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Abstract

Pedestrian detection is an integral component in many
automated surveillance applications. Several state-of-the-
art systems exist for pedestrian detection, however most
of them are ineffective in low-light conditions. Systems
specifically designed for low-light conditions require spe-
cial equipment, such as depth sensing cameras. However,
a lack of large publicly available depth datasets, prevents
their use in training deep learning models.

In this paper we propose a pre-processing pipeline,
which enables any existing normal-light pedestrian detec-
tion system to operate in low-light conditions. It is based on
a signal-processing and traditional computer-vision tech-
niques, such as the use of signal strength of a depth sens-
ing camera (amplitude images) and robust principal com-
ponent analysis (RPCA). The information in an amplitude
image is less noisy, and is of lower dimension than depth
data, marking it computationally inexpensive to process.
RPCA processes these amplitude images to generate fore-
ground masks, which represent potential regions of interest.
These masks can then be used to rectify the RGB images
to increase the contrast between the foreground and back-
ground, even in low-light conditions. We show that these
rectified RGB images can be used by normal-light deep
learning models for pedestrian-detection, without any ad-
ditional training.

To test this hypothesis, we use the ’Oyla Low-Light
Pedestrian Benchmark’ (OLPB) dataset. Our results us-
ing two state-of-the art deep learning models (CrowdDet
and CenterNet) show: a) The deep models perform poorly
as pedestrian detectors in low-light conditions; b) Equip-
ping the deep-networks with our pre-processing pipeline

significantly improves the average precision for pedestrian-
detection of the models without any re-training. Taken
together, the results suggest that our approach could act
as a useful pre-processor for deep learning models that
aren’t specially designed for pedestrian-detection in low-
light conditions.

1. Introduction
Pedestrian detection has been an important area of study

in the computer vision community. With new found appli-
cations in several areas, such as self-driving cars and auto-
mated surveillance systems, it has undergone rapid develop-
ment in recent years. Most modern day pedestrian detection
systems rely on deep learning models, which enable them
to operate in challenging environments, such as crowded
streets using a simple RGB camera [1]. However, they are
seldom effective in low-light conditions. Under such con-
ditions, RGB images cannot capture the contrast needed
in the scene to obtain usable textures [2]. To address this
problem, some pedestrian detection systems train the mod-
els with additional information, such as depth or thermal
data [3]. However, this makes the system computationally
expensive, while also limiting their range of operation.

1.1. State-of-the-art

The state-of-the-art can be broadly grouped into:

• 2D image based systems;

• Multi-spectral data based systems.

2D image based systems: The CrowdDet [1] and the Cen-
terNet [2] are among the best 2D image based pedes-
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trian detection systems. They perform pedestrian de-
tection by training deep learning models, such as
ResNet [4] and a DLA-34 encoder-decoder network
[5], on CrowdHuman [6] and COCO [7] datasets, re-
spectively. The large size and variety of scenarios
available in these datasets, allow the system to oper-
ate in diverse and challenging environments. However,
being based on 2D images, they perform poorly in low-
light conditions.

The performance of the 2D image based pedestrian
detection systems in low-light conditions can be im-
proved by performing certain enhancements to the in-
put images. The 2D images can be enhanced by us-
ing multi-task learners, which detect pedestrians by
relighting the scene [8], or by using 14-bit, long-
exposure, raw video sequences during training [9].
However, these systems involve a higher computa-
tional cost, while also being restricted by the specific
requirements and properties of the training data.

Multi-spectral data based systems: A better perfor-
mance can be expected from systems that rely on
more than just RGB channel data. This involves the
use of special cameras that can capture thermal or
depth data from a scene. Systems that rely on thermal
data, also make use of RGB images, by appending
everything together to create multi-spectral images
[3]. Re-training systems, such as YOLOv3 object
detector [10], with these multi-spectral images can
significantly improve their performance in low-light
conditions. The thermal data can separately be used to
guide the attention of a deep learning model towards
the pedestrians, in low-light conditions. These models
can then learn the feature set of the poorly illuminated
pedestrian, from their RGB images [11]. A limitation
of the cameras used for thermal imaging is their short
range of operation. A wider range of operation can
be achieved through depth sensing cameras, such as
LIDAR, but with a significantly higher equipment and
computational cost. The depth data, captured by the
LIDAR cameras, can be used to perform pedestrian
detection using simple techniques, such as contour
shape analysis [12], after undergoing significant pre-
processing. A fusion of data from both depth sensing
and thermal imaging cameras can result in images that
can be processed using traditional machine learning
techniques, such as histogram of oriented gradients
and support vector machine [13].

Since training deep learning models requires a large amount
of data, availability of public datasets can also be consid-
ered as an advantage to the systems. The largest available
2D image dataset called ImageNet, contains more than 14
million images. Among them, at least one million images

contain bounding boxes for around 20,000 categories. The
MS COCO dataset [7] contains 3,28,000 RGB images, be-
longing to 91 object categories. While, the largest dataset
specially curated for pedestrian detection, called the Caltech
Pedestrian Detection Benchmark [14], contains 2,50,000
RGB images with 3,50,000 annotated pedestrians.

The most popular dataset for Multi-spectral data based
systems is the KITTI Vision Benchmark [15], which con-
tains 93,000 depth maps with the corresponding LIDAR
scans and raw RGB data [16] of various crowded streets.
Apart from KITTI, the only other multispectral dataset to
the best of our knowledge having pedestrians is the eCo-
DRIVERS dataset [17], which contain 11,071 images of
pedestrians in the far-infrared spectrum.

From the discussion in section 1.1, it can be concluded
that 2D image based systems are best suited for pedestrian
detection in surveillance environments. However, their poor
performance in low-light conditions necessitate an alterna-
tive to these systems. The current state-of-the-art alternates
involve the use of expensive equipment, computationally
expensive deep learning models, short range of operation
or specific use cases (i.e. trained on small datasets). Thus,
we propose a computationally inexpensive, pre-processing
pipeline, that can run on any existing 2D image based,
normal-light pedestrian detection system without any re-
training. The pre-processing involves the use of a depth
sensing camera and traditional computer vision technique,
such as RPCA, to generate rectified RGB images. These im-
ages contain sufficient contrast between its background and
foreground objects, which is necessary to perform pedes-
trian detection. To our best knowledge, there are no public
datasets that capture pedestrians in low-light conditions us-
ing a depth sensing camera. Thus, we evaluate our system
using the OLPB dataset

Rest of this paper is organised into the following sec-
tions: Section 2 presents the proposed pre-processing
pipeline. Section 3 presents the Oyla Low-Light Pedes-
trian Benchmark dataset (Section 3.1), and the deep learn-
ing models used for performance evaluation (Section 3.2).
The result of the performance evaluation is discussed in
Section 3.4. Finally, the conclusion in section 4 presents
the limitations of the proposed pipeline and possible future
directions. This paper also includes an Appendix A, for
the Oyla’s 3D-aware surveillance camera, which is used for
data acquisition.

2. The proposed pre-processing pipeline

The proposed pre-processing pipeline is illustrated in
Figure 1. It consists of two important steps:

• Foreground segmentation;

• RGB image rectification;
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Figure 1. Proposed pre-processing pipeline.

The inputs to the proposed pipeline is a set of RGB im-
ages and the information about the strength of the depth sig-
nal, received at the receiver. We express this information in
the form of a 2D image called the ”amplitude image”. It
provides the pipeline with useful information about the ob-
served scene, even in low-light conditions. However, it is
unable to capture any texture related information about the
scene, which most deep learning models use for pedestrian-
detection.

Thus, the proposed pre-processing pipeline uses the am-
plitude images to improve the contrast of the foreground
objects in the RGB images, using foreground segmentation
and RGB image rectification. The rectified image with the
improved contrast can then be used by any normal-light,
deep learning models for pedestrian-detection without ad-
ditional training.

2.1. Foreground segmentation

The proposed pre-processing pipeline uses robust prin-
cipal component analysis (RPCA) to separate foreground
objects from the background [18]. A sequence of amplitude
channel images are used as input to RPCA, which decom-
poses them into a low-rank component and a sparse error
component, as illustrated in Figure 2. The low-rank com-
ponent is composed of all the redundant/static parts in the
amplitude channel images. While, the sparse error compo-
nent captures the difference in the amplitude channel im-
ages. These differences, which cannot be incorporated into
the low-rank component correspond to the dynamic parts of
the image, such as the pedestrians and other moving objects.

To segment the foreground, each amplitude channel im-
age is transformed into a 1D column vector. Multiple im-
ages corresponding to a sequence are appended together to
create a M×N matrix, where M is the length of 1D vectors
and N is the number of images in the sequence. The matrix
D is decomposed into a low-rank component L and a sparse

(a) Amplitude channel image (b) Sparse error component

(c) Low rank component (d) Foreground mask

Figure 2. Example of an input (a) and the corresponding outputs
(b, c, d) from RPCA

error component S following Equation 1, using RPCA.

minL,E rank(L) + γ ∥S∥o subject to D = L+ S (1)

Where rank(L) represents the number of linearly indepen-
dent rows in the matrix D, γ is a regularization parameter
and ∥S∥o is the counting norm of the sparse error. Accord-
ing to Equation 1, RPCA exploits the repeating patterns in
each image, i.e. the static background, to separate the sparse
errors in the matrix D as the foreground. Since minimisa-
tion of rank is a non convex problem, RPCA uses a sim-
ple alternating minimization algorithm to solve a convex re-
laxed variation of Equation 1, presented in [19]. The result-
ing sparse error component S is decomposed (column-wise)
into a set of sparse error images. These images are thresh-
olded to obtain the binary foreground masks, as illustrated
in Figure 2(d).

2.2. RGB Image Rectification

To address the problem of the lack of contrast in RGB
channel images, under low-light conditions, most systems
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use a technique called histogram equalization. The tech-
nique adjusts the intensity value of each pixel to enhance
the global contrast. However, as illustrated in Figure 3(b),
sometimes even after histogram equalization, an image can
lack sufficient contrast to separate foreground objects from
the background. This effect is intensified, when the pedes-
trians walk further away from the camera or a light source.
Although, RGB and histogram equalized images are indi-
vidually ineffective, a combination of the two images can
be used to create the contrast needed to perform pedestrian
detection.

(a) RGB channel image (b) Histogram equalized image

(c) Histograms (d) Rectified image

Figure 3. Example of inputs (a, b) and the corresponding rectified
output (d)

In the proposed pre-processing pipeline the RGB and
histogram equalized images are combined using the cor-
responding foreground mask, to generate an image called
the rectified RGB image. The foreground mask, obtained
using RPCA, is used to segment the dynamic parts of the
histogram equalized image. These parts include pedes-
trian and other moving objects in the scene. They are then
stitched onto the original RGB image following Equation
2. The resulting rectified image contains sufficient contrast
between the background and the foreground objects, as il-
lustrated in Figure 3(d). The contrast can then be used to
identify the pedestrians among the foreground objects, us-
ing any normal-light, deep learning models for pedestrian-
detection.

IFG ⊙ IRGB + (1− IFG)⊙ IEQ = IRect (2)

3. Empirical evaluation
We aim to test the hypothesis that equipping normal-

light, deep learning models with the proposed pre-
processing pipeline described in section 2 will significantly
improve their pedestrian detection ability in low-light con-
ditions, without affecting their computational complexity.

The evaluation is conducted on the dataset described below,
following the evaluation method discussed in section 3.3.

3.1. Oyla low-light pedestrian benchmark dataset

OLPB dataset is captured using a novel depth sensing
camera by Oyla, which is a USA based startup. The camera,
as discussed in Appendix A, captures images across 5 chan-
nels. Thus, apart from RGB information, the camera also
captures depth and strength information of the received sig-
nals. The depth information is captured as a uint16 nxmxd
matrix, using the time of flight (TOF) principle. The matrix
can be represented as depth map (Figure 4(c)), or the depth
data can be transformed into Cartesian coordinates and rep-
resented as a point cloud (5(d)). The strength of the TOF
signal at the receiver is captured as a uint16 nxm matrix,
and is visualized as an image, called the amplitude image,
as illustrated in Figure 4(b). Thus, the OLPB dataset con-
tains four different representations of an observed scene.

The current OLPB dataset is captured in a neighbour-
hood (COVID restrictions) using two cameras with a reso-
lution of 480x640, as illustrated in Figure 4(a), 3(a). The
scene is captured under different lighting conditions, with
up to four pedestrians walking along the road, at varying
distances from the camera, for a total of 1521 times. The
observed scene also includes other moving objects, such as
cars, bicycles and dogs. The pedestrians are annotated to act
as the ground truth for pedestrian detectors, and are made
available in the dataset in the PASCAL VOC [20] format.

(a) RGB image in low-light con-
ditions

(b) Amplitude Image

(c) Depth Image (d) RGB image in normal-light
conditions

Figure 4. Example of images in the OLPB dataset

The proposed pipeline uses only the amplitude and the
RGB images from the OLPB dataset. However, all the
available images cannot directly be used by the proposed
pipeline. Among the available 1521 set of images, only 770
contain usable annotations. Of those 770 set of images, the
camera is static, from one image to the next, only in 430
instances. Thus, only the 430 RGB and the correspond-
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ing amplitude images are used to evaluate the performance
of the proposed pipeline. The selected images are visually
inspected to classify them as either normal or low-light im-
ages, - see Table 1

Table 1. Statistics of OLPB dataset
Condition Total images
in OLPB dataset 1521
annotated images 770
usable for the proposed pipeline 430
normal-light 201
low-light 229

3.2. Normal-light, deep learning models

The rectified images obtained using the proposed pre-
processing pipeline, can be used by any normal-light, deep
learning models for pedestrian detection, in low-light con-
ditions. To emphasize the plug and play nature of the pro-
posed pipeline, we use the following deep learning models
to evaluate it’s performance:

CrowdDet [1] specializes in detecting pedestrians in a
crowded environment on a 2D image. Under such con-
ditions, detection becomes difficult as the pedestrians
overlap each other, inhabiting the same 2D space. To
address this, CorwdDet generates multiple instances
of tentative predictions for the same 2D space, which
results in a set of predictions for the pedestrians in-
side a single bounding box. Common predictions
across multiple boxes are eliminated using an algo-
rithm called Non-maximum Suppression. The final
refinement module re-estimates the bounding box for
each prediction using the underlying features, thus de-
creasing the probability of false positives.

The CrowdDet model is based on the standard ResNet
[4] network pre-trained on Imagenet dataset [21]. To
perform pedestrian detection, the whole model is re-
trained on CrowdHuman dataset[6], which contains
15,000, 4,370 and 5,000 images for training, valida-
tion and test respectively. The model is trained using 8
GPUs for 30 epochs with a batch size of 16 [1].

CenterNet [2] is an object category detector with ”per-
son” as one of its category. It uses multiple fully-
convolutional encoder-decoder networks to predict a
set of key-point heat-maps in a 2D image. A key-point
prediction network is then used to categorize the iden-
tified key-points. CenterNet identifies the center points
of an object using the predicted key-points and gen-
erates a bounding box around it. Other properties of
the object, such as depth, size and orientation are esti-
mated by the key-point prediction network. The pedes-
trians prediction is refined by associating the identified
key-points to 17 different joints on the body.

The CenterNet model is based on DLA-34 architec-
ture, presented in [5]. It is trained on the MS COCO
dataset [7], which contains 118000 training images and
over 80 different categories. The model is trained for
230 epochs with a batch size of 128 on 8 TITAN-
V GPUs and with a learning rate of 5e-4 [2]. Since
the proposed pipeline focuses on pedestrian detection,
only the classifications corresponding to the category
”person” are considered.

The two deep learning models are used as is, without any
re-training or alterations to the hyper-parameters.

3.3. Evaluation method

The evaluation method for the proposed pre-processing
pipeline is as follows:

For each deep leaning model considered in section
3.2:

1. Obtain the pedestrian-detection performance of the
model in normal and low-light conditions using the
OLPB dataset;

2. Obtain histogram equalized images from the OLPB
dataset;

3. Obtain the pedestrian-detection performance of the
model in normal and low-light conditions using the
equalized images;

4. Obtain rectified images using the pre-processing
pipeline described in Sec. 2, on the OLPB dataset;

5. Obtain the pedestrian-detection performance of the
model in normal and low-light conditions using the
rectified images;

6. Compare the performances obtained in steps 1, 3 and
5.

The ”performance” is reported in terms of average precision
of the models in detecting pedestrians on the OLPB dataset.
The averages are computed over an intersection of union
(IoU) threshold of 0.5. Since no training is involved, the en-
tire OLPB dataset is used as a test set. Among the available
430 images, 229 are identified as low-light images, while
the remaining 201 are identified as normal-light images, af-
ter visual inspection. The proposed pipeline doesn’t involve
setting of any dataset specific parameter values.

3.4. Results

The results from the evaluation are reported in Table 2. It
is observed that CrowdDet [1] performs significantly better
than CenterNet[2] on the OLPB dataset. This is expected as
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CrowdDet [1] is specifically designed for pedestrian detec-
tion, while CenterNet [2] is a generic object detector, with
”person” as one of its category. However, in either cases the
proposed pipeline improves the performance of the models
with an average precision of 90.6% and 83.4% respectively.
The significance of the proposed pre-processing pipeline is
highlighted in the low-light conditions, where the models
gain an improvement of 21.1% and 11.5%, in their average
precision score. While, in normal-light conditions the per-
formance of the proposed pipeline is equivalent to the RGB
image results.

A set of observations can also be made, concerning the
execution time of the proposed pipeline. CrowdDet [1]
and CenterNet [2], implemented on a 16GB NVIDIA RTX
Quadro 5000 GPU with CUDA version 10.0 and CUDNN
version 7.6.5, take 0.11 and 0.03 seconds, respectively to
process an image. The proposed pipeline implemented us-
ing the LRSLibrary [22, 23], on Intel i5-1135G7 (2.40 GHz)
CPU can generate a rectified image in 0.05 seconds. Thus,
the proposed pipeline can be adopted as computationally
inexpensive pre-processing step by any normal-light, deep
learning or traditional machine learning model operating on
CPUs, to perform pedestrian detection in low light condi-
tions.

4. Conclusion

We present a novel pipeline for pre-processing RGB im-
ages, which can then be used as input by any normal-light,
deep learning model for pedestrian detection. The pipeline
generates rectified images using RPCA, which improve the
contrast between the background and the corresponding
foreground objects. The rectified images enable the normal-
light, deep learning models to perform pedestrian detec-
tion in low-light conditions. The following conclusions are
made form the evaluation of the proposed pipeline:

• Despite their good performance in normal-light condi-
tions, the deep learning models perform poorly in low-
light conditions;

• Equipping the deep learning models with our pre-
processing pipeline significantly improves their low-

light performance (to levels comparable to their per-
formance in normal-light conditions);

Since the proposed pre-processing pipeline is computa-
tionally inexpensive, it can also be used with other tradi-
tional machine learning based pedestrian detection systems.
The proposed pipeline is most effective when the movement
in the scene is limited to foreground objects. The current
implementation of RPCA is not robust against a dynamic
background. Thus, a possible future direction can involve
identifying a robust system for foreground segmentation, or
exploring segmentation and clustering in depth images to
obtain a foreground mask.

A. Details of the Oyla Camera

The Oyla’s 3D-aware surveillance camera resolves pre-
viously intractable issues with depth sensing camera, such
as variable lighting, occlusion, and estimating the true dis-
tance and scale of objects. The camera offers ’LIDAR-like
performance at more than 10X lower cost’ using commer-
cially available, standard RGB visual camera components
coupled with Oyla’s new 3D data structure and analysis
software when gathering details of the observed scene. The
central aspect of the cost savings are Oyla’s LIDAR-like
technology that uses ’shared optics’ with an RGB camera,
including the same lensing, but the data collected by the
standard image sensor is rendered in 3D (adding light depth
data) instead of the standard 2D model with typical cam-
eras. While Oyla uses ’80% - 90%’ standard camera hard-
ware, the company uses additional ’commercial’ electronic
components, proprietary firmware, and runs the collected
data through its proprietary analytics and software.

Oyla uses its inherently spatially fused 3D “Depth” and
video streams to produce enhanced RGB video (e-RGB).
e-RGB video can be utilized by existing AI and detec-
tion algorithms to achieve greatly increased performance
- see Figure 5(a), 5(b) and 5(c). In addition, Oyla uses
the 3D data to accurately detect intrusions into user-defined
perimeters, as illustrated in Figure 5(d).

Table 2. Performance of normal-light, deep learning models on OLPB dataset with and without the proposed pre-processing pipeline.

Models Images Average Precision (IoU ≥ 0.5)
normal-light low-light All

CrowdDet[1]
RGB 98.4 61.0 79.3

Equalized 98.2 58.4 78.9
(Proposed) Rectified 98.2 82.1 90.6

CenterNet[2]
RGB 90.3 60.7 74.2

Equalized 94.5 54.4 71.7
(Proposed) Rectified 92.2 72.2 83.4
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(a) RGB channel image (b) Depth image

(c) Enhanced image (d) Point cloud representation

Figure 5. Example of data from Oyla’s 3D-aware surveillance
camera

Acknowledgements
This work was part of the Industrial Projects program of

the Anuradha and Prashanth Palakurthi Centre for Artificial
Intelligence Research (APPCAIR). We thank Prof. Ashwin
Srinivasan and Tirtharaj Dash for their help with this paper.

References
[1] X. Chu, A. Zheng, X. Zhang, and J. Sun, “Detection in

crowded scenes: One proposal, multiple predictions,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12214–12223, 2020.

[2] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,”
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