optimized. Evaluations of the proposed algorithms
on synthetic data show superior accuracy and computa-
tional efficiency to state-of-the-art methods. For further val-
idation, we demonstrate the performance on real data and
show the application in 3D reconstruction of objects under
refraction.

1. Introduction

Recovering camera pose is one of the major elements of
Structure from Motion (SfM) and Multiview Stereo (MVS).
When different transparent media are present in the light
path, refraction occurs which bends the light trajectories
thereby rendering classical methods incorrect [47]. Exam-
ples include imaging through a water surface, underwa-
ter imaging, or imaging objects encased in a transparent
medium, as illustrated in Fig. 1. Refraction invalidates cam-
era models [47] and SfM needs to be adapted to it. In the
case of planar interfaces, which is the one we study in this
work, several authors have proposed Refractive Structure
from Motion (RSfM) approaches [21, 29, 13, 20, 4, 5] with
adaptations to 3D reconstruction and endoscopy [18, 4, 5].
Several SfM functional modules need to be adapted to re-
fraction: 1) geometric verification of feature matching; 2)
absolute pose estimation; 3) relative pose estimation; 4) tri-
angulation; 5) bundle adjustment. Two classical geometric
objects, the essential matrix and the homography matrix do

Figure 1. (Left) Bathtub scene - 1 out 4 images used in the camera
pose estimation in Fig. 11. (Right) A stag beetle encased in crystal
resin - 1 of 30 images used for SfM reconstruction in Fig. 10.

not hold under refraction [7]. They can however be used at
the expense of removing some correct matches. Bundle ad-
justment requires solving a very large amount of expensive
quartic reprojection equations [20]. Thus feature match-
ing verification, triangulation and bundle adjustment are to
some extent solved. But absolute and relative pose estima-
tions remain challenging. The imaging system under refrac-
tion becomes an axial camera [3], a special case of the gen-
eralized camera (GC) model [12, 44]. Previously proposed
methods for the GC model have been shown to be quite
sensitive to noise, and therefore the camera pose cannot be
accurately estimated even in low-noise conditions [5, 17].

In this paper, we focus on absolute and relative pose es-
timation of a camera under refraction. Two scenarios can
be distinguished. They are shown in Fig. 2; in scenario 1
the refractive interface is fixed in the camera coordinate
frame, and in scenario 2 the refractive interface is fixed
in the world coordinate frame. e.g. an object embedded
in a transparent medium (resin, amber etc.) or underwa-
ter objects imaged above the surface. Most of the existing
works [4, 5, 18, 20] target scenario 1, while [15] and our
work focus on scenario 2. However, [15] targets only a very
restricted subset of scenario 2 as the parameters of the re-
fractive interface in each camera view are supposed to all
be the same, equal to the parameters of the refractive in-
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Figure 2. The considered scenarios: Scenario 1, the refractive in-
terface is fixed in the camera coordinate frame and it moves to-
gether with the camera in the world coordinate frame, while in
scenario 2, the refractive interface is fixed in the world coordinate
frame.

terface of the reference view. By contrast, our work does
not rely on such an assumption. We propose two iterative
minimisation algorithms for absolute and relative pose esti-
mation under refraction. Their formulation allows for easy
derivations of the corresponding Jacobian matrices, which
boosts computational efficiency. For relative pose estima-
tion, we first derive a compact epipolar constraint under re-
fraction using a virtual camera transformation. It is em-
bedded in an iterative refinement to relative pose. Exper-
iments on synthetic and real data are used to evaluate the
performance of the proposed algorithms. We compare our
methods with state-of-the-art methods for noise robustness,
accuracy, and computational efficiency. Experiments show
the proposed method outperforms state-of-the-art methods.
Finally, we use them to reconstruct real data objects imaged
under refraction. In detail, our contributions are the follow-
ing: 1) An efficient, accurate and robust to noise absolute
camera pose estimation method. 2) A simpler (than [5])
formulation of the epipolar constraint under refraction. To
the best of our knowledge, this is the first relative pose es-
timation algorithm proposed for scenario 2. 3) Detailed ex-
periments demonstrate the robustness, accuracy and perfor-
mance of our method.

2. Related work

Absolute pose estimation for a single perspective cam-
era is well studied with a number of solutions that achieve
impressive accuracy, e.g. [26, 10, 31, 14, 8]. In the case of
refraction, the geometry of a perspective camera no longer
holds. A few works have tackled this problem; an eight-
point algorithm to calibrate the refractive interface and es-
timate the camera pose was introduced in [3]. Using ac-
celerometers to estimate the camera’s vertical direction,
a two-point algorithm to estimate translation heading an-
gle was proposed [6], but limited to a horizontal refrac-
tive plane. A five-point algorithm using co-planarity con-
straints [3] is presented in [13]. An alternative pose and
depth optimisation is proposed in [20]. A few papers inves-
tigate the absolute pose estimation problem for generalized

cameras or multi-camera systems; [39, 23, 30, 35, 49] sep-
arately proposed a minimal solver for recovering the pose
of a multi-camera system. Besides minimal solvers, non-
minimal solvers [25, 23, 45, 9] have been proposed by solv-
ing polynomials using Gröbner basis solvers [28]. However,
they cannot be applied in scenario 2.

Chari and Sturm [7] studied the two-view refractive ge-
ometry and derived corresponding refractive fundamental
(rF) and homography matrices. A seven-point linear so-
lution for relative pose estimation with known vertical di-
rection from an accelerometer was proposed in [6]. When
camera orientation is known, [22] solves the relative trans-
lation optimally under the L∞-norm, and otherwise use an
evolutionary algorithm for hybrid optimization. Unlike pre-
vious methods that require extra equipment or prior infor-
mation, [20] introduces an iterative solution using the ge-
ometric constraints proposed by [3]. Their solution has
been integrated into an RSfM for deep-sea 3D reconstruc-
tion [18], this relies on good initialisation. [4] shows that the
two-view relationship under refraction can be established
using the generalized epipolar constraint (GEC) [40]. Al-
though the GEC problem has minimal solutions [43, 48]
and non-minimal linear ones [32, 37, 24], they are partic-
ularly sensitive to noise [4, 5]. The same paper proposes
a novel formulation of the rF constraint, of size 21 × 12.
Experiments show that relative pose estimation based on
the rF constraint outperforms other state-of-the-art tech-
niques. However, feature-dependency and high dimension-
ality make their method time-consuming.

3. Notations and Preliminaries
We denote scalars by lowercase letters, and vectors (resp.

matrices) are denoted by bold lowercase letters (resp. bold
uppercase letters). The identity matrix is denoted I. SO(3)
is the group of rotations. Its Lie algebra so of skew-
symmetric matrices is isomorphic to R3, we denote it by
∨ and its converse by ∧, following [34]. Objects in virtual
camera coordinates are denoted with a ·V subscript and the
i-coordinate of an object p is denoted by p(i), and the list of
i, j and k coordinates by p(i, j, k). Our formulations make
systematic use of Plücker coordinates [44].

3.1. Background on Refraction

Snell’s law, µi sin θi = µj sin θj , describes the relation-
ship between the angles of incidence θi and refraction θj
from the normal n and the refractive indices µi and µj of
the media. Setting λ = µi/µj , Snell’s law in vector form is
(Fig. 3):

r = λi+ n
√
1− λ2 [1− (n · i)2]− λ(n · i)n , (1)

where i, r are the direction of the incident and transmitted
ray, respectively. Furthermore, along with the origin t of the
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Figure 3. Illustration of Snell’s law in vector form (left) and the
idea of virtual camera coordinate (Right). The virtual camera sat-
isfies the classical perspective projection model.

incident ray and the last interface parameter d (any point p
on the plane satisfies n⊤p+ d = 0), the point of refraction
q can be computed as

q =
[
(t+ |n⊤t+d|

ī·n ī)⊤ 1
]⊤

, (2)

where ī is the normalized vector of i. These relations can be
cascaded to flat multi-layer refraction, see [3]. We focus on
the single-layer case though our proposed method can also
be used for multiple refractions as long as the parameters of
the refractive interfaces are known.

3.2. Virtual Cameras Under Refraction

One can find a virtual camera frame such that the cor-
respondence between each 3D point and its 2D feature is
given by a perspective projection, see [46, 19] and Fig. 3.
The virtual camera center cV is the intersection point of the
refraction ray r and the line along the interface normal n
through the real camera center c

cV = α2n+ c, where q+ α1r = α2n+ c . (3)

The rotation matrix RV from the camera coordinate frame
is found by aligning the interface’s normal to the optical
axis (i.e., e3 = [0, 0, 1]⊤):

RV = exp(â), a = θl, θ = e⊤3 · n, l = e⊤3 × n∥∥e⊤3 × n
∥∥ . (4)

RV is feature-independent; it only relies on the normal of
the interface and the optical axis. cV is however feature-
dependent, it also depends on r. The virtual focal length
fV is the distance d between the camera center and the re-
fractive plane [20]. The relation between a 3D point pV in
virtual camera coordinates and its projection uV becomes

uV = fV

[
pV(1)
pV(3)

pV(2)
pV(3)

]⊤
. (5)

4. Methods
In the rest of this work, we assume a single planar re-

fractive interface. For comprehension, we first present the
constraints used for absolute and relative pose refinement
geometrically. Then, we detail the exact formulations in
scenario 2 under the assumption that the refractive plane
parameters in the world coordinate frame are known.

4.1. Contribution 1: Absolute Pose Refinement

The proposed absolute pose refinement is based on the
geometric constraint shown in Fig. 4. Given a 3D point p
and its corresponding image point q, if the parameters of
the refractive interface are known, the line l can be found.
Clearly, p lies on l, which serves as the geometric constraint
for absolute pose refinement. We express it in terms of the
Plücker coordinates for the line l. Assuming the refractive
point q and the refraction ray r are known, the Plücker coor-
dinates of the line l parallel to the ray direction r and pass-
ing the refractive point q is given by

l =

[
q(4)r(1, 2, 3)− r(4)q(1, 2, 3)

q(1, 2, 3)× r(1, 2, 3)

]
. (6)

p lies on l if and only if

l(1, 2, 3)× p+ l(4, 5, 6) = 0 . (7)

It is note that, in scenario 2, l has a implicit dependency
on the camera pose (R, c). In practice, (7) is enforced in a
least-squares formulation which serves as an objective func-
tion for (R,c)

argmin
R,c

N∑
i=1

∥li(1, 2, 3)× pi + li(4, 5, 6)∥2 , (8)

with i the index of an image point and N the total number of
image points. Unlike [15] that minimizes the reprojection
error or the distance between 3D points, the objective in (8)
is a sum of square distances from points to a given line.
This is a nonlinear optimization problem that can be solved
iteratively.

4.2. Contribution 2: Relative Pose Refinement

In this paragraph, we introduce first an epipolar con-
straint which serves as basis for the relative pose refinement
and then our optimization objective for this refinement.

4.2.1 Epipolar constraint from a new perspective

Previous works [7, 4, 5, 20, 18] all derive an epipolar con-
straint using the Klein quadric. Instead, we write the stan-
dard epipolar constraint, but using the virtual cameras. We
use the co-planar constraint shown in Fig. 5. Given an ar-
bitrary feature point in view 1 and its matched feature point
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Figure 4. Geometric constraint used for absolute pose refinement.
Given a 3D point p and its corresponding image point q, if the
parameters of the refractive interface are known, the line l can
be found. The point p lies on l, which is used as the geometric
constraint for absolute pose refinement.

Figure 5. The epipolar constraint using the corresponding virtual
cameras. For an arbitrary feature point in view 1 and its matched
feature point in view 2, two corresponding virtual cameras are es-
tablished. The refraction rays (r1 and r2) and the ray connecting
two virtual cameras’ centers (r3) are co-planar.

in view 2, two corresponding virtual cameras are obtained.
The rays after refraction (r1 and r2) and the ray connecting
two virtual cameras centers (r3) are co-planar. In a common
coordinate frame, r1, r2, and r3 satisfy the epipolar relation

r⊤2 r
∧
3 r1 = 0 . (9)

4.2.2 Optimization Objective

We follow [5] and we optimize the relative pose and trian-
gulated points by jointly minimising the reprojection errors
and the epipolar costs

R, c,pi = argmin
R,c,pi

n∑
i=1

EC(R, c,ui
1,u

i
2)

2

+

n∑
i=1

∥∥RE
(
I,0,pi,ui

1

)∥∥2
2
+
∥∥RE

(
R, c,pi,ui

2

)∥∥2
2
,

(10)
with EC(R, c,ui

1,u
i
2) being the epipolar cost defined in the

left hand side of (9) and each term RE
(
·, ·,pi,ui

j

)
is the re-

projection error of the ith point in the jth image. For relative
pose estimation, we assume that the first camera coordinate
frame coincides with the world frame. Thus, the camera

pose for the first view is I and 0. Unlike [5], which com-
putes the forward projection by solving a quartic equation,
we compute it via the virtual camera coordinates. Com-
pared with [15] that merely minimizes the reprojection er-
ror, (10) jointly minimizes the epipolar constraint and the
reprojection error, offering two superiority: 1) the epipolar
constraint only relies on the relative pose (no dependency
on the scene) so that it helps to optimize the relative pose
regardless of the 3D points. 2) less possibility of getting
trapped at a local minimum as the objective is a combina-
tion of two cost surfaces.

4.3. Pose Estimation for Scenario 2

In scenario 2, illustrated in Fig. 6, we know the parame-
ters of the refractive interface in the world coordinate frame.
To get the refractive point q and refraction ray r, we need
to transform the back-projected ray qC of an image point
u from the camera frame to the world frame, i.e. to get
the camera pose (R, c). The refractive point q and the re-
fraction ray r thus depend also on the camera pose (R, c).
The dependencies of q and r on R, c are nonlinear due to
Snell’s law. This makes deriving the absolute pose estima-
tion solution for scenario 2 more complicated than for sce-
nario 1. We give a relatively simple derivation of it with the
help of an ideal world coordinate frame. As the following
derivations involve multiple coordinate frames and transfor-
mations, we introduce, for clarity, new notations:

• In general, bRa denotes a rotation matrix from coor-
dinate frame a to coordinate frame b. bca denotes the
origin of coordinate frame a in coordinate frame b. R
denotes a rotation matrix from world coordinates to
cameras coordinates (i.e. CRW) and c denotes the lo-
cation of the camera frame with respect to the world
frame (i.e. WcC).

• ai1 represent a variable (e.g. a point, a ray, or a scalar)
indexed or named by i and defined in the coordinate
frame 1.

4.3.1 Absolute Pose Estimation

First, we define an ideal world coordinate frame (denoted
by I) in which the refractive plane is at the origin (0) and
its normal is nI = e3, as illustrated in Fig. 6. The rigid
transformation WRI and WcI of the ideal world frame with
respect to the world frame can be computed by aligning nW
to e3 using WRI (computed by (4)) and moving the refrac-
tive plane so that the origin lies on it:

WcI = −dWnW , (11)

where nW and dW are the plane parameters in the world
frame. The use of ideal world coordinates simplifies the
derivation.
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Figure 6. Configuration of scenario 2. The known variables are
drawn in black color, while the unknown variables are depicted
in red color. As n and d are only known in the world coordinate
frame, the refractive point q and the refraction ray r have depen-
dencies on the camera pose R, c and cannot be computed without
knowing them.

Let K be the camera intrinsic parameter matrix. The
back-projected ray of an arbitrary image point u (in
homogeneous coordinate) in the world frame is given
by qW = R⊤qC, where qC = K−1u

∥K−1u∥. By further
transforming it into the ideal world frame, we will get a ray
qI =

WR⊤
I qW. Moreover, the camera location in the ideal

world frame is given as IcC = WR⊤
I (c− WcI).

In the ideal world frame, computing the refractive point
and the refraction ray is easily done using (1) and (2) (we
can assume, without loss of generality, that IcC(3) < 0, i.e.
the camera is below the refractive plane)

qI =

[
qI(3)

IcC −I cC(3)qI
qI(3)

]
rI =

[
λqI(1) λqI(2) γ 0

]⊤
,

(12)

where γ =
√
(1− λ2) + λ2qI(3)2. The Plücker coordinate

lI of the line passing by qI and parallel to rI is obtained
by (6). The corresponding 3D point pW is then transformed
to the ideal world coordinate frame as pI =W R⊤

I (pW −
WcI).

The absolute pose estimation objective is defined in (8),
the residual function is given by the left hand side of (7)

f = lI(1, 2, 3)× pI + lI(4, 5, 6). (13)

Its Jacobian matrix Jx = [JR,Jc] is computed in the sup-
plementary material.

4.3.2 Relative Pose Estimation

We compute residual functions for the optimisation objec-
tive defined in (10). We again use ideal world coordinate
frame defined by (11). We also obtain inhomogeneous coor-
dinates of the refractive point and the refraction ray (i.e. r1I

and r2I ) from (12). Then, we compute virtual camera coor-
dinate following Section 3.2. nI is e3 in the ideal world co-
ordinate frame, the resulting rotation matrix IRV is I. Next,
to find the virtual camera location IcV, we need first to solve
the following equation

qI + α1rI =
IcC + α2nI . (14)

This equation has a closed-form solution, with α1 =
IcC(3)
λqI(3)

.
Therefore, the virtual camera’s location IcV is

IcV =
[

IcC(1)
IcC(2)

IcC(3)
λqI(3)

γ
]⊤

. (15)

Then the ray r3I that connects the two virtual camera centers
is r3I = Ic2V − Ic1V.

With this, we can now write down the corresponding
residual functions.

Epipolar Cost: The residual function for the epipolar
cost term is given by:

fEC = r2I
⊤
(Ic2V −I c1V)

∧
r1I , (16)

where IciV denotes the virtual camera location for the ith

view and riI represents the refraction ray computed from the
same view. The Jacobian matrix JECx is provided in the
supplementary material.

Reprojection Error: By transforming a 3D point p and
its corresponding refraction ray rI to the ideal world coor-
dinate frame, we get pV = p − IcV and rV = rI. The
reprojection residual is:

fRE =

[
fV

pV(1)
pV(3) − fV

rV(1)
rV(3)

fV
pV(2)
pV(3) − fV

rV(2)
rV(3)

]
. (17)

The Jacobian matrix JREx is provided in the supplementary
material.

Informally, we call fRE = 0 the refractive epipolar con-
straint in the following. There are a few points worth of
discussion: 1) Compared with the work by [5], our formu-
lation is simpler. Thanks to its simple form, we are able to
derive the analytical Jacobian matrices which are very use-
ful to boost the iterative refinement. 2) Although we derive
the epipolar constraint by considering the single-layer flat
refraction, it can be shown that this derived epipolar con-
straint also holds in more general cases (e.g. multi-layer flat
refraction or non-flat refractive interface) as long as the pa-
rameters of the refractive interfaces are known. 3) The de-
rived refractive epipolar constraint shares a similar problem
with the refractive fundamental matrix proposed by [5]; it
is feature-dependent. This means that, to evaluate the cost,
we need to re-compute it for each feature pair. Fortunately,
the computation can be easily performed in parallel.
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Initialization: There is no efficient and robust method for
estimating the relative pose under refraction. A solution can
be to simply ignore the refraction and use the classical 5-pt
algorithm proposed by [38] to get the relative pose. After-
ward, 3D points are triangulated using the refraction rays.

4.4. Optimization on Manifolds

The optimisations problems (8) and (10) are uncon-
strained problems on manifolds of the type SO(3) × R3n,
n ≥ 1. We use the manifold Levenberg-Marquardt algo-
rithm of [2] tailored to this situation. Using rectified coor-
dinates, i.e. translating the SO(3)-Jacobian components to
so(3), the tangent space of SO(3) at I, via the matrix ex-
ponential and logarithm [34], and projecting and translating
back the increment back on the manifold.

5. Experiments
In this section,we evaluate the performance of algo-

rithms targeting scenario 2. We first compare our solutions
to SOTA absolute and relative pose solutions using simu-
lation experiments. We evaluate the performance in terms
of accuracy, robustness to noise, and computational effi-
ciency. We define the rotation error and translation error
between the ground truth Rtr, ttr and the estimation R̂, t̂tr
as ϵrot = ∥ log(R⊤

tr R̂− I)∥fro and ϵtran = ∥ttr − t̂∥. Finally,
we show results on real data. All experiments run on a 2.8
GHz Intel Core 2 Duo computer. Except for the EPnP algo-
rithm that is implemented in C++, all the other methods are
implemented in Matlab.

5.1. Simulation: Absolute Pose

The algorithms for comparison include the 5pt algo-
rithm [13], the AGW algorithm [3], and the classical EPnP
algorithm [31]. Regarding the implementation, we use the
open-source code provided by [13] for the 5pt algorithm,
while for the EPnP algorithm, we use the corresponding
function provided by the OpenCV library [16]. We re-
implement the AGW algorithm for handling single layer
refraction as the original implementation provided by [3]
was aiming to handle the double layer refraction. The pro-
posed method is named PO for short. We use the 8-pt algo-
rithm [3] for initialization.

Non-Planar Case: In the non-planar case, we create ran-
dom experiments by assuming a perspective camera with
a focal length of 4800, a principal point of (960, 540),
and no distortions. For each iteration, 100 uniformly dis-
tributed features are generated and perturbed by differ-
ent levels of zero-mean Gaussian noise. We assume a
flat refractive plane located at the origin with the nor-
mal being n = [0, 0.5, 1]⊤. To ensure the plane can
be viewed in front of the camera, we place the camera

above the refractive interface and draw the optical axis as
z = [λ1, λ2,−1]⊤, λ1, λ2 ∈ [−0.5, 0.5]. The simulated re-
fractive index is 1 (air) and 1.5 (glass) and we assume the
camera is in the air.

In order to evaluate the robustness to noise, we gradually
increase the standard deviation of Gaussian noise from 0 to
2 pixels. For each noise level, 100 simulations are executed.
In Fig. 7, the box plots show the rotation and translation er-
ror as well as the mean runtime. As can be seen, our so-
lution PO outperforms other SOTA solvers by showing the
best robustness to noise in all situations. When compared to
the other iterative solver, AGW, PO not only shows superior
robustness but also at a lower computational time cost.

Planar Case: In the planar case, we use the same setup
for data generation, except we force all world points to be
on a common plane. Again, the noise level is varied from
0 to 2 pixels and 100 simulations are conducted per each
noise level. The results are shown in Fig. 8, and PO again
maintains the best robustness to noise and significantly out-
performs other methods. Regarding runtime, PO is faster
than AGW, but slower than the EPnP and 5pt algorithm.

5.2. Simulation: Relative Pose

To generate a synthetic dataset for evaluating relative
pose solvers, we first create a random refractive interface.
Then, 100 features are randomly generated in the first view,
and their corresponding 3D points are randomly distributed
on the rays after refraction at a distance between 5 and 10
meters. Next, we project 3D points into the second view to
get the feature points. Gaussian noise is added to feature
points in both views. We vary the standard deviation of the
noise from 0 to 2 to evaluate the robustness. For each noise
level, 50 simulations are executed.

The five-point algorithm (5pt) by [38] that ignores re-
fraction and the method (Ichimaru) by [15] are chosen as the
comparison methods. Note that we carefully re-implement
the method by [15] to make it work in general. We name our
method Virtual Epipolar Constraint – VEC – in the follow-
ing. As the scale cannot be reliably recovered, we estimate
the scale by s =

∑N−1
i d̂i/di, where d (or d̂) is the Eu-

clidean distance between two (estimated) points.
Experimental results are shown in Fig. 9. The proposed

VEC algorithm does improve the camera pose initialized
by the 5pt algorithm and it shows good robustness to noise.
The runtime is also unsurprisingly significantly higher than
that of the 5pt algorithm. Meanwhile, compared with [15],
the proposed relative pose solver works better than theirs in
terms of accuracy and speed.

5.3. Real Data: Bathtub Dataset

In order to evaluate the absolute and relative pose esti-
mation on real data we carried out an experiment on a scene
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Figure 7. Comparison of absolute pose solvers for scenario 2 with respect to varying noise levels in the nonplanar case: the left box plot
shows rotation error; the middle box plot shows the translation error; the right figure shows the computational time of all algorithms. Note
that, for 5pt and EPnP, their errors are out of scope. A zoom-out version can be found in the supplement.

Figure 8. Comparison of absolute pose solvers for scenario 2 with respect to varying noise levels in the planar case: the left box plot shows
rotation error; the middle box plot shows the translation error; the right figure shows the computational time of all algorithms. Note that,
for 5pt and EPnP, their errors are out of scope. A zoom-out version can be found in the supplement.

(see Fig. 1) consisting of a water filled bathtub with a sub-
merged checker pattern and a floating checker pattern (for
estimating the refractive interface and for ground truth cam-
era poses). We used a GoPro Hero9 Black camera with nar-
row lens setting (f/2.5) and 5184 × 3888 pixel resolution
and collected images at 4 different views.

We use the 5pt algorithm [13] for initialization for the
relative pose estimation, and the EPnP algorithm [31] for
initialization for the absolute pose estimation. For compar-
ison we estimate the reference camera pose based on the
floating checker pattern using OpenCV. Fig. 11 show poses
as camera frustum. We see that the estimated poses have
moved away from the initialization and are very close to the
ground truth camera poses.

Furthermore, we employed the estimated camera poses
for a semi-dense 3D reconstruction of the submerged
checker pattern, where the optical flow algorithm proposed
by [27] was used to establish feature correspondences.
The refractive index of water is set to 1.333. The sub-
merged checker pattern was segmented out of raw images.
In Fig. 10, we show a refractive SfM reconstruction of the
submerged checker pattern. We tried to apply a classical

SfM reconstruction using the COLMAP software [41]. Un-
fortunately, it failed to give a sparse reconstruction result,
whereas our method was able to reproduce the 3D structure
of the submerged checker pattern.

5.4. Real Data: Stag Beetle Dataset

For evaluating the proposed absolute and relative pose
estimation applied to SfM, we carried out a real experiment
where we used a NIKON D40X (focal length: 34mm, reso-
lution: 3872 × 2592 pixels) to photograph a stag beetle en-
closed in crystal resin, as shown in Fig. 1, and collected im-
ages in 30 different views. Four ArUco [11] fiducial mark-
ers were glued on the front surface of the resin to estimate
the refractive interface in the world coordinate frame (the
first view defines the world frame). We initialize the cam-
era poses from the background of the scene using AliceVi-
sion [1, 36]. For pose estimation, we detected SIFT [33]
features from the segmented refractive images. Feature cor-
respondences were then established with feature matching,
where erroneous matches were removed by a geometric ver-
ification. We apply the refractive bundle adjustment [20] to
refine camera poses and triangulated points. Finally, we em-
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Figure 9. Comparison of relative pose solvers for scenario 2 with respect to varying noise levels: the left box plot shows rotation error;
the middle box plot shows the translation error; the right figure shows the computational time of all algorithms. Note that, for 5pt, its
translation errors are out of scope. A zoom-out version can be found in the supplement.

(a): Bathtub dataset. (b): Stag Beetle Dataset.
Figure 10. SfM reconstruction result on real datasets, see Fig. 1. For (b), the left image shows SfM reconstruction based on perspective
camera, while the right image shows SfM reconstruction based on refractive SfM using our method for Scenario 2.

Figure 11. The ground truth camera poses (blue), initialisation
(green), the estimated poses (red) using our method for scenario
2 from 4 images, see Fig. 1.

ployed the estimated camera poses for a semi-dense 3D re-
construction of the beetle, where the optical flow algorithm
proposed by [27] was used to establish feature correspon-
dences.

For comparison, we compute a classical SfM reconstruc-
tion using the COLMAP software [42].

In Fig. 10, we show a classical SfM and a refractive SfM
reconstruction of the stag beetle from Fig. 1. Notice that
the classical reconstruction fails to get the depth correct and
produces an almost flat reconstruction, whereas our method
more faithfully reproduce the 3D structure of the stag beetle
(especially the legs and attachments on the body). However,
the refractive reconstruction is slightly more noisy.

6. Conclusion

We have defined the theoretical framework for absolute
and relative camera pose estimation under refraction with
a refractive interface fixed in world coordinates (scenario
2), and we derived solutions for this scenario. We have
demonstrated the superiority of our solution compared to
SOTA on synthetic and real data. As iterative optimization
algorithms, the proposed algorithms rely on a proper initial-
ization. Another weakness of the proposed method is the
feature matching under refraction. To our best knowledge,
there is not yet a well-established initialization method nor a
solution to identify erroneous matches in this scenario. Fu-
ture work will consider deriving an initialization method in
scenario 2, as well as how to handle the erroneous matches
in pose estimation.
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