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Abstract

Visual-inertial (VI) sensor combinations are becom-
ing ubiquitous in a variety of autonomous driving and
aerial navigation applications due to their low cost, limited
power consumption and complementary sensing capabili-
ties. However, current VI sensor configurations assume a
static rigid transformation between the camera and IMU,
precluding manipulating the viewpoint of the camera inde-
pendent of IMU movement which is important in situations
with uneven feature distribution and for high-rate dynamic
motions. Gimbal stabilized cameras, as seen on most com-
mercially available drones, have seen limited use in SLAM
due to the inability to resolve the time-varying extrinsic cali-
bration between the IMU and camera needed in tight sensor
fusion. In this paper, we present the online extrinsic cali-
bration between a dynamic camera mounted to an actuated
mechanism and an IMU mounted to the body of the vehi-
cle integrated into a Visual Odometry pipeline. In addition,
we provide a degeneracy analysis of the calibration param-
eters leading to a novel parameterization of the actuated
mechanism used in the calibration. We build our calibra-
tion into the VINS-Fusion package and show that we are
able to accurately recover the calibration parameters on-
line while manipulating the viewpoint of the camera to fea-
ture rich areas thereby achieving an average RMSE error of
0.26m over an average trajectory length of 340m, 31.45%
lower than a traditional visual inertial pipeline with a static
camera.

1. Introduction

The ability of a robot to perform accurate Simultaneous
Localization and Mapping (SLAM) in an unknown envi-
ronment depends on the information perceived from its sur-
roundings. Although SLAM has been extensively studied
over the past few decades, more recently it has entered an
era focused on robust performance, high-level understand-

Figure 1: Static (red) and gimbal-stabilized dynamic cam-
era (yellow) images on an aerial vehicle while performing
aggressive motions.

ing, resource awareness and task-driven perception [3].
This is particularly important when dealing with aerial
vehicles such as drones with severe payload limitations
and computational constraints. Visual-inertial (VI) sensor
configurations offer complementary properties which make
them particularly suitable in applications where efficient,
robust and accurate SLAM is key.

While visual sensors provide rich high-dimensional data
capable of capturing detailed appearance information and
performing accurate long-term localization, these sensors
are sensitive to situations involving motion blur, occlusions
and illumination changes typically encountered in aerial ap-
plications. On the other hand, IMUs provide high frequency
accelerometer and gyroscopic measurements which when
integrated provide accurate short-term pose estimates in
high dynamic motion profiles. Current visual-inertial sen-
sor configurations [24, 22] assume a rigid transformation
between the two sensors, thereby coupling the viewpoint
of the camera to the motion of the IMU. As a result, the
cameras in these systems can experience motion blur and
reduced performance in feature initialization and tracking.
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Although sensors such as Event Cameras can be used for
fast motion tracking [25], camera gimbals present on most
commercially available drones, most commonly for image
stabilization and videography viewpoint management can
be used for the same. In the VI setting, the gimbal can sig-
nificantly reduce motion blur and allow for smoother image
transitions irrespective of vehicle motion, leading to more
accurate pose estimates [26, 40]. Fig. 1 shows the differ-
ence between image viewpoints in simulation for a static
camera rigidly mounted to the vehicle and a gimbal sta-
bilized camera while performing aggressive dynamic mo-
tions. However, the use of gimballed cameras in tightly cou-
pled visual-inertial SLAM applications has not been previ-
ously demonstrated due to the inability to reliably resolve
the time-varying extrinsic calibration between the camera
and the IMU through the actuated mechanism.

Errors in the extrinsic calibration between the dynamic
camera and IMU appear as measurement biases and re-
duce the overall accuracy of visual inertial state estimation.
While the combination of an offline IMU to static camera
calibration [11] and an extrinsic calibration from static cam-
era to dynamic camera can be employed [33], these methods
are time-consuming and can only be performed in situations
where a calibration target is available. In contrast, online
calibration methods have the ability to re-calibrate the sen-
sor configuration on the fly and handle changes caused by
wear, sensor re-positioning, or mechanical stress.

In this paper, we develop an online extrinsic calibration
between a dynamic camera and IMU. We build our calibra-
tion into the VINS-Fusion [29] package and show that our
method is capable of estimating the calibration online and in
flight. To the best of our knowledge, this is the first work to
recover the extrinsic calibration between a dynamic camera
and an IMU through an actuated mechanism. We test our
method in the RotorS simulator [12] and improve RMSE as
compared to the combined offline calibration. We also per-
forms tests to demonstrate the utility of dynamic cameras in
high speed, dynamic aerial applications performing visual
inertial navigation. In addition to the novel online calibra-
tion approach, we identify calibration parameters that cause
the system to enter a degenerate state when joint angle val-
ues are not available, leading to a non-unique solution for
the calibration. We propose a novel parameterization of the
actuated mechanism, leading to fewer calibration parame-
ters while crucially resolving the degeneracy, leading to a
more accurate and repeatable calibration.

2. Related Works
2.1. Kinematic and Dynamic Camera Calibration

The calibration relating dynamic cameras and manipula-
tors are closely related to other calibrations such as hand-in-
eye [6], head-to-eye [21] and kinematic calibration [27, 9].

Although initially developed for camera to end-effector cal-
ibration, [4] applied this method to the calibration of a dy-
namic camera and the odometry frame of the vehicle. [41]
provide global optimality guarantees on the recovered cal-
ibration parameters. Recently, [23] performed kinematic
calibration using an RGBD camera while mapping and lo-
calizing in an unknown environment.

A separate body of work deals with the calibration of Dy-
namic Camera Clusters (DCCs) [8, 32], where they seek to
recover the transformation from a camera mounted to an ac-
tuated mechanism to another camera that is rigidly mounted
to the vehicle. In [5], unknown encoder angles were added
to the offline calibration procedure and later tested in a Vi-
sual Odometry application. Recently, [33] extended the cal-
ibration to use a pose-loop formulation as opposed to a pixel
error formulation to achieve better measurement excitation
while providing an analysis of the degenerate parameters
when joint angle values are not available. While previous
methods used a fiducial target to resolve the calibration, our
method recovers the transformation from a dynamic cam-
era to an IMU online and in flight while relying solely on
natural features in the environment.

2.2. VINS systems

Visual inertial navigation systems (VINS) can broadly be
divided into optimization and filtering algorithms. While
filtering-based VINS [24, 1, 16] have demonstrated high-
accuracy state estimation, they suffer from the limitation of
a one-time linearization which can degrade performance es-
pecially in systems with non-linear measurement functions.
Batch optimization methods [22, 29, 39], can achieve higher
accuracy by solving the bundle adjustment problem over a
set of measurements, allowing the error to reduce through
re-linearization while incurring higher computational cost.
There is also a large body of research on recovering the
temporal and spatial calibration between an IMU and cam-
era [10, 34, 31]. However, these systems all assume a fixed
calibration between the IMU and camera.

2.3. Extrinsic Calibration using Neural Networks

With the advancement of deep learning several methods
have tried to address the problem of extrinsic calibration
between various types of sensors [43, 36]. One of the first
methods to employ neural networks for the extrinsic spatial
calibration between a lidar and a camera was demonstrated
in RegNet [35], where they use a series of convolutional
neural networks followed by network-in-network blocks to
resolve the difference between the predicted and ground
truth calibrations. Later CalibNet [17], performed the same
calibration by minimizing the photometric and geometric
error between the input images and 3D point clouds. We
discuss in Sec. 4.1, the inability to use deep learning meth-
ods and state the advantage of using traditional calibration
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algorithms to resolve our dynamic calibration.
2.4. Degeneracy Analysis

The analysis of degenerate configurations has been well
studied with several works dealing with multi-camera [38,
19, 20, 33] and visual inertial [18, 42] systems. Degener-
acy analysis of a system is crucial to understanding if the
required estimation parameters can be uniquely recovered
using the available observations [15]. For non-linear sys-
tems that do not possess dynamics, determining the degen-
erate parameters is equivalent to identifying the columns
of the measurement jacobian that cause it to be rank de-
ficient. [38] successfully identify degenerate motions for
non-overlapping multi-camera systems in visual SLAM ap-
plications, both from geometric and non-linear optimization
techniques respectively. [18] and [42] analyze the VI sensor
configuration motions that cause the system to be degener-
ate for navigation with spatial and temporal calibration.

3. BACKGROUND AND NOTATION

Frames and Notation: Let a point in 3D, expressed in
co-ordinate frame F,, be denoted as p* € R3. We define
a rigid body transformation from frame F, to F as T%¢ €
SE(3), parameterized using a 6-DOF vector 7 and is made
up of a rotation R¥*® € SO(3) and translation t"* € R3
between the frames and is expressed in matrix form as,

- Rb:a tb:a
= 1)

Projection Model and PnP Solution: We define a pro-
jection model ¥(p¢) : R® ~— P? that maps a point ex-
pressed in camera frame, F., to a pixel location on the
2D image plane. Given a set of known 3D points in a co-
ordinate frame F,, and its corresponding pixel location on
the image plane, we can resolve the true pose of the camera
in the frame JF,, via the Perspective-n-Point (PnP) solution.

Denavit-Hartenberg Parameterization: We make use
of the well established Denavit-Hartenberg (DH) conven-
tion [14] to parameterize the kinematic chain which incor-
porates 4 independent parameters w; = [dj, a;, ;)T and
0;, where 6;, oy € [0,27) and d;, a; € R. The time-varying
parameter in this representation is the joint angle parameter
6;, with the remaining parameters being static. With suc-
cessive co-ordinate frames defined for each of the joints,
the transformation from frame F; to F;_; can be computed
as follows:

cosf; —sinf;cosa;  sinf;sinq a; cos 0,

-t sinf; cosfcosaqy —cosfsina; a;siné,
w61 0 sin a cos «, d
1 1 l
0 0 0 1

2

Degeneracy Analysis: While the optimization of trans-
formation matrices can be performed over SE(3), we per-
form the optimization and degeneracy analysis by treating
the rotation part of the transformation matrix as a manifold
in SO(3), but using the translation component as a vector
space in R3, similar to the analysis in [7]. This enables
the use of the derivatives in [2] which leads to easier anal-
ysis of the degeneracies and the ability to rely on identities
Eq.(3.17), Eq.(3.18) and Eq.(3.24) in [7], omitted due to
space considerations. We let I be a 3x3 identity matrix and
[A]; represent the i*" column of the matrix A. We denote
[]" as the transformation of a vector to a skew symmetric
matrix, while [-]V denotes its inverse operation. We make
use of the following two identities for any rotation matrix
R and any vector v [2]:

[Rv]" = R[v]"RT (3) R[v]" = [Rv]"R (4)

4. Problem Formulation
4.1. Classical vs Deep Calibration

In this section we briefly describe the inability to use
deep learning methods to resolve our dynamic calibration
and state the importance of approaching this problem using
a classical formulation. In this paper we seek to recover a
time-varying extrinsic transformation between the camera
and IMU that is governed by a collection of fixed (w, 7) and
dynamic () parameters used to define the transformation.
The relative transformation between the camera and IMU
changes with each change in joint angle value. While one
could fix a particular configuration of joint angle values and
establish a fixed 6-DOF transformation between the cam-
era and IMU using a package like Kalibr, collecting such a
dataset for every possible joint angle configuration would
not only be time consuming and cumbersome but would
lead to poor generalizability with the increase in number
of joints as well as possible gimbal configurations (order
of joints such as yaw-roll-pitch, pitch-yaw-roll etc.). This
would also require the presence of encoders on the gimbal
(typically not available on most commercial drones) to en-
sure the same joint angles are achieved. At the same time,
the ability to recover a unique calibration is contingent on
identifying the parameters that cause the calibration to be-
come degenerate. To the best of our knowledge, we are un-
aware of any deep learning method capable of providing this
information. We therefore resort to traditional approaches
of manipulator kinematics and pixel-error formulations to
resolve our calibration.

4.2. Manipulator Chain Description:

In this section we first provide an in-depth description
of the parameterization used to describe the transformation
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Figure 2: DJI Zenmuse X4S 3-axis gimbal with a camera.

from the dynamic camera frame F¢, to the IMU frame, F;.
It should be noted, that while we use a 3-DOF gimbal as
shown in Fig. 2, our formulation is applicable to a mecha-
nism with any number of joints. The transformation from
the dynamic camera to IMU is given by

T4 — TLPTEFTES ®

where ® = {77,w,7c} are a collection of all the static
parameters describing the transformation of the actuated
chain. TZP and TE are rigid 6-DOF static transfor-
mations from the base frame of the mechanism, Fp to the
IMU frame and from the dynamic camera frame to the end-
effector frame Fp respectively. TS is a series of trans-
formations relating information through the (N=3-DOF) ac-
tuated gimbal and is given as

Too = Tol6 Ty, T, (©)
where w = {wy,ws, w3} and @ = {61,05,05} are a col-
lection of the static DH parameters and joint angles respec-
tively.

4.3. DC-VINS State Vector Formulation

VINS-Fusion is capable of recovering a static 6-DOF
extrinsic transformation between a camera and an IMU
mounted to the vehicle in flight. Once calibrated, this trans-
formation does not change with time. However, when us-
ing a dynamic camera in visual inertial applications, one
needs to estimate a series of transformations as described in
Eq. (5). We therefore extend the VINS-Fusion package to
now estimate all the calibration parameters ® as well as the
joint angles 6 at each time-step. For a complete description
of the original VINS-Fusion method, we refer the reader
to [30, 28].

Let us assume a sliding window of size n consisting of
IMU states as well as m features observed by the keyframes

in this window. The full state vector, X', can be defined as:
@)

where x, is the state of the IMU when the k' image is
taken and consists of the position (pﬂ), velocity (v}’i) and
orientation (q7, ) of the IMU in the world frame as well as
the accelerometer (b, ) and gyroscope bias (b,) in the IMU
body frame. ); is the inverse depth of the [** feature from
the first observation in the respective camera frame. ® is the
collection of static parameters as described in Sec. 4.2 and
is constant across all the frames in the window. In order to
account for the different dynamic camera viewpoints at the
different time-stamps, we need to estimate the joint angles
for each frame in the window. Let the collection of all the
joint angles needed to be estimated be represented as O,
where each ; is a set of L angles for an L-joint mechanism.

Online calibration of the DC-VINS system involves
signficantly more parameters than the six parameters in the
static case. For an actuated mechanism with L links we
have a total of 12 4+ 3L 4 Ln parameters to be estimated
with 12 parameters from the two 6-DOF rigid transforma-
tions TLP and TEC, 3L parameters for the static DH pa-
rameters, wy, for each of the L links, and Ln parameters
for the L joint angles for a n-window system. Therefore,
for a window size of 10 and a 3 joint mechanism we have
124+ 3-34 3-10 = 51 parameters. Despite an expected re-
duction in calibration accuracy for the actuated chain over a
static transformation, we show that a net gain in VI estima-
tion performance can be obtained when an actuated camera
is able to stabilize image capture and diminish dynamic mo-
tion effects.

Visual-inertial bundle adjustment is then formulated by
minimizing the sum of the prior and the Mahalanobis dis-
tance of all visual and IMU measurement residuals in the
sliding window in order to obtain a posterior estimate as
follows,

2

m)}n{“rp—HpXHZ_’_Z rs (if:H,X)

keZ P?,zﬂ
3 oo 0]
> P re &7 X)L
(I,5)ec

®)

where r,, and H,, are the prior information from the previ-
ous marginalization step, rp (iﬁ:ﬂ , X ) is the IMU resid-

ual term as defined in [29] and r¢ (ZZCJ , X ) is the visual
residual term as described in Eq. (9) below, operated on by
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the Huber norm p. P§:+1 and P;? are the measurement co-
variance for the IMU and visual terms respectively. 7 is the
total number of IMU measurements and C is the total num-
ber of features that are observed in at least two images in
the sliding window.

4.4. DC-VINS Visual Measurement Residual

The visual error term is formulated by considering the
camera and IMU instances across two time-steps. Since
the original VINS-Fusion consists of a static transforma-
tion between the camera and IMU, this transformation re-
mains constant across all time-steps. Our formulation on
the other hand allows the movement of the camera between
two time-steps, therefore having different transformations
from the dynamic camera to IMU at each instance. Let the
transformation from the dynamic camera to IMU at time-
steps i and j be represented as T4 g ‘ and T<1> o, - These
respective transformations are goverened by the set of joint
angles 8; and 6; applied respectively to the mechanism.

If we consider the I*" feature first observed in the ‘"
camera frame, the pixel-error residual of the feature obser-
vation in the j* camera frame is given by

~ACj

A Cj

re (zlJ,X) :zl -2 ©
o

z) = U (p“)
where 2, is the true pixel measurement in the j'* image
frame while zfj is the projected pixel after transforming the
3D point, p¢ expressed in the i*" image frame through the
actuated mechanism and is given by,

Cj I3:C5y — di\— I i:Ci\ 1 Ci
P = (T ) TV )" (T ) (T ) p™  (10)

C;:Ci

. ve; 1T - .
where p© = LU~ ([ agt o] ) is the back projec-
tion function, Wthh turns the first pixel observation u;", v;"
along with the inverse depth )\; into a 3D point.

4.5. Degeneracy Analysis

In this section we identify the degenerate parameters of
the visual-inertial calibration problem that cause the sys-
tem to go to into an irrecoverable state leading to non-
uniqueness of the calibration parameters. It should be noted
that the degeneracy presented here is a function of the pa-
rameterization of the actuated chain, therefore existing for
any angle configuration of the mechanism. While a similar
analysis was presented in [7] and [33], the identification
was made for a single gimbal chain incorporating two cam-
eras while our analysis uses a double chain formulation as
described in Eq. (10). Due to space restrictions, we limit
our analysis to a single set of parameters, in particular the
degeneracy arising between the translation parameters de-
scribing the Base to IMU transformation, TZ*Z and the d

parameter describing the transformation T5*/2, We refer
the reader to [7, 33] for a similar analysis of the remaining
parameters. The Jacobian of Eq. (9) with respect to T 5 is
given by,

Ore Orc Oz’ Op® OTC5:C 9Tl 9T !¢

OTIB — 0z, Ope OTCiCi | Tl 9TLCi OTLE;
J1 T2

8TCj:Ci aTIi:Ci

———
T3

(11)
We note that while the overall transformation of the ac-
tuated chain from dynamic camera to IMU varies at dif-
ferent time-steps, the transformation from the base of the
mechanism to the IMU and dynamic camera to end-effector
are constant irrespective of time-step. Therefore we have,
T!i:Bi=T1:Bi=T1: B and similarly for T#P. While de-
termining Jacobian J; is trivial, we briefly state the Ja-
cobians J» and J3, where we make use of Eq.(3.18) and
Eq.(B.4) from [7],

7 _chzlj 03x3 B A A
I = _RCj:Ij[th:Ci _th:Cj]/\ _RCil; 7[ 1 2]

(12)

chtli Ox
jgl = [B B (13

033 RC

Considering a single chain T!+“= 2 € {4, j} we state the
Jacobian with respect to T/=B= and refer the reader to [7]
for the derivation.

6T1micm B [ I 03x3
[

OT!+B. | _ RIE:BmtBI:Cw}/\ I ‘| (14)

where the first 3 and last 3 columns represent the Jacobians
with respect to the rotation and translation parameters re-
spectively. Similarly, the Jacobian with respect to the d pa-
rameter for T5=*/2+ is given by

AT L=:Cx 03x1
8TBI:J2Q = [I{II:BQE]3 (15)
d

Substituting Eq. (12), (13) and the translation Jacobians of
Eq. (14) into Eq. (11), we get

Ore

JTIB =T

[A2 + Bo] I (16)

Similarly we can show that the d Jacobian in Eq. (15) can
be written as

aI‘C
6Tl]13:J2 = ‘71

[A2 + Bo] [R”S]gl (17)
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Since T8 is a static transformation, we can multiply
Eq. (16) with [R1*B]3 resulting in Eq. (17), thereby leading
to the degeneracy. We can similarly show that there are
degeneracies related to the d, a, o and 6 parameters of the
T73F link and the d and 6 parameters of the T5*/2 link
as described in [7, 33] leading to a total of 6 degenerate
parameters.

4.6. Minimal Parameterization

The transformation chain described in Eq. (5) is overpa-
rameterized, therefore, in this section we propose a novel
minimal parameterization eliminating previous degenera-
cies, which is a crucial requirement in having the ability
to recover a unique set of calibration parameters. Assum-
ing a 3-DOF gimbal, the transformation from camera frame
to IMU frame for a single configuration consists of two 6-
DOF transformations and three DH transformations result-
ing in a total of 12+3*%4=24 parameters. However, as stated
in Sec. 4.5, such a parameterization had 6 degenerate pa-
rameters resulting in a total of 24-6=18 minimal parameters
needed to define the actuated chain from dynamic camera
to IMU.

4.6.1 Last Joint Degeneracy Resolution

According to the old parameterization, the transformation
from the last joint J3 to the dynamic camera C' is made up
of two transformations, a 4-DOF DH transformation T7/3'Z
and a 6-DOF static transformation T#:¢ leading to a to-
tal of 10 parameters used to define T73:¢ However, as
shown in [7, 33], the DH parameters used to describe the
T73F are degenerate leading to a total of 10-4=6 minimal
parameters used to describe T3¢ In order to preserve the
time-varying nature of the  parameter describing T7/3:F,
we propose to augment the DH parameters by appending
two other transformations, a rotation $ and a translation y
around and along the y-axis respectively in order to achieve
an augmented 6-DOF DH transformation from J3 to C.
The entire minimal transformation for T3¢ is then given
by TJ 3:C _

cos(B) 0 sin(B) 0|1 0 0 O
T,‘SBI;,E 0 1 0 010 1 0 y
—sin(B) 0 —cos(f) O/ |0 O 1 O
0 0 0 110 0 0 1
(18)
CoCB — SSaSp  —S9Ca CYSB + S9SaCs —YSeCa + AC
| secs + CoSaSp CoCq, $9Sp — CoSaCp YCyCq + ASg
n —Ca S8 S CaCB YSq +d
0 0 0 1
(19)
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(b) Proposed parameterization including theta offset to resolve degeneracy.

Figure 3: Visual depiction of first joint degeneracy resolu-
tion. Note the change in estimation of dp 2 and 0

where ¢, and s,, z € {6, «, 8} represent the cos and sin
values of the parameters and T:5%Z is as defined in Eq. (2).
While we note that this parameterization will produce a
gimbal lock situation at o = |90, this can be accounted for
by switching the rotation around the « and /3 axis leading to
a minimal parameterization of T7/3:¢

4.6.2 First Joint Degeneracy Resolution

The transformation from joint J2 to the IMU I is made up
of two transformations, a 4-DOF DH transformation from
joint J2 to the base of the mechanism T?*/2 and a 6-DOF
transformation from the base to the IMU frame, TTE. As
shown in [7, 33], the d and 6 parameters on the TE:72 are
degenerate leading to a total of 10-2=8 parameters used to
define the transformation T/:/2. This degeneracy in d arises
due to the fact that the only requirement for placing the base
co-ordinate frame, is that the origin and z-axis of the base
frame should lie along the axis of joint angle rotation lead-
ing to an ambiguous absolute position. In the case when
joint angle values are not available, the relative rotation be-
tween the IMU and joint J2 can be captured by both, the
joint angle value 6 and the relative 3-DOF rotation between
the base and IMU leading to an ambiguous rotation result-
ing in a degeneracy in the 6 parameter. In order to eliminate
these degeneracies, we propose limiting the transformation
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from from base to IMU frame from a 6-DOF to a 4-DOF
with two rotations and two translations around the x and
y axis respectively. The transformation T/*/2 can then be
represented as T'/2 =

Cry 0 Sry taCry

SraSry  Crz  —CrySrz  lyCrg + xSraSry B2
DH

7CT:EST‘y Srg Crzcry tysrm - tzcrzsry
0 0 0 1

(20)
where ¢, and s,, © € {rz,ry} represent the cos and sin
values of the parameters, rx, ry, tx and ty represent the ro-
tations and translations along the = and y axis respectively.
As shown in Fig.3, this 4-DOF transformation along with
the optimization of all the DH parameters in TZ/2 is ca-
pable of recovering any arbitrary transformation from IMU
to Base frame, thereby eliminating the degeneracy resulting

in a minimal parametreization.

5. Experiments

The calibration method in this paper is focused on two
main reasons: 1) To perform the calibration between a dy-
namic camera and IMU online and in flight and 2) To show
the advantage of a dynamic camera over a static camera
while performing aggressive aerial motions. We compare
our method against a make-shift offline dynamic camera to
IMU calibration and test the calibrations in a simulated en-
vironment consisting of Gazebo and the RotorS simulator.
We evaluate both calibrations by comparing it to the ground
truth values while also noting the difference in the RMSE
and mean error over the entire run.

5.1. Simulation Environment

In order to perform our experiments we make use of the
RotorS Simulator [12] which is an open-source, customiz-
able MAV gazebo simulator. It supports several high quality
aerial robot models as well as a variety of sensors such as
cameras and IMUs. We simulate a variety of environments
consisting of various buildings that would typically be avail-
able in the real world as seen in Fig.4. For our experiments
we make use of a firefly drone and a affix a custom built 3-
axis gimbal, based on the model shown in Fig.2 to the base
of the mechanism as shown in Fig.1. We limit the move-
ment of the gimbal to 4180, 25 and 30 to -120 degrees in
the yaw, roll and pitch angles respectively, while using an
existing PID controller on each of the joints to perform gim-
bal stabilization. We also attach a static camera to the drone
in order to perform comparisons with static VI calibration.

5.2. Offline Dynamic Camera to IMU calibration

Offline calibration is performed in two steps, by cali-
brating IMU to static camera with Kalibr [11], and static

(b) Environment 2

(a) Environment 1

Figure 4: Simulated Gazebo environments used for experi-
ments.

to dynamic camera via DCC calibration [33]. We employ
the OpenVSLAM [37] package on a simulated environ-
ment of buildings and roads, collecting 39 pose measure-
ments by moving the drone around in the constructed map
and randomly exciting the gimbal over the entire operating
workspace.

We note that in order to perform a fair comparison of
the calibration quality, we collect all calibration data on the
firefly drone during flight operation. A total of 2 minutes
of camera data was collected for intrinsic calibration, while
3 minutes for the IMU to camera calibration while provid-
ing sufficient excitation to drone motion. We note the mean
(M) and standard deviation (SD) of the pixel error for both
calibration procedures. Since we have the ground truth ex-
trinsic transformation from static camera to IMU, we also
report the mean translation and rotational errors along with
the standard deviation values in the Table 1.

Average mean and standard deviation pixel error from
the pose measurements for the static (DCC static) and gim-
bal (DCC gimbal) over the entire measurement set are re-
ported in Table 1. After performing DCC calibration (DCC
calib.), we achieve a mean pixel error of 1.54 pixels along
with a mean translation error of 7.78mm and a rotation error
of 4.23 degrees on the calibrated DH values. It is important
to note that the we add zero mean noise with a standard de-
viation of 10 degrees on each of the encoder angles. We also
note that greater excitation in measurement collection over
the gimbal work-space coupled with lower encoder noise,
reduced the rotational error to a mean of 0.31 degrees with
a standard deviation of 0.15.

Avg. pix err | Avg. trans (mm) [ Avg. rot (deg) |
M Std M Std M Std
Cam. Int. 0.31 | 0.12 - - - -
Cam.-IMU | 0.36 | 0.17 | 12.30 5.02 0.35 0.11
DCC static | 1.35 | 0.12 - - - -
DCC gimbal | 1.44 | 0.13 - - - -
DCC calib. 1.54 | 022 | 7.78 4.02 4.23 2.71

Table 1: Offline Dynamic Camera to IMU calibration
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Figure 5: Example trajectories of in experiments T1 and T3.

5.3. Dynamic versus Static Camera VINS

In order to demonstrate the effectiveness of a gimbal sta-
bilized dynamic camera on a drone performing aggressive
aerial motions, we test our method in a visual inertial appli-
cation using the VINS Fusion package. We perform 3 sets
of experiments in two simulated environments as shown in
Fig.4 and report the average RMSE, Mean and Standard De-
viation error values in Table 2 using the EVO package [13].
We note, that in all the experiments we avoid the trivial case
when the static camera does not observe any features due to
high speed motions but emphasize that there is significant
advantage in having the ability to point the gimbal camera
to feature rich areas that aid in the pose estimation qual-
ity. In experiment T1, we fly the drone around a house in
Environment 1, while performing random aggressive aerial
motions as shown in Fig.5(a). As can be seen from the re-
sults there is a clear advantage in using the gimbal camera
over the static leading to a 23.95% error decrease in the
RMSE value. Experiment T2 tests the estimation quality
while flying the drone along a forward-backward trajectory
followed by a left-right trajectory. In experiment T3, we
test the drone using random aggressive motions in Environ-
ment 2 and show the trajectory in Fig.5(b). Although there
are features available in every direction, the RMSE of the
gimbal camera shows the ability to perform stable pose es-
timation as compared to the static camera.

Env | Len. (m) | RMSE | Mean Std
Gim. T1 1 460.62 0.292 | 0.261 | 0.129
Gim. T2 1 180.59 0.310 | 0.272 | 0.132
Gim. T3 2 383.83 0.180 | 0.165 | 0.071
Stat. T1 1 460.62 0.384 | 0.347 | 0.164
Stat. T2 1 180.59 0.360 | 0.295 | 0.170
Stat. T3 2 383.82 0.414 | 0.383 | 0.157

Table 2: Mean and standard deviation of dynamic versus
static camera VINS over two environments and three runs.

5.4. Online Dynamic Camera VINS calibration

To demonstrate online DC-VINS calibration, we test our
method in Environment 2 and run our online approach over
a trajectory of 456.19m. We initialize the calibration pa-
rameters within +3cm in translation, ==10° in rotation and
add zero mean gaussian noise with a standard deviation
of 7° to the true joint angle values. We compare our ap-
proach against the offline calibrated values as described in
Sec.5.2 and only optimize for the joint angle values while
keeping the offline parameters fixed. Error statistics of the
two calibrated methods are reported in Table.3. The high
RMSE error in the offline calibration method can be at-
tributed to the poorly estimated calibration parameters re-
maining static emphasizing the need to gather new measure-
ments and re-calibrate online. After calibration our method
achieves an average translation error with mean 1.52cm and
standard deviation 0.75cm and a rotation error with mean
1.11° and standard deviation 0.74° on the calibration pa-
rameters. We note that the sensitivity of the calibration pa-

Calibration Method RMSE | Mean SD
Online (DC VINS) 0.7399 | 0.610 | 0.4186
Offline (DCC + Kalibr) | 1.4056 | 1.274 | 0.592

Table 3: Error in online vs offline calibration.

rameters is largely dependent on the particular motion of the
drone which helps in constraining certain parameters more
than others and is the subject of future research. We ar-
gue that while the calibrated values do not reach the true
values of the calibration chain, the ability to perform on-
line calibration of a dynamic camera to an IMU is a signifi-
cant step towards performing tightly-coupled visual-inertial
odomtery and active vision in the field.

6. Conclusion

In this paper, we demonstrate the ability to perform
tightly coupled visual-inertial odometry with a dynamic
camera while being able to recover the calibration param-
eters online and in flight. In order to avoid the degeneracy
of certain calibration parameters as compared to previous
approaches, we propose a minimal parameterization of the
actuated chain between a dynamic camera and an IMU. We
test our method in simulation and demonstrate the utility
of a dynamic camera as compared to a static camera when
performing VIO on an aerial vehicle undergoing aggressive
motions. We compare our method against an offline DC cal-
ibration approach and show that our method reduces RMSE
over the entire trajectory. Future work will look into inves-
tigating particular drone motions that help better constrain
the calibration parameters in order to achieve a higher cali-
bration accuracy needed for active visual-inertial odometry
and SLAM.
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