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Abstract

3D scanning is a complex multistage process that gen-
erates a point cloud of an object typically containing dam-
aged parts due to occlusions, reflections, shadows, scanner
motion, specific properties of the object surface, imperfect
reconstruction algorithms, etc. Point cloud completion is
specifically designed to fill in the missing parts of the object
and obtain its high-quality 3D representation. The exist-
ing completion approaches perform well on the academic
datasets with a predefined set of object classes and very
specific types of defects; however, their performance drops
significantly in the real-world settings and degrades even
further on previously unseen object classes.

We propose a novel framework that performs well on
symmetric objects, which are ubiquitous in man-made envi-
ronments. Unlike learning-based approaches, the proposed
framework does not require training data and is capable
of completing non-critical damages occurring in customer
3D scanning process using e.g. Kinect, time-of-flight, or
structured light scanners. With thorough experiments, we
demonstrate that the proposed framework achieves state-
of-the-art efficiency in point cloud completion of real-world
customer scans. We benchmark the framework performance
on two types of datasets: properly augmented existing aca-
demic dataset and the actual 3D scans of various objects.
The code is available here: https://github.com/softserveinc-
rnd/symmetry-3d-completion

1. Introduction

The ability to recognize the geometry of a 3D object is
a key pre-requisite in many computer vision applications.
This task can be accomplished with 3D scanners, includ-
ing LIDARs, time-of-flight and structured light sensors that
have seen tremendous progress over the last few years and
have become more accessible and easy to use.

Point cloud format is commonly used for the 3D shape
representation of an object. Due to the limited sensor reso-

Figure 1. Method performance pipeline: a) damaged object,
b) completed regions (green) c) result, d) original object

lution and occlusions, an incomplete point cloud is typically
generated as an output of a scanning pipeline. Recovering a
damaged point cloud by filling in the missing parts, called
point cloud completion, is the step required in many 3D
scanning pipelines as it generates a more accurate 3D rep-
resentation of the object and moreover enhances the overall
performance of further 3D computer vision pipelines.

Most existing solutions of the point cloud completion
task are based on deep neural networks trained on large
datasets with a limited number of classes that the solution
can complete. State-of-the-art approaches use datasets with
e.g. up to 40 classes (ShapeNet [3]), which is a serious
constraint for real-world applications as reconstructing new
types of objects requires a long training procedure and mas-
sive datasets that are hard to collect.

To overcome this problem, we propose a novel frame-
work that does not require training data and is capable of
completing previously unseen symmetric objects. The sym-
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metry of interest here is a mirror reflection symmetry that is
present in most human artefacts.

Our use case is different from those related e.g. to au-
tonomous driving and for which some solutions have been
proposed since they are mostly concentrated on comple-
tion of partially observed objects as in the KITTI dataset
[11]. Our framework concentrates on a different use case
with imperfect full object scans made with time-of-flight
or structured light scanners, in which the damages can oc-
cur when the speed of scanner motion is too high or due
to the shadows and occlusions. For example, with the True
Depth camera, some regions can be missed when the speed
of iPhone motion is greater than the point perception speed
or when the object is on a turntable and images are taken by
one camera. Another example is the structured light scan-
ning pipeline where the projector as the source of light is
set on the position appearing on one side of the scanning
object and resulting shadows can lead to the damages in the
resulting point cloud as seen in Figure 1.

Our framework consists of three main steps. On the first
step, we approximate the symmetry plane of the given point
cloud P using the Principal Component Analysis (PCA) [9]
applied to the surface normals in combination with a novel
approach of Dominant convex hull directions. Then we con-
struct the mirror reflection P ′ of P with respect to the ap-
proximated symmetry plane. Due to the broken symmetry
in P and imperfect symmetry plane approximation, P ′ does
not coincide with P . The second step consists in the regis-
tration of the point clouds P and P ′ that would minimize
the mismatch. We apply the Global registration algorithm
of feature point-to-point matching via Fast Point Feature
Histogram (FPFH) [17] along with Random Sample Con-
sensus (RANSAC) with parameters suggested by Choi et
al. [4]. The registration is iteratively improved with the It-
erative Closest Point (ICP) algorithm [2]. On the third step,
we detect the missing parts of the point cloud P from its
optimal mirror reflection P ′ using the proposed proximity
measure and finish the completion of the point cloud P to
better represent the initial 3D object.

Performance of the proposed framework is demonstrated
on point cloud completion of two datasets, including the
standard academic dataset ShapeNet which was properly
augmented for our use case with non-critical damage-rate
as well as 3D scans of real-world objects collected for the
purpose of this research. The accuracy of our algorithm
was compared with several neural networks, such as GR-
Net: Gridding Residual Network (GRNet) [26], Morphing
and Sampling Network (MSN) [13], Point Completion Net-
work (PCN) [28]. In addition to not requiring any pre-
training and being not restricted to particular object classes,
our approach also achieves state-of-the-art completion re-
sults comparable to those obtained by other methods. Since
the symmetry plane detection accuracy is critical for the

overall performance of the framework, we also benchmark
it on the 2017 ICCV Challenge: Detecting Symmetry in the
Wild [10] dataset and report better or comparable results
with the solution of Cicconet et al. [5], which was the only
one with the provided code. Finally, we demonstrate that
our framework generalizes to previously unseen real-world
objects collected by three types of 3D scanners: Microsoft
Kinect, iPhone’s TrueDepth camera (or LIDAR in the latest
versions) and the structured light scanner.

The main contributions of the paper can be summarized
as follows:

- a learning-free framework is proposed for point cloud
completion based on the mirror symmetry;

- a novel symmetry plane detection technique is intro-
duced as an intermediate step of the framework;

- a novel distance metric is developed to measure the
accuracy of point cloud matching;

- the experiments were conducted on the common aca-
demic dataset ShapeNet and on the newly collected
real-world dataset of scans; the benchmarks indicate
that the proposed framework performs well on the gen-
eral class of symmetric objects and even outperforms
state-of-the-art approaches on the provided datasets.

2. Related work
2.1. Point cloud completion

Learning-based. The pioneering approaches to point
cloud completion are mainly focused on the usage of deep
neural networks (NN). Several approaches are based on the
multi-layer perceptron (MLP) due to its simplicity and solid
representation power. Qi et al. [16] introduce PointNet that
is applied directly to a point cloud and correctly handles
the permutation invariance of its input. At the same time,
this class of methods aggregates features with symmetric
functions, such as Max-pooling, which do not fully exploit
the geometric structure of a point cloud. Xie et al. [26]
solve the problem of the structural and contextual infor-
mation loss by introducing 3D grids as intermediate repre-
sentations as a regularization to unordered point clouds and
based on such grids present the Gridding Residual Network
(GRNet) which shows great results on the Completion3D
benchmark [23]. Also to overcome the structure informa-
tion loss Groueix et al. [12] introduced the method that rep-
resents a 3D shape as a collection of parametric surface el-
ements and utilizes surface representation of the shape in-
stead of voxel grids or point clouds. Similarly, Liu et al. [13]
propose the method that also uses a collection of parametric
surface elements. In the first stage they predict a complete
coarse-grained point cloud and in the second stage the algo-
rithm merges the predictions with the input point cloud with
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the proposed sampling method. In contrast to intermediate
parametrization or voxelization, Yuan et al. [28] propose a
Point Completion Network (PCN) which operates directly
on the point clouds without any structural or geometry as-
sumption and completes them in a coarse-to-fine fashion.

Geometry-based. Besides learning-based approaches
some attempts have been made with geometry-based meth-
ods which complete the shapes using geometry features
without any external data. The geometry-based methods
themselves can be categorized into surface interpolations
and symmetry-driven methods. Sarkar et al. [18] propose a
3D shape parameterization method by surface patches that
performs interpolated shape completion of complicated sur-
face textures. The results achieved by Sorkine et al. [20]
used the connectivity of the mesh containing the geomet-
ric information that approximates a set of the control point
in a least-squares manner and Zhao et al. [29] propose the
method that can fill great holes in triangular mesh models by
approximation of newly created normals. We should note
that the primary task of these papers is to fill small locally
uncompleted regions by smooth interpolation and the infor-
mation based on a mesh, which is not the use case with
point clouds. Mitra et al. [14] discussed the strengths and
limitations of existing 3D symmetry algorithms. Pauly et
al. [15] introduced the framework for detecting the repeated
geometric patterns in mesh-based models by the analysis of
pairwise similarity transformations. Sung et al. [22] method
uses a 3D model collection to build the structural part-based
priors to perform the completion. They also focus on the use
case with low-quality consumer-level scanners and achieve
compatible results, but still are the training-based approach.

2.2. Symmetry plane detection

Application of the symmetry plane detection for point
clouds can be found in various fields of computer vision
and computer graphics. Fan Xue et al. [27] showed that
symmetry estimation can be well accomplished with prior
knowledge of the object type. However, in the general
case, the object type is unknown beforehand. With an as-
sumption of a bilateral object (having perfect or imperfect
mirror symmetry) Combes et al. [7] presented an iterative
approach using the maximum likelihood principle and the
expectation-maximization (EM) algorithm. To deal with the
problem of noisy or missing data, Sipiran et al. [19] devel-
oped a feature-based approach. The algorithm generates a
set of symmetry candidates based on detected features. The
vote-based system validates all candidates and selects the
best one. Several interesting methods were presented on
the 2017 ICCV Challenge [10]: Detecting Symmetry in the
Wild. Cicconet et al. [5] developed a simple and efficient
symmetry estimation approach based on registration which
is also a key step in our pipeline. However, the accuracy of
the algorithm drops when the points in the symmetric parts

are not perfectly aligned or missing parts are presented in
the point clouds. Speciale et al. [21] propose the approach
of detecting symmetries from incomplete data which then
allows the scene completion. They extend standard sym-
metry detection techniques to exploit partially unexplored
domains. Cohen et al. [6] propose a method to recover sym-
metry relations using the geometry cues. The symmetry pri-
ors are incorporated in a new constrained bundle adjustment
formulation. The method can perform 3D completion to get
rid of Structure-from-Motion (SfM) artifacts based on the
symmetries.

3. Pipeline description

Given a real-world 3D object D that is symmetric with
respect to a plane π ⊂ R3. The symmetry plane π =
π(p,n) is uniquely determined by any of its points p ∈ π
and a unit normal n; then the mirror reflection Tπ with re-
spect to π is given by Tπx = x− 2⟨x−p,n⟩n, where ⟨·, ·⟩
is the standard scalar product in R3. The object D is called
symmetric with respect to π if TπD = D.

In real-world applications, D is represented by a point
cloud P = {x1, . . . ,xn} of points xi ∈ D. In the ideal sit-
uation, the points of P are uniformly spread inside D so that
the mirrored cloud TπP is almost identical to P , in the sense
that the Chamfer distance between P and TπP (5) is small
enough. However, in the realistic cases point clouds P rep-
resenting D have holes, i.e., there are sub-regions Dj ⊂ D,
j = 1, 2, . . . , h with no or very few points xi. Our goal
is to fill in these holes, i.e., to find a point cloud P ∗ ⊃ P
that is symmetric with respect to a plane π∗ and has the
smallest possible volume. In order that P ∗ would repre-
sent the whole D, the missing part

⋃h
j=1 Dj should have a

void (or negligibly small) intersection with its mirror image
Tπ(

⋃h
j=1 Dj).

The completion framework proposed in this paper (see
Fig. 2) includes three main steps: symmetry plane estima-
tion, its iterative approximation, and then localization of
the holes and their filling. The first two steps are based
on point cloud registration and include several preliminary
steps, such as bounding box and centroid computation, sym-
metry plane candidates computation and approximation.

3.1. Bounding box and centroid computation

Missing regions in the point cloud induce errors to the
whole objects geometry estimation. To localize the point
cloud and minimize the influence of its missing parts, we
put it inside its bounding box; this is a cuboid of minimal
volume that is circumscribed around the point cloud and
whose faces are parallel to the coordinate planes. It is con-
structed by detecting the extreme points of the point cloud
along the coordinate x, y, and z-axes; the coordinates of the
cuboid vertices are combinations of these extreme values in
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Figure 2. Pipeline of the algorithm

each direction:

v1 = (xmin, ymin, zmin),

v2 = (xmax, ymin, zmin),

. . . . . . . . . . . . . . . . . . . . . . .
v8 = (xmax, ymax, zmax).

The centroid c of the bounding box has coordinates

c =
(xmax + xmin

2
,
ymax + ymin

2
,
zmax + zmin

2

)
. (1)

The bounding box centroid c is more stable to point
cloud damages than the point cloud mass center mass center
x = 1

n

∑n
i=1 xi and we prefer it as a reference point for the

symmetry plane approximation in the dominant convex hull
direction method of Subsection 3.2.3.

3.2. Symmetry plane estimation

Standard approaches to symmetry plane estimation fail
to find the correct symmetry plane π due to random point
sampling and non-symmetric missing parts in the point
cloud. However, the proposed algorithm requires only an
approximation of the symmetry plane that is close enough

to the correct one. We suggest two approaches to the sym-
metry plane estimation, which are based on the principal
component analysis (PCA) applied to the surface normals
and dominat convex hull directions, respectively. These
two methods generate several candidates for the symmetry
plane, and each candidate is evaluated with the balance dis-
tance metrics (3) to select the best one. As experiments
show, using this best candidate as initial symmetry plane
approximation results in solutions with better Chamfer dis-
tance to the ground truth (see Fig. 3).
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D
×
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Figure 3. Comparison of the final results with a random initial
symmetry plane approximation and suggested approximation us-
ing PCA candidates. The experiments were run on the properly
augmented ShapeNet dataset with 9 different damage rates

3.2.1 Principal component analysis

Principal component analysis (PCA) can be used to estimate
the symmetry plane of a point cloud P . The PCA calculates
the eigenvalues and eigenvectors (principal components) of
the 3 × 3 covariance (i.e., inertia) matrix Σ of P . If π is a
symmetry plane of P , then the principal components c are
invariant under Tπ , so that each principal component either
belongs to π or is orthogonal to it.

Therefore, given a point cloud P that is not completely
symmetric with respect to π, we suggest a candidate π∗ for
π as a plane through the bounding box centroid c of (1)
that is orthogonal to a principal component. Assuming that
Σ has no repeated eigenvalues (which is the case when the
point cloud has no multiple planes of symmetry), we thus
get three candidates π∗ of which the best one is chosen.

Experiments showed that the PCA is not sufficiently ro-
bust to random damages; therefore, we apply it not to the
initial point cloud P itself but to two point clouds that are
projections onto the unit sphere S2 of the surface normals
and the so called dominant convex hull directions discussed
in Subsections 3.2.2 and 3.2.3.

3.2.2 PCA of normal directions

We use the open3d.geometry.estimate normals
algorithm of Open3D2 library [31] to calculate the point

2http://www.open3d.org/
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cloud normals nj by locally fitting planes through the sur-
face points of P and register them on the unit sphere S2.
Then we run the PCA on the resulting set N of normals to
find a candidate π∗ of the symmetry plane π as explained in
Subsection 3.2.1.

In the case where the point cloud P was obtained from
the uniformly representing point cloud of a symmetric ob-
ject D by removing several randomly located holes, the
PCA of normal directions in most cases returns a good ap-
proximation π∗ for the ground-truth symmetry plane π.

3.2.3 Dominant convex hull directions

Our experiments demonstrated that there are cases when the
PCA of normal directions fails to suggest a good candidate
for the symmetry plane π. A reason for that is that the miss-
ing parts Dj of the point cloud P may significantly affect
the surface and thus the normals. To overcome this prob-
lem, we propose a complementary approach for symmetry
plane estimation using the PCA of the dominant directions
in the point cloud convex hull.

Firstly, the convex hull is built around the point cloud P
using the Quickhull algorithm [1] implemented in Open3D
library. It consists of numerous intervals joining points on
the point cloud surface, and we register their directions ±uj

on the unit sphere S2. If the point cloud P has mirror sym-
metry π, then the set of unit directions uj will be almost
symmetric with respect to π.

In presence of measurement errors and missing parts Dj ,
the point cloud P will not be symmetric with respect to π
but the set U of unit directions on the sphere S2 is typically
close to symmetric, see Figure 4. We apply the PCA to the
set U of directions on the sphere S2 and get three candidates
for a symmetry plane as described in Subsection 3.2.1.

Figure 4. a) Dominant convex hull directions: Projections of the
convex hull lines onto the unit sphere S2; b) Projections of the
points normals onto the unit sphere S2

3.3. Metric

To measure the symmetry plane estimation accuracy and
to choose the best among several candidates, a new metric
is suggested. For a point cloud P and a symmetry plane
candidate σ, we first calculate the mirror symmetric im-
age P ′ = Tσ(P ) of P . Denote by Q(x, d) the cube of
center x and side length d, whose faces are parallel to the
coordinate planes; we call a point x ∈ P ∪ P ′ balanced if∣∣|Q(x, d) ∩ P | − |Q(x, d) ∩ P ′|

∣∣
|Q(x, d) ∩ P |+ |Q(x, d) ∩ P ′|

≤ ε (2)

for experimentally established threshold ε; here |A| denotes
the cardinality of a set A. Denote by B(P, P ′) the number
of all balanced points in P ∪P ′; then the balanced distance
BD(P, P ′) between the point clouds P and P ′ is

BD(P, P ′) = 1− B(P, P ′)

|P |+ |P ′|
; (3)

this is an analogue of the standard intersection-over-union
measure.

3.4. Registration

The registration of the point cloud is required since the
candidate for the symmetry plane is only an estimation. The
common method for point cloud alignment is Iterative Clos-
est Point (ICP), which is known as the local registration
method because it relies on a rough initial alignment. In
contrast, we will use global registration which does not re-
quire the initial alignment but produces a less accurate re-
sult, so it will be used as the input of ICP which will perform
the post-processing refinement.

3.4.1 Normals and FPFH features

The FPFH features [17] describe the local geometric prop-
erties of a point cloud and are constructed of the vectors
with 33-dimensions. Computation of the FPFH features re-
quires point normal estimation, which is based on a local
neighborhood of the point and involves covariance analy-
sis. The camera position or the alignment axis should be
provided to choose one of the two directions consistently.

3.4.2 Global registration

Extracted FPFH features can be used to perform the regis-
tration of the point clouds. The registration based on the
RANSAC algorithm with parameters proposed by Choi et
al. [4] is slow due to numerous model proposals and evalu-
ations, so it is performed on the down-sampled point cloud.
The Fast Global Registration [30] algorithm optimizes the
process of finding point correspondences as for each itera-
tion it has no model proposal and evaluation involved.
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3.4.3 Refine registration via ICP

Iterative Closest Point [2] is a classical approach for point
cloud registration. The algorithm finds the best rotation ma-
trix R and translation vector t to minimize the squared error
defined as

E(R, t) =
1

Np

Np∑
i=1

||xi −Rpi − t||2 , (4)

where xi and pi are the corresponding points in point
clouds P and P ′ to be aligned, and Np is the number of
corresponding point pairs.

If the correct correspondences are known, then the align-
ment can be performed accurately in one step. However,
usually, the matching points are not known beforehand, and
the ICP finds the optimal transformations iteratively.

3.5. Hole detection and filling

After the best point cloud alignment of P and its mir-
rored image P ′ has been achieved (i.e., the best symmetry
plane π∗ proposed), the hole detection algorithm is applied.
Every point x′ in the mirrored point cloud P ′ = Tπ∗(P )
that is not balanced in the sense of (2) is in a hole of D if
|Q(x′, d) ∩ P ′| is bigger than |Q(x′, d) ∩ P |. The holes
in the original point cloud are detected this way along with
the corresponding parts of the mirrored point cloud P ′ that
should be added to the point cloud P to finish completion.

3.6. Skipping

Performance analysis of the proposed pipeline showed
that there are some cases where the completed point clouds
have significantly bigger Chamfer distance (5) to the ground
truth than the original one. One of the main reasons for this
is that not all objects in the datasets have mirror symmetry;
in some other cases the algorithm fails to suggest a good
symmetry plane approximation.

To deal with this issue, we add a validation step that de-
cides whether the completed point cloud P ∗ or the orig-
inal damaged point cloud P should be returned. After
the completion, we calculate the scaled Chamfer distance
CD(P, P ∗)/s between P and P ∗; if it exceeds a threshold
value d∗, then we expect that the Chamfer distance between
the completion P ∗ and the ground truth will be large; we
thus regard P ∗ as a poor reconstruction and return the orig-
inal P instead. This step lets us judge whether the object is
symmetric with non-critical damages.

The threshold value d∗ was chosen experimentally based
on the corresponding performance curve of d∗. The scale s
is chosen as the average distance between the closest points
in the input point cloud P .

Figure 5. Comparison of methods on damaged ShapeNet objects.

Figure 6. Comparison of methods on synthetic data with: a) 15%,
b) 35% damage rate, and real scans with classes on which com-
pared approaches were: c) trained on, d) not trained on.

4. Experiments

For the evaluation purpose, the ShapeNet dataset [3] was
chosen as it is the most frequently used source for 3D com-
pletion applications. We first explain the way how evalua-
tion dataset was formed, then describe the metrics used for
performance evaluation of the proposed algorithm and com-
parison with other methods on point cloud completion and
mirror symmetry detection. We then report the correspond-
ing scores for both tasks and, finally, show point cloud com-
pletion performance of the proposed method on real-world
3D object scans in the wild.

4.1. Datasets creation

Performance evaluation is measured on an appropriately
augmented ShapeNet dataset which is composed of 8 cat-
egories with 30 974 3D models already uniformly sampled
with 16 384 points on the mesh. In some popular bench-
marks (e.g., Completion3D [25]) the mentioned dataset was
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Figure 7. Comparison of methods on the ShapeNet based dataset
with different damage rates.

Method 5% 15% 25% 35% 45%
MSN 11.32 11.16 11.23 11.37 11.42
PCN 10.63 10.60 10.61 10.57 10.70
GRNet 8.95 8.83 8.98 9.16 9.12
Ours (-Skip) 3.27 8.43 15.43 19.42 25.67
Ours 2.92 5.44 7.56 10.59 13.78

Table 1. Numerical Chamfer Distance comparison based on differ-
ent damage rate percentage. (-Skip) - without Skipping step.

damaged sufficiently with a damaged rate (a ratio of a miss-
ing surface) up to 70%, which is a normal case in au-
tonomous driving when LIDAR captures only one side of
the car and the algorithm must complete the whole unseen
region. As our case is different, the type of damages must
also differ from the existing benchmark. We expect to have
the objects with 15-30% damage rate, which is natural for
our case. To perform experiments of various difficulty, we
created nine versions of dataset with the damage rate DR
from 5% to 45% with the step of 5% and a random num-
ber of missing regions fluctuating between ⌊0.7DR⌋ and
⌈0.95DR⌉. The random number of damaged regions, their
size and location is a great test for the robustness of our
algorithm. In learning-based approaches, robustness could
be achieved by noise-based data augmentation, while in our
case random damaged regions are the inverse of the noise.

4.1.1 Real-world data

To assess framework performance on real data, we also col-
lected a dataset of more than 200 scanned objects. Large
objects such as a chair were scanned with the Microsoft
Kinect v2, while small objects such as a toy plane were
scanned with the iPhone’s TrueDepth camera (or LIDAR)
or our structured light 3D scanner.

Learning-based approaches were trained on the aca-
demic dataset and do not generalize well to the real data. To
fit the input standard of compared approaches, the obtained

objects were downsampled, properly scaled and translated
accordingly to contain the fixed number of points similar to
the original ShapeNet dataset. Even on the categories the
compared approaches were trained on, their performance
remains poor. While our framework is not limited to a given
type and size of point clouds or a defect so it successfully
completes 3D scans of real objects as shown in the Fig. 6.

4.1.2 Symmetry Dataset

One of the key steps of our framework is the estimation of
the best symmetry plane. To evaluate the performance of the
proposed algorithm on this step, we benchmarked it on the
3D Global Reflection Symmetry dataset from 2017 ICCV
Challenge: Detecting Symmetry in the Wild [10] consisting
of 1 795 models with up to three symmetry planes in each.

4.2. Evaluation metrics

4.2.1 Chamfer distance

As a proximity measure between two point clouds P1 and
P2, we use the Chamfer distance [8, 24] that calculates the
average closest point distance:

CD(P1, P2) =
1

|P1|
∑
x∈P1

dist(x, P2)

+
1

|P2|
∑
y∈P2

dist(y, P1)

(5)

4.2.2 Symmetry Plane Detection Accuracy

As proposed in the ICCV 17 Challenge [10], the 3D pla-
nar reflective symmetries are evaluated according to the po-
sition and orientation of the symmetry plane with respect
to the ground truth. The detected symmetry is consid-
ered correct if both the position of the reference point is
on the plane and the normal is close to ground truth with
some threshold. The symmetry is rejected if the cosine
distance between the symmetry normals is above a thresh-
old: arccos (|n · nGT|) > θ. A symmetry is also rejected
if the distance of the tested center c to the ground truth
plane restricted to the bounding parallelogram is larger than
a threshold ∥c−ΠGT(c)∥2 > τ . Accuracy is the relative
frequency of correct predictions among all objects.

4.3. Comparison with other methods

4.3.1 Point Cloud Completion

We evaluate the completion results on the same datasets
subject to different damage rates. GRNet, the top method of
the Completion3D benchmark, shows good results in gen-
eral, but approximately 17% of its outputs have a very large
Chamfer distance thus leading to a moderate average met-
ric. MSN gives worse results than GRNet and still shows
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Method Original Damaged by 10% Damaged by 20% Damaged by 30% Damaged by 40%
Symmetry via Registration 68.63% 45.75% 44.44% 42.44% 35.29%
Ours 66.24% 50.32% 49.67% 48.36% 45.09%

Table 2. Accuracy comparison with Symmetry via Registration with threshold θ = 0.2

worse performance on small damages than our method. Our
framework has an 8% of anomaly big metric values due to a
poor symmetry plane detection or its absence in the original
object; applying the Skipping validation, we significantly
increase the average results.

Weak sensitivity of GRNet, PCN and MSN to damage
rate can be explained by the fact that the corresponding neu-
ral networks are trained on particular classes of the Comple-
tion 3D benchmark dataset (based on ShapeNet) and thus
can complete point clouds of the learned objects with even
70-80% of damage. Our method, on the contrary, would
not be able to successfully reconstruct so heavily damaged
object; however, scans of so poor quality are highly un-
likely to be produced in a multiview scanning. Even without
Skipping validation, our results are comparable with state-
of-the-art approaches on objects with at most 20% damage
rate, which is quite natural for the real world, while the final
result is better with up to 30% damage rate and degrades
only after 35 − 40%. PCN and GRNet results are practi-
cally the same, see Fig. 7, however, PCN overall accuracy
is lower. Also, see the visual comparison on the damaged
ShapeNet objects in Fig. 5.

4.3.2 Symmetry Plane Detection Accuracy

We have compared the achieved symmetry plane estima-
tion accuracy to the Symmetry via Registration (SvR) algo-
rithm [5]. SvR is based on the optimal symmetric pairwise
assignment of curves. This algorithm outperforms ours on
the non-damaged objects by 2.4%. However, its quality sig-
nificantly deteriorates with damage rate growth, while the
proposed method gives more stable results; see Tab. 2.

5. Limitations

There are limitations in our approach: non-symmetric
objects, symmetric damages, and their sizes. We need to
notice that in the case of trained models non-symmetric
objects could be addressed. However, each such non-
symmetric class has to be introduced separately, while our
method is readily applicable to new symmetric objects.
Symmetric damages with a damage rate up to 30% are not
likely, but in our case, especially in the structured light
pipeline, such damages are highly unlikely as shadows or
glares can appear only on one side of the object. For our use
case, we focus on the moderate damage rate of 15 to 30%
which is normal for multiview structured light or hand SfM

scanners. Another must mention point is the time perfor-
mance of our method. For the 16K points ShapeNet model
it takes 1.3 seconds on the Python CPU implementation to
get the result while the compared approaches do not support
CPU.

6. Conclusion

Point cloud completion is a critical step in real-world 3D
scanning pipelines where objects are typically damaged due
to the imperfections of the scanning process or reconstruc-
tion algorithms. Being an active field of research, the latest
SOTA results are often associated with trained NN-based
models that learn peculiarities of different classes of ob-
jects. While for specific cases such approaches showcase
impressive results in the general case of new types or un-
seen objects the geometry-based methods can show more
robust performance.

In this paper we present a novel point cloud completion
framework that exploits symmetries of the objects to fill
in the damaged parts of the objects. The method requires
no training data and yet provides better or comparable per-
formance than recent SOTA NN-based approaches such as
PCN, MSN or GRNet.

First, we explore the robustness of our algorithm on aca-
demic benchmark datasets that were used to train the above
models. Here for low damage rates below 30% our method
clearly outperforms other approaches and showcases Cham-
fer distance of 3 to 9. For the higher damage rates up to
45%, it shows comparable to SOTA performance. Next, we
present a new real-world dataset of more than 200 objects
and showcase qualitatively that our approach is robust to
variation in object shape, while trained methods in some
cases fail on previously unseen data (see Fig. 6). The ro-
bustness of our pipeline is linked to a novel method of sym-
metry plane approximation that we outline and benchmark
in the manuscript. In comparison to the benchmark SvR
algorithm it provides a significant boost in performance on
damaged point clouds as showcased in Table 2. Finally, to
reproduce our results, we provide the code of algorithm im-
plementation.

As the proposed Point Cloud completion pipeline was
integrated and tested in a production 3D scanning setting,
we believe that it has a wide potential as a robust en-
gineering solution for a wide range of practical applica-
tions.
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