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1. Objective function without B-spline kernel

is not differentiable.

In this section, we prove that cosine similarity loss (Eq.

10 in main text) is not differentiable with respect to pa-

rameter β when Pt is a vector constituted by nearby pixel

intensities (Eq. 9 in main text) due to the discrete indexing

by β.
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where polynomial coefficient N ≥ 0, γ are constant real

numbers, χn is the indicator function of Y :

χn =

{
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It indicates that during the optimization, minor

change in β leads to invariant of (P t ,P t+1). And

∇β

⌊

Y (β)
⌋

is a step function. it is impossible to calculate

the gradients, which completes the proof. We note that
∂Lcorr

∂α , which is independent and exchangeable with
∂Lcorr

∂β ,

also follow the same behaviors in term of differentiablity.

2. Parameter discussion

We list the choice of parameters for all datasets in

Tab. 1. It is worth noting that Gaussian filters are ap-

plied before parametric curve tracing when performing

the lane following. In contrast, other experiments pre-

sented in this paper perform without additional filters.

Such a step in this experiment can improve the perfor-

mance of our method (Tab. 2). It is because that the

width of the lane separation lines varies significantly to-

wards the horizon. Adding the Gaussian filter as an ad-

ditional step can improve the signal similarity along the

lane separation lines, which aligns well with the scope of

our method described in Sec. 1 in the main text.

Dataset W λ1 λ2 ∆t N

SPT/SMT 2 0 0 1 1

Lane Following 10 0.01 0.001 3 2

Seismic 3 0 0
Length of the entire curve

∼ 25
2

Table 1. Choice of parameters in each dataset. Seismic dataset

will be introduced in Sec. 6

Noise level
Low light

σest = 0.335 [6]

L D V

Without Gaussian filter 0.407 5.043 0.355

With Gaussian filter 0.823 2.171 0.188

Table 2. Evaluation results of lane following with and without

Gaussian filter added before curve tracing

There are four parameters in parametric curve trac-

ing: W , λ1, λ2 and ∆t . The most important ones are the

regularization parameters λ1 and λ2, which are used to

balance the contribution between the data fidelity and

curvature continuity. The larger the λ2 is, the smoother

the reconstruction is. However, in the case of SPT/SMT,

smoothness is not required due to frame-to-frame ran-

dom walk behaviors. In such a case, λ2 will be set to 0.

The positive parameter W and ∆t can balance the influ-

ence from the surroundings and local features. We ob-

serve that the larger W and ∆t are, the robust our method

will be against the noise. However too large W and ∆t can

not guarantee stability and can also increase the compu-

tational cost. Therefore, one should be choose the param-

eters properly to preserve the accuracy in low SNR images
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while controlling the computational cost. We use low-

right lane following as an example showing performance

can be affected by difference choice of parameters. Four

parameters (W , ∆t , λ1 and λ2) are changed individually

from the optimal choice, as the results shown in Tab. 3 and

Tab. 4.

Noise level
Low light

σest = 0.335 [6]

Parameters L D V

W = 5,∆t = 3 0.857 3.322 0.216

W = 2,∆t = 3 0.695 3.655 0.229

W = 10,∆t = 1 0.947 1.860 0.253

W = 10,∆t = 5 0.861 3.519 0.191

Table 3. Evaluation results of lane following using different W

and ∆t

Noise level
Low light

σest = 0.335 [6]

Parameters L D V

λ1 = 0,λ2 = 0.001 0.811 3.531 0.190

λ1 = 0.1,λ2 = 0.001 0.887 2.595 0.191

λ1 = 0.01,λ2 = 0 0.853 2.312 0.192

λ1 = 0.01,λ2 = 0.1 0.547 4.251 0.169

Table 4. Evaluation results of lane following using different λ1

and λ2

3. Cosine similarity term is Gaussian noise-

tolerant

We here show the proof that our method is relatively

tolerate to Gaussian noise. As stated in Main Sec. 3, the

parametric parameters describing curves, β and α, are

obtained by minimizing objective function L. Our objec-

tive function is made of three parts, L = Lcorr +λ1Lreg +

λ2Lcont. Lreg and Lcont are irrelevant to pixel intensities

P t as they only describe the internal features of curves.

Therefore, in order to prove our objective function is

Gaussian noise tolerate, we only need to prove that the

set of β and α, corresponding to the minimum Lcorr, is

invariant to noise. Hence:

β,α= argminLcorr ∼ argminLn
corr (4)

where Ln
corr are the cosine-similarity objective term when

Gaussian noises are presented. Without losing its general-

ity, Gaussian noise N2W +1(0,σ) are added to P t and P t+1

as P n ∈R
2W +1 and P n+1,∈R

2W +1. .

P n = P t +N2W +1(0,σ) =N2W +1(P t ,σ) (5)

P n+1 = P t+1 +N2W +1(0,σ) =N2W +1(P t+1,σ) (6)

where N2W +1(P t ,σ) represents a normal distribution

with freedom degree of 2W +1, mean equal to P t and vari-

ance equal to σ. Our cosine similarity term becomes:

Ln
corr = 1−

P n ·P n+1

‖P n‖‖P n+1‖
(7)

In order to obtain the behaviors of argminLn
corr with

respect to N2W +1(P t ,σ), we continue to investigate the

probability density function of Ln
corr as randomness fol-

lowing normal distribution N2W +1(P t ,σ) is introduced.

In Ln
corr, since numerator P n and P n+1 follow the be-

havior of two independent 2W +1 degree non-central nor-

mal distributions, the product of independent random

variables become:

P n ·P n+1 ∼ (P t +N2W +1(0,σ)) ·(P t+1 +N2W +1(0,σ)) (8)

∼ P t ·P t+1 + (P t +P t+1)·N2W +1 (0,σ)

+N2W +1(0,σ)·N2W +1(0,σ) (9)

If both Gaussian random variables X and Y have zero

mean and are independent, Z = X Y has the probability

density of Bessel function:

pZ (z)=
1

2π

∫∞

−∞

dx

∫∞

−∞

dy e−(x2+y2)/2σ2

δ(z − x y) (10)

=
1

πσ2
K0

(

|z|

σ2

)

(11)

Therefore, Equation (8) can be rewritten as:

P n ·P n+1 ∼ P t ·P t+1 + (P t +P t+1)·N2W +1 (0,σ)

+
1

π
K0(|z|) (12)

We now take a close look at the denominator ‖P n‖:

‖P n‖= (P 2
1,n +P 2

2,n + . . .+P 2
2W +1,n)1/2 (13)

=σ

(

2W +1
∑

i=1

(
Pi ,n

σ
)2

)1/2

∼σχ2(2W +1;P t /σ2)1/2 (14)

‖P n‖ follows the behavior of non-central Chi-square dis-

tribution with 2W +1 degrees of freedom. Therefore, co-

sine similarity of two vectors corrupted with Gaussian

noise (Equation (7)) is:

P n ·P n+1

‖P n‖‖P n+1‖
∼

P t ·P t+1 + (P t +P t+1)·N2W +1 (0,σ)+ 1
πK0(|z|)

σ2χ2(2W +1;P t /σ2)1/2χ2(2W +1;P t+1/σ2)1/2
(15)

The probability density function remains complicated

with the ratio distribution of Bessel distribution and prod-

uct of two non central chi-square distributions. There-

fore, we use simulation to study the performance of Equa-

tion (4) with regard to β, together with its high-SNR coun-

terpart
P t ·P t+1

‖P t‖‖P t+1‖
.
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Figure 1. Objective function visualization with different SNR.

Upper panels: simulated images without noise. Lower panels:

corresponding objective functions in response to β with Gaus-

sian noise added.

We simulate one edge (same as main Fig. 3) and one

ridge. We set N = 1 for the convenience of visualiza-

tion. We find that βmin , which corresponds to the min-

imum objective value, is invariant to different amplitudes

of Gaussian noise (Figure 1). This simulation demon-

strates that argminLn
corr remains the same, meaning our

method can be noise-tolerant up to σ= 0.55.

4. Computational complexity

Time complexity estimation. We here calculate the

time complexity per iteration per unit length via multi-

ple variable notation [7]. First, the time complexity of

Y (β(e)) =
∑N

n=0β
(e)
n t n is O(N ), where N is degree of a

polynomial defined in Main Sec. 3.1. Therefore, the

total time cost of polynomial operation (step 6 in Al-

gorithm 1) is O(2N ). Next, 1D convolution operator

P t (
⌊

Y (β(e))
⌋

,
⌊

X (α(e)
⌋

))∗NΩ has a time cost of O((2W +

1)2), where W is the half of scanning window size, de-

fined in Main Sec. 3.2. After convolution, cosine similar-

ity is also calculated. Given that each of P t and P t+1 has

the size of (2W +1). Time complexity of cosine similarity
P n ·P n+1

‖P n‖‖P n+1‖
is O((2W +1)2). Therefore the total time cost of

step 7 is O((2W +1)4). Both L(e)
reg and Lcont have a constant

time complexity O(N ). Hence the total time complexity

before gradient calculation is ∼O((2W +1)4) (Step 6-10)

Based on the auto-differentiation [2], Time complexity

of gradient calculation is proportional to the number of

parameters, which is O(2N (2W + 1)2). Next, parameters

are updated at O(2). Hence the time cost from step 11-13

is ∼O(2N (2W +1)2).

In summary, the total time cost of our method is ∼

O
(

EL(2W +1)4
)

, where L is the integrated length of the

curve and E is the total iterations before converge. Given

that N and W are relatively small in value (Tab. 1), E and

L dominate the time complexity of our method.

Space complexity estimation. Auto-differentiation

[2] requires for all operations to build a graph. The

space complexity of Y (β) and X (α) is O(2N + 2).

P t (
⌊

Y (β(e))
⌋

,
⌊

X (α(e)
⌋

)) has the space cost of O((2W +

1)2). Objective function has a constant complexity of

O(3). Therefore, ∼ O((2W +1)2) per iteration is required

to perform automatic differentiation. At last, O(3N K ) is

required to describe the curves sufficiently after paramet-

ric tracing is complete, where K is the number of knots

defined in Main Sec. 3.1.

It is worth mentioning that we here only provide the

estimated time complexity and space complexity as they

also depend on the choice of gradient-based algorithms.

5. Segmented results of lane following

Shown in Figure 2

Figure 2. A few examples of segmented results using DCN under

various lighting conditions, including bright and dim lighting:

(a) Inputs, (b) U-Net [12], (c) FCDenseNet [8,9], (d) DeepLabv3+

[4] + MobileNetv2 [13].

6. Numerical Experiment on Seismic dataset

We here continue to evaluate the performance of our

method with seismic data, a spacial application. In con-

tract to applications shown in main text, where curves

are following any arbitrary non-smooth (SPT/SMT) and

smooth (lane following) response, the underlying para-

metric model to describe a curve in seismic data is often

known to be polynomial.

Seismic introduction. A seismic gather is a collec-

tion of seismic traces, where a detector source sends a

compressional wave through a medium (in our case, lay-

ers of rock) and a receiver records the amplitudes re-

flected back. These reflections are caused by a refrac-

tive index mismatch between rock layers, where there is

an impedance change between the density of the layers.
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Noise level σ= 0 σ= 0.1 σ= 0.3 σ= 0.55

Methods L D V L D V L D V L D V

NLM [3] + Otsu’s [10] - - - 0.882 6.651 0.836 0.871 16.038 2.103 0.881 14.825 1.957

BM3D [5] + Otsu’s [10] - - - 0.866 17.870 2.353 0.841 17.912 2.402 0.819 17.551 2.351

FMM [11] ǫ= 0.01 - 2.015 0.793 - 2.252 0.344 - 2.010 0.324 - 1.850 0.304

FMM [11] ǫ= 1 - 4.190 0.653 - 2.314 0.352 - 2.083 0.331 - 1.916 0.311

UNet [12] 0.691 1.136 0.276 0.697 1.641 0.399 0.721 1.802 0.419 0.732 1.972 0.456

FC-DenseNet [9] 0.933 1.560 0.308 0.906 1.465 0.307 0.880 2.242 0.476 0.850 1.601 0.362

BDCU-Net [1] 0.904 0.834 0.169 0.895 0.989 0.205 0.883 0.904 0.195 0.877 1.086 0.250

Ours 0.931 0.529 0.124 0.892 0.529 0.121 0.889 0.616 0.138 0.882 0.658 0.193

Table 5. Evaluation results of seismic event picking. Best in bold.
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Figure 3. Objective function value decrease after a few iterations

during parametric curves tracing in seismic gathers. (a) Two raw

seismic gathers and their parametric curves overlaid on top of

the inputs (Best viewed with zoom). (b) Average L of the corre-

sponding gather during iterative optimization.

Since a reflection at a given depth (Figure 3, y-axis) can

be observed at different reflection angles between source

and receiver, these traces are “gathered” by the angle (Fig-

ure 3, x-axis) to form an image. In many seismic imaging

workflows, collecting a parametric curve along a reflect-

ing event is vitally important because curved events rep-

resent errors in the estimate of the velocity of the subsur-

face layers, as the arrival times of signal differ by the dis-

tance traveled in the medium. Horizontally “flat” events

indicate that the velocity model of the subsurface is cor-

rect.

Traditionally, this information is collected by fitting the

second-order polynomials: y = a0 +a1x +a2x2, x ∈ [0, X ].

This means that the underlying model of the curves is

known and there’s only one time interval (K = 1). In

contrast, the underlying parametric model for the exam-

ples shown in the main text is unknown. Therefore, we

construct a dataset containing around 1000 seismic gath-

ers with a broad range of depth (Figure 3, y-axis) and

scattered locations, reflecting various seismic conditions

in every spatial dimension. Ground truth is annotated

manually by experts. To improve the accuracy, annota-

tions with the highest certainty are selected, leading to

sparse labeling.Different amplitudes of Gaussian noise

(σ= 0.0,0.1,0.3 and 0.55) are added to test the robustness

of our method under low SNR.

Results. Figure 3 illustrates two examples in the test-

ing set, together with the curve tracing results and objec-

tive function value decrease during optimization. Using

metrics defined in the main text, we also show the results

and visual comparison among all competing methods in

Tab. 5 and Figure 4. However, due to the sparse anno-

tation, we only compare the output curves which over-

lap with the ones labeled in the ground truth by calculat-

ing the distance of 0-th coefficient between outputs and

ground truth (GT): ‖a0,GT −a0,Out put ‖< 1.

Unlike the results from SPT/SMT where all methods

perform well in high SNR, the high-density and possi-

bly overlapping signals presented in the seismic dataset

pose a challenge for traditional methods and FMM to

trace the curves accurately even in high SNR. Among all

DCN methods, BDCU-Net has better accuracy in terms

of D and V while FCDenseNet is detecting longer curves

L . However, our method outperforms the state-of-the-

art methods in D and V significantly since we directly

optimize polynomial parameters. Our approach can also

detect curves efficiently, comparable to the best perfor-

mance of CDN methods.
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