
CAFT: Class Aware Frequency Transform for Reducing Domain Gap

Vikash Kumar Sarthak Srivastava * Rohit Lal * Anirban Chakraborty
Department of Computational and Data Sciences

Indian Institute of Science, Bangalore

Abstract

This work explores the usage of Fourier Transform for
reducing the domain gap between the Source (e.g. Syn-
thetic Image) and Target domain (e.g. Real Image) towards
solving the Domain Adaptation problem. Most of the Un-
supervised Domain Adaptation (UDA) algorithms reduce
the global domain shift between labelled Source and un-
labelled Target domain by matching the marginal distribu-
tion. UDA performance deteriorates for the cases where
the domain gap between Source and Target is significant.
To improve the overall performance of the existing UDA al-
gorithms the proposed method attempts to bring the Source
domain closer to the Target domain with the help of pseudo
label based class consistent low-frequency swapping. This
traditional image processing technique results in computa-
tional efficiency, especially compared to the state-of-the-
art deep learning methods that use complex adversarial
training. The proposed method Class Aware Frequency
Transformation (CAFT 1) can easily be plugged into any
existing UDA algorithm to improve its performance. We
evaluate CAFT on various domain adaptation datasets and
algorithms and have achieved performance gains across all
the popular benchmarks.

1. Introduction

Deep learning has vastly revolutionised the computer
vision research. We have witnessed a significant amount
of progress since the inception of AlexNet [9] during the
ImageNet competition. Deep Learning networks are data-
hungry models and require a large number of labelled sam-
ples to improve the predictive performance for a given su-
pervised learning task. The generalisation ability of deep
features has made it easy to transfer the learning from one
task to another with fewer labelled samples from the new
task at hand. This method is popularly known as deep trans-
fer learning [20]. In recent times, we witness most of the

*Equal contribution
1Code: https://github.com/vclab-dev/CAFT

state of the art results using different deep learning archi-
tectures.

All these learning methods assume that training and test
distribution are the same. The generalisation ability of
learning algorithms is reported on unseen test datasets hav-
ing similar distribution as the training dataset. Model per-
formance decreases significantly when the above assump-
tion doesn’t hold. For many practical applications, training
and test distributions may not be the same. This dissimi-
larity between training and test distribution is referred to as
domain shift or domain gap. We try to reduce this domain
gap using Domain Adaptation (DA) algorithms. Training
and test distribution are referred to as Source and Target do-
main, respectively, where the samples in each of the splits
are drawn from two different probability distributions. Do-
main adaptation problem in which we don’t have access
to any annotation or label information from the Target do-
main is popularly called Unsupervised Domain Adaptation
(UDA) [26]. Data distribution of Source domain and Target
domain are different i.e DS(Xs, Ys) ̸= DT (Xt, Yt) where
DS is Source data distribution and DT is Target data dis-
tribution. We want to build models using widely available
labelled Source domain datasets and adapt this learning to
Target domain dataset. Our ultimate goal is to bridge the
domain shift between Source and Target domain. There-
fore, the applications built using the Source dataset can also
be deployed in the Target domain where we don’t have any
access to annotation corresponding to the Target domain.

Most of the UDA methods [2, 19] attempt to reduce the
global domain gap by matching marginal Source DS(Xs)
and Target DT (Xt) distribution and assumes that condi-
tional distribution are same i.e DS(Ys/Xs) = DT (Yt/Xt).
Since alignment happens between marginal source and tar-
get distribution, negative transfer [25] will also take place.
Han Zhao Et. Al [29] also shows in their study that marginal
alignment of the Source and Target distribution doesn’t
guarantee the joint alignment of DS and DT . This results
in a sub-optimal solution. Sub-domain adaptation [31] tries
global and local alignment to resolve this problem. Dif-
ficulty in domain alignment increases as the domain gap
between Source and Target increases and vice-versa. Our
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Figure 1. Method Overview. (Top Row) represents general Unsu-
pervised Domain Adaptation (UDA) settings with labelled Source
images and unlabelled Target images. UDA algorithms tries to
overcome the depicted domain gap. (Bottom Row) The proposed
method bridges this gap using pseudo label based low-frequency
swapping and then applies the UDA methods over this reduced
domain gap images.

method tries to bridge the domain gap between Source and
Target domain using a class aware frequency transform to
circumvent the negative transfer. Fourier Domain Adapta-
tion (FDA) [27] showed that transferring the Target style
to Source during adaptation using Fourier transformation
bridges the domain gap and improves the adaptation for seg-
mentation task. Directly applying the FDA [27] method for
classification causes two problems. Firstly, Target samples
are selected randomly, so it is prone to negative transfer be-
cause it ignores the fact that within-class domain shift is not
the same as global domain shift. Secondly, the transformed
samples are prone to have artifacts which result in the poor
class-discriminative features. To address the negative trans-
fer and reduce sub-domain gap, we propose pseudo label
based class-aware transformation of the Source sample. We
also propose retraining of original Source samples and the
transformed Source samples to address the second problem.
It helps to fill in for the loss of class-discriminative features.
Hence, the proposed method explicitly reduces the domain
shift. We can visualize the overview of the proposed ap-
proach in Fig.1. It will help the adaptation methods im-
prove their performance because they will solve a relatively
easier task. In summary, our proposed CAFT framework
comprises of the following key components -

• A computationally inexpensive pre-adaptation step
that limits the negative transfer and explicitly tries to
swap the Source image style with that of the Target
image using class aware Fourier transform.

• Pseudo label based class-aware sample selection for

style transfer from Source to Target. It results in sub-
domain gap reduction.

• The retention of the original sample along with the
transformed sample which helps to account for the lost
class-discriminative features during style transfer.

2. Related Work

Unsupervised Domain Adaptation (UDA) methods
[26] try to learn domain invariant representation through
various methods such as minimizing the divergence, adap-
tation through reconstruction or adversarial training meth-
ods. Techniques for minimizing the divergence includes
maximum mean discrepancy (MMD) [5], correlation align-
ment (CORAL) [18], contrastive domain discrepancy [8]
etc. These methods minimize the domain gap by minimiz-
ing the distance between the statistics of Source domain dis-
tribution and Target domain distribution. These methods
are prone to give a sub-optimal solution since they try to
align the marginal distribution. DRCN [3] tries adaptation
through reconstruction, which looks for the latent domain
representation capable of classifying the Source domain and
reconstruct the Target and Source domain. It will ensure
meaningful latent representation suitable for both Source
and Target domain. Adversarial learning based solutions
[2, 10, 11] uses a two-player zero-sum game optimization
strategy similar to GAN [4]. RevGrad [2] used feature ex-
tractor, domain discriminator and classifier. The discrim-
inator tries to distinguish between the Source domain and
Target domain. The gradient reversal layer ensures domain
invariant representation from the feature extractor.

Image data augmentation is a widely adopted method
when it comes to reduce the domain shift that exists be-
tween the Source and Target domain. Such methods includ-
ing norm-VAE [24] and AdaIN [7] try to use learning-based
style transfer approach in order to implement augmentation
based domain gap reduction. These techniques pose a cost
in terms of computational power and time. Due to its de-
pendency on choice of hyperparameter, it is prone to be un-
stable very difficult to train. Existing GAN based methods
like CycleGAN [30] requires substantial computational cost
and takes a lot of time to converge. On the other hand, our
proposed method CAFT doesn’t depend on any trainable
parameter and relatively free of hyperparameter. Hence, it
is fast and computationally inexpensive.

3. Proposed Method

We present a four-stage algorithm in Figure 2. Stage-
1 includes network training using Source samples for few
epochs which acts as a classifier for the next stage. In Stage-
2, we get the pseudo labels for Target samples using the
network obtained from Stage-1. In Stage-3, we do the fre-
quency transformation of Source samples, and finally, the
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Figure 2. Architecture of CAFT. The architecture is divided into four stages. In Stage 1, we train a classifier network using the Source
domain and its label. This trained model is then used to generate pseudo labels in Stage 2. We pass the image through the network and
select labels whose class confidence value is above a particular threshold. In Stage 3, we transform the source image using frequency
domain manipulation with the help of the generated target pseudo labels. The transformed source is closer to the target. The Source S,
Transformed Source Ŝ (with labels) and Target T images (unlabelled) are then passed through the Domain Adaptation network in Stage 4.

adaptation happens in Stage-4. We will discuss these stages
in detail in the below sub-sections.

3.1. Warm Start of Network

During Stage-1, we train the network gs(xs; θs) in a su-
pervised manner as shown in Fig. 2(a) using Source data.
Here θs represents the network parameter for both backbone
and classifier network. We will use this network in the next
stage to get the pseudo label for the Target sample.

3.2. Pseudo Labeling

In this iterative stage, we initiate the pseudo label cal-
culation using the trained network in Stage-1. We create a
dictionary with key-value pair in the form of a pseudo-class
label and samples associated with that pseudo class label.
Initially, the pseudo labels will be very noisy. We include
only those samples to the dictionary whose prediction prob-
abilities are greater than the pre-defined threshold. Class
Probability threshold helps us to filter out the noisy predic-
tions. A maximum number of keys can go up to K, where
K is the total number of classes. The quality of pseudo la-
bel improves as the training progresses. This is the reason
we need to keep updating the dictionary.

3.3. Frequency Transformation of Source Sample

Notation: We have used the following notations.
S, T , Ŝ are Source domain samples, Target domain sam-
ples and frequency transformed Source domain samples re-
spectively. F [k, l], f [m,n], F , F−1 are element in fre-
quency domain at [k, l]th index, element in image space at

[m,n]th index, Fourier transform and inverse Fourier trans-
form respectively.

In general, class-discriminative features are domain in-
variant because they remain consistent across the domain.
On the other hand, domain variant features captures the
domain-related information and keep varying across the do-
main. Domain shift arises mainly due to domain variant
features. Image style is one of the domain-dependent com-
ponents, and hence it also adds to domain shift. In our pro-
posed approach, we explicitly try to swap the Source style
to the Target style so that the domain shift between trans-
formed Source and Target is reduced.

FDA [27] tries to minimize the domain gap by replac-
ing the low-frequency component from the Target to the
Source. This is because the low-frequency component can
be inferred as the style of the domain. The main problem
with FDA [27] is a selection of Target samples. It selects a
random set of images from the Target domain for perform-
ing the style transfer, assuming that style is uniformly dis-
tributed across the domain, i.e. Z ∼ U(a, b) Where Z is
a random variable representing style. Uniform distribution
hypothesis for the style doesn’t hold true in many practi-
cal situation i.e Z ̸∼ U(a, b) which accounts for inter-class
variations. However, It is safe to assume that style of intra-
class for a particular domain can be represented with uni-
form distribution i.e Zi ∼ U{ai, bi} for i = 1 to K where
K is the total number of classes for any domain D. Hence,
directly applying the FDA [27] without taking inter-class
information into account for solving the classification task
is not desirable. We can also infer the same from the Fig. 3.
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Algorithm 1: CAFT: Class Aware Frequency Transform for Reducing Domain Gap
Stage 1: Warm Start
Input: Network parameter gs(x; θs); Source Data Ds; Maximum Stage-1 Epoch Emax

1 ;
while epoch < Emax

1 do
{xs

i , y
s
i }Bi=1 ∼ Ds ▷ Randomly sample a batch of source image

Update θs, ϕs by minimizing LCE

end
Stage 2: Pseudo Labelling
Input: Target domain data Dt;Maximum Epoch Emax

2 ; Pre-trained model for stage-1. Dictionary for mapping from
pseudo label pl to target sample: Dict : {Key : V al}

Initialization: Network remains frozen; gtj(x; θt)← gs(x; θs)
{xt

i}Bi=1 ∼ Dt ▷ Sample a batch of target image
{ypli }Bi=1 = argmax{gt(xt

i; θt) > Threshold}Bi=1 ▷ select sample pseudo label ypl if score greater than threshold
Update Dict : {Key : V al} with Key = ypl, Val = associated target sample
Stage 3: Frequency Transformation
Input: {xs

i , y
s
i }Bi=1 ∼ Ds ▷ Sample a batch of source image

{xt
i, y

pl
i }Bi=1 ∼ Dict(Key, V al) where ysi = ypli ▷ Sample a source label conditioned batch of target image from

dictionary
Find Fourier transform of source sample: F(S) = F(xs

i )

Find Fourier transform of selected target sample: F(T ) = F(xt
i) ▷ Make Sure that ysi = ypli ∀ i (sample index)

Swap source low frequency with that of target: f̃{F(S),F(T )} ▷ Figure 2(c)
Get the Transfromed source after applying inverse Fourier Transform: Ŝ = F−1[f̃{F(S),F(T )}] ▷ Refer Eq. 3
Stage 4: Domain Adaptation
Input: original Source S; Transformed source Ŝ; Unlabelled Target T ; Adaptation Network Parameter gs(x; θs, ϕs)
while epoch < Emax

2 do
Update Adaptation network parameter θs, ϕs using adaptation loss

end
Repeat Stage-2 to 4 for all epochs with updated model parameter
Inference On Trained Model
{xi}Bi=1 ∼ Dt ▷ Sample a batch of target image
{ytesti }Bi=1 = argmax{gt(xt

i; θs, ϕs)}Bi=1 ▷ get predicted target label

From Stage-2, we get the pseudo label for the Target
samples. We store Target samples as key-value pairs where
key corresponds to the pseudo-class labels. We randomly
sample Target images from the stored dictionary based on
the Source sample true class label i.e Tb ∼ Tpl{XT , Y

pl
T }

such that YS is equal to Y pl
T for each batch of Source where

Tb is batch of Target domain samples, Y pl
T is Target pseudo

label, YS is Source true label. It ensures class aware rep-
resentation of Target during transform. We calculate Fast
Fourier transform (FFT) for the Source samples and Target
samples for the current batch. FFT algorithm is efficient
implementation of Discrete Fourier transform (DFT) whose
2-D expression is represented in equation (1) and its inverse
representation is in equation (2) .

F = F (k, l) =
1

MN

M−1∑
m=0

N−1∑
n=0

f [n,m] exp{−j2π(
kn

N
+

lm

M
)}

(1)

F−1 = f(m,n) =
1

KL

K−1∑
k=0

L−1∑
l=0

F [k, l] exp{j2π(kn
K

+
lm

L
)}

(2)
Where M and N are number of rows and columns in the 2-
D image. f [n,m] is the pixel value at mth row and nth col-
umn index. Similarly, F [k, l] is the frequency value at kth

row and lth column index. F and F−1 are Fourier and in-
verse Fourier transform respectively. Once we calculate the
FFT for both Source and Target samples, we need to transfer
the style of the Target to the Source, which is present in the
form of low-frequency magnitude component. We replace
the low-frequency magnitude component of the Source with
that of the Target as shown in Fig. 2(c). We call it frequency
transformed Source Ŝ. It ensures a smaller domain shift
between Ŝ and Target domain T in image space. Overall,
Frequency transformation procedure can be summarized as
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follows:
Ŝ = F−1[f̃{F(S),F(T )}] (3)

Where F and F−1 are Fourier transform and inverse
Fourier transform respectively. Function f̃ represents
the low frequency swapping operation as shown in Fig.
2(c). We name this process as Class Aware Frequency
Transformation (CAFT).

3.4. Domain Adaptation

At the start of Stage-4, we have transformed Source sam-
ples Ŝ along with original Source samples S and Target
samples T . The middle circle in the bottom row of Fig.1
represents the transformed source images. We observe a
finite reduction in the domain shift between transformed
source sample Ŝ and Target sample T compared to that
between the original Source samples S and Target sam-
ple T . During the transformation process, the Ŝ samples
also lose their class-discriminative features during inverse
Fourier transform. It happens because of the replacement of
low-frequency magnitude from the Target samples, which
combines with the original phase to provide discriminative
feature containing natural images. Hence, some artifacts are
observed in the transformed source image. These artifacts
hurt the classification performance of the trained model on
source and target images. We need to ensure that there is no
loss in the class-discriminative features if we want to have
a non-decreasing model performance. We include origi-
nal Source samples along with transformed Source samples
during adaptation to solve this problem. Finally, we have
S = S ∪ Ŝ as our new Source domain sample and we
perform adaptation between S and T using existing domain
adaptation algorithms.

3.5. Theoretical Insights

LetH be a hypothesis space of VC dimension d, US , UT
are unlabeled samples of size m each, drawn from DS and
DT respectively, then theorem 2 of [1] states that for any
δ ∈ (0, 1), with probability at least 1 − δ (over the choice
of the samples), for every h ∈ H :

ξT (h) ≤ ξS(h) +
1

2
d̂H∆H(US ,UT ) + 4

√
2d log 2m+ log 2

δ

m
+ λ

(4)
where ξT (h) and ξS(h) are classification error for Target
and Source domain samples respectively for the given hy-
pothesis h. d̂H∆H(US ,UT ) is a measure of divergence or
domain shift between Source and Target domain. λ is the
sum of Source error and Target error w.r.t best available hy-
pothesis h∗ ∈ H

For a given a trained Source model we can safely assume
that last two terms of the equation (4) will not change. So,

we can define c = 4

√
2d log 2m+log 2

δ

m +λ. Equation (4) can

be expressed in equation (5).

ξT (h) ≤
1

2
d̂H∆H(US ,UT ) + c (5)

In order to have a tighter upper bound, we should have
smaller divergence d̂H∆H(US ,UT ). Domain adaptation al-
gorithm tries to minimize divergence which reduces the Tar-
get error ξT (h). The proposed approach explicitly tries to
minimize the domain shift using class aware style transfer,
i.e. d̂H∆H(UŜ ,UT ) < d̂H∆H(US ,UT ) where UŜ is unla-
belled transformed source sample. Hence, the proposed
method will have a tighter target error upper bound. Hence,
applying domain adaptation algorithm on reduced diver-
gence should further minimize the target error ξT (h) result-
ing in improved model performance.

3.6. Algorithm

Refer to Algorithm 1 for complete implementation of
CAFT method. Stage wise architecture details is given in
Fig. 2.

4. Experiments
The Proposed approach is model agnostic and can be

plugged into any adaptation method for improving its per-
formance. We evaluate the proposed method on popular
RevGrad [2] and DeepCoral [19] using Office-31 dataset.
We also evaluated on DSAN [31] using Office-31 and
Office-Home datasets. These are widely reported domain
adaptation benchmarks for classification.

4.1. Dataset

Office-31 [16] : It contains 3 domains with 31 classes
in each domain. The total number of image samples are
4110 images, and the domains are Amazon (A), Webcam
(W) and DSLR (D). Amazon dataset is downloaded from
amazon.com, and it has a white background. Webcam and
DSLR images are captured in an office environment. The
difference in resolution acts as a domain gap for Webcam
and DSLR. DSLR images have high resolution, and Web-
cam images have low resolution. There are 6 possible adap-
tation setting for this dataset which are A → W , A → D,
D → A, D →W , W → A and W → D.

Office-Home [23] : It contains 4 domains with 65
classes in each domain. The total number of image samples
are 15588. 4 domains are Art(A), Product(P), Real World
(R) and Clipart (C). This dataset is one of the most popular
domain adaptation benchmarks. Since it has more number
classes, it helps us to evaluate the scalability of our pro-
posed solution.

4.2. Experiment Setup Details

We have used ResNet-50 [6] backbone as feature extrac-
tor in all our experiments. Optimisation method used for
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Table 1. Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet50).

Method A→W D→W W→ D A→ D D→ A W→ A Avg

ResNet [6] 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DDC [22] 75.8 95.0 98.2 77.5 67.4 64.0 79.7
DAN [12] 83.8 96.8 99.5 78.4 66.7 62.7 81.3

ADDA [21] 86.2 96.2 98.4 77.8 69.5 68.9 82.9
JAN [14] 85.4 97.4 99.8 84.7 68.6 70.0 84.3

MADA [15] 90.0 97.4 99.6 87.8 70.3 66.4 85.2
GTA [17] 89.5 97.9 99.8 87.7 72.8 71.4 86.6
CAN [28] 81.5 98.2 99.7 85.5 65.9 63.4 82.4
iCAN [28] 92.5 98.8 100.0 90.1 72.1 69.9 87.2
CDAN [13] 93.1 98.2 100.0 89.8 70.1 68.0 86.6

CDAN+E [13] 94.1 98.6 100.0 92.9 71.0 69.3 87.7
DSAN [31] 93.6 98.3 100.0 90.2 73.5 74.8 88.4

DSAN+CAFT (ours) 92.0 98.0 100.0 88.0 75.0 75.0 88.0

Table 2. Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet50 backbone).

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet [6] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [12] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
JAN [14] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN [13] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDAN+E [13] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

DSAN [31] 54.4 70.8 75.4 60.4 67.8 68.0 62.6 55.9 78.5 73.8 60.6 83.1 67.6

DSAN+CAFT (ours) 55.2 69.8 75.0 60.0 72.0 71.0 63.3 57.3 79.1 74.1 60.6 83.0 68.4

Table 3. Accuracy on Office-31

Method A→W D →W W → D Avg
ResNet [6] 68.4 96.7 99.3 88.13
RevGrad [2] 76.4 97.0 100.0 91.13
RevGrad+CAFT (ours) 79.8 98.7 100.00 92.83

updating the weights is minibatch stochastic gradient de-
scent with momentum as 0.9 and decreasing learning rate
as a function of epoch as shown in equation (6). It was re-
ported in RevGrad [2]:

µp =
µ0

(1 + 10p)β
(6)

p =
epoch

total number of epochs
(7)

where p ∈ [0, 1] and µ0 as 0.01.
The side of square window size for selecting low-

frequency component is 2L ∗min(Height,Width) and L
was chosen to be 0.04 (DSAN, RevGrad) and 0.08 (Deep-
Coral). The threshold for assigning pseudo labels was kept
at 0.8 and 0.2 for Office-31 and Office-Home datasets, re-
spectively, after analysing one split for a given algorithm
and dataset. We use model accuracy for evaluating the pro-
posed approach.

4.3. Results

RevGrad: We show the experiment results for RevGrad
[2] in Table 3. The proposed approach improves the existing
model accuracy across all the possible splits of Office-31. It
results in 1.7% absolute gain in the average accuracy.

DSAN: We show the experiment results for DSAN [31]
in Table 1 for Office-31 dataset and in Table 2 for Office-
Home dataset. DSAN [31] is one of the state-of-the-art ap-
proaches for UDA. The proposed approach improved the
accuracy in 8 out of 12 possible splits in for the Office-
Home dataset. We get comparable results for the remaining
splits as well. It also improves average absolute accuracy
by 0.8%. Since the office-home dataset size is large, hence
0.8% gain is non-trivial. We achieve performance gain in 3
out of 6 splits for the Office-31 dataset. Resulting average
accuracy is comparable.

DeepCoral: We show the experiment results for the
DeepCoral [19] in Table 4. Our proposed approach im-
proves the existing model performance across all the pos-
sible splits of Office-31. It results in 1% absolute gain in
the average accuracy.
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Figure 3. The accuracy plots for Ideal Case Oracle Based Target Labeling against the proposed pseudo label based method and Randomly
Selected Image based method for DeepCoral [19]. The superior performance of the proposed method against the randomly selected image
based transformation method is evident from the graphs. Due to noisy predictions in the pseudo labels, model performance stays between
oracle and random transformation. In oracle case, we assume to have access of the ground truth. In random transformation, we randomly
select target samples for CAFT.
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Figure 4. The loss plots for Ideal Case Oracle Based Target Labeling against the proposed pseudo label based method and Randomly
Selected Image based method for DeepCoral [19]. The convergence of loss for the proposed CAFT approach is faster compared to the
random transformation based approach. Oracle converges fastest, which is in line with our proposed hypothesis. The superior performance
of the proposed method against the randomly selected image based transformation method is evident from the graphs.

5. Analysis

In this section, we will empirically analyse the proposed
approach of class aware Frequency transformation. We will
also examine the accuracy and convergence of the proposed
approach.

5.1. Analysis of Class Aware Transformation

In our proposed approach, we hypothesise that class
aware frequency transformation of the Source sample w.r.t
Target sample minimise the domain shift in image space.
Hence, it results in ease of adaptation for existing domain
adaptation algorithms. Since the Target domain is unla-
belled, we use the pseudo label for class aware frequency

transformation. We rely on a Source trained and adapted
network to get the pseudo label. Hence, the pseudo label we
get is noisy in nature but is better than using a random Tar-
get sample for the frequency transformation of the Source
sample. We analyse this in Fig. 3(a) and Fig. 3(b) using
DSLR(D)→ Amazon(A) and Webcam(W )→ Amazon(A)
split of Office-31 dataset for DeepCoral [19] method. We
observe that pseudo label based transformation results in
better accuracy compared to random transformation. We as-
sume that we have access to the actual class label of Target
samples (Oracle) and compare the results against the ran-
dom Target label and pseudo-label-based approach for the
analysis purpose. The accuracy of the oracle is highest (as
expected) followed by the proposed approach and random
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Table 4. Accuracy on Office-31

Method A→W D →W W → D A→ D D → A W → A Avg
ResNet [6] 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DeepCoral [19] 77.7 97.6 99.7 81.1 64.6 64.0 80.8
DeepCoral+CAFT (ours) 79.4 97.9 100.0 81.5 66.6 65.7 81.8
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Figure 5. We compare the target domain accuracy from the
source (Amazon) to target (Webcam) for adaptation method
RevGrad and ours (RevGrad + CAFT). We can see that our
approach improved overall accuracy of the adapted model
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Figure 6. We compare the target domain accuracy from the
source (Amazon) to target (Webcam) for adaptation method
RevGrad and ours (RevGrad + CAFT). We can see that our
approach improved overall accuracy of the adapted model

transformation, which is inline with our proposed hypothe-
sis. We observe the similar trend in the convergence of the
loss plot as shown in Fig. 4(a) and Fig. 4(b). Hence, ac-
curacy will further improve if we could improve the pseudo
labeling method.

5.2. Accuracy and Convergence on Target Domain

This section analyses the accuracy and loss convergence
of the proposed approach compared to the original algo-
rithm. We show the accuracy and loss convergence plot in
Fig. (5) and Fig. (6) respectively. We use Amazon(A) →
Webcam(W ) of Office-31 dataset for the RevGrad [2] be-
cause this was studied in original work. We can observe that
the accuracy curve for the proposed approach stays ahead of
our original RevGrad implementation. This is because our
proposed approach can ease the adaptation process, which
leads to faster convergence. Similarly, we observe from Fig.
6 that the proposed approach converges faster than the orig-
inal method. These better performances and faster conver-
gence validate our hypothesis that explicitly reducing the
domain gap helps to improve and facilitate the adaptation
process without requiring extra computing power.

6. Conclusion

This work explored to limit the negative transfer and
achieve the explicit domain shift reduction in image space
using traditional image processing methods like Fourier
transformation. We analysed the effectiveness of Class

Aware Fourier Transform (CAFT) from source samples to
target samples with the help of pseudo labels. Along with
providing the theoretical insights, we empirically evaluated
our proposed hypothesis. The proposed approach yields
better or comparable results against the existing domain
adaptation baseline methods. CAFT acts as a pre-adaptation
step and is independent of the UDA algorithm, utilizing
the CAFT transformed source images. Hence it can be
plugged into any existing domain adaptation methods easily
to improve their existing performance. Unlike adversarial
network-based style transfer methods to generate interme-
diate domain images, our proposed pre-adaptation step is
computationally inexpensive and doesn’t have many train-
able parameters.
Limitations Current method is dependent on accuracy of
pseudo labels. A lot of noisy pseudo labels brings down the
model’s performance due to negative transfer. Additionally,
CAFT results in loss of class discriminative features from
the source domain images. This leads to a finite decrease in
model’s predictive performance.
Future Works For the future work, we will investigate the
effectiveness of the proposed approach for other tasks such
as object detection. Further study can be done on the scal-
ability and robustness of the proposed method across dif-
ferent settings of domain adaptation, such as multi-source
domain adaptation and multi-target domain adaptation.
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