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1. Objective function without B-spline kernel
is not differentiable.

In this section, we prove that cosine similarity loss (Eq.
10 in main text) is not differentiable with respect to pa-
rameter  when P; is a vector constituted by nearby pixel
intensities (Eq. 9 in main text) due to the discrete indexing

by B.
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where polynomial coefficient N = 0, y are constant real
numbers, y, is the indicator function of Y:
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It indicates that during the optimization, minor
change in B leads to invariant of (P; P;r1). And
Vg | Y(P)] is a step function. it is impossible to calculate
the gradients, which completes the proof. We note that
%, which is independent and exchangeable with %,

also follow the same behaviors in term of differentiablity.

3

2. Parameter discussion

We list the choice of parameters for all datasets in
Tab. 1. It is worth noting that Gaussian filters are ap-
plied before parametric curve tracing when performing
the lane following. In contrast, other experiments pre-
sented in this paper perform without additional filters.
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Such a step in this experiment can improve the perfor-
mance of our method (Tab. 2). It is because that the
width of the lane separation lines varies significantly to-
wards the horizon. Adding the Gaussian filter as an ad-
ditional step can improve the signal similarity along the
lane separation lines, which aligns well with the scope of
our method described in Sec. 1 in the main text.

Dataset w A Ao At N
SPT/SMT 2 0 0 1 1
Lane Following 10 0.01 0.001 3 2
Seismic 3 0 0 Length of tljezt;ntlre curve

Table 1. Choice of parameters in each dataset. Seismic dataset
will be introduced in Sec. 6

Low light
Oest =0.335 [6]
< 9 v
Without Gaussian filter 0.407 5.043 0.355
With Gaussian filter 0.823 2.171 0.188

Noise level

Table 2. Evaluation results of lane following with and without
Gaussian filter added before curve tracing

There are four parameters in parametric curve trac-
ing: W, 11, 1, and At. The most important ones are the
regularization parameters A; and A,, which are used to
balance the contribution between the data fidelity and
curvature continuity. The larger the A, is, the smoother
the reconstruction is. However, in the case of SPT/SMT,
smoothness is not required due to frame-to-frame ran-
dom walk behaviors. In such a case, A, will be set to 0.
The positive parameter W and At can balance the influ-
ence from the surroundings and local features. We ob-
serve that the larger W and At are, the robust our method
will be against the noise. However too large W and At can
not guarantee stability and can also increase the compu-
tational cost. Therefore, one should be choose the param-
eters properly to preserve the accuracy in low SNR images



while controlling the computational cost. We use low-
right lane following as an example showing performance
can be affected by difference choice of parameters. Four
parameters (W, A¢, Ay and A,) are changed individually
from the optimal choice, as the results shown in Tab. 3 and
Tab. 4.

Low light
Oest =0.335 [6]
Parameters < 7 4
W=5Ar=3 0.857 3.322 0.216
W=2At=3 0.695 3.655 0.229
W=10,At=1 0.947 1.860 0.253
W=10,At=5 0.861 3.519 0.191

Noise level

Table 3. Evaluation results of lane following using different W
and At

. Low light
Noise level Oest =0.335 [6]
Parameters £ 2 v

A1=0,12=0.001 0.811 3.531 0.190
A1=0.1,12 =0.001 0.887 2.595 0.191
A1=0.01,22=0 0.853 2312 0.192
A1=0.01,1, =0.1 0.547 4.251 0.169

Table 4. Evaluation results of lane following using different 1;
and Ao

3. Cosine similarity term is Gaussian noise-
tolerant

We here show the proof that our method is relatively
tolerate to Gaussian noise. As stated in Main Sec. 3, the
parametric parameters describing curves, f and «, are
obtained by minimizing objective function L. Our objec-
tive function is made of three parts, L = Leorr + A1 Lreg +
A2Lcont. Lreg and Leone are irrelevant to pixel intensities
P, as they only describe the internal features of curves.
Therefore, in order to prove our objective function is
Gaussian noise tolerate, we only need to prove that the
set of B and e, corresponding to the minimum Loy, is
invariant to noise. Hence:

B, @ = argmin Leoyy ~ argmin L], 4)
where L7, are the cosine-similarity objective term when
Gaussian noises are presented. Without losing its general-
ity, Gaussian noise A%+1(0,0) are added to P; and Py
as P, e RZW*l and P, 1, e REWHL, |

PH:PI+<MW+1(0)U)=<MW+1(PZ)U) (5)
Pyi1=Pr1+Nowi(0,0) = Nowi1(Pry1,0)  (6)

where Aoy +1(P;,0) represents a normal distribution
with freedom degree of 2IW +1, mean equal to P ; and vari-
ance equal to o. Our cosine similarity term becomes:
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In order to obtain the behaviors of argminL] . with
respect to A2 +1(Py,0), we continue to investigate the
probability density function of L, .. as randomness fol-
lowing normal distribution A5y 41 (P, 0) is introduced.

In LY, since numerator P, and P, follow the be-
havior of two independent 2W +1 degree non-central nor-
mal distributions, the product of independent random

variables become:

Py-Pyy~Pr+MNwi1(0,0) (P + Nowi1(0,0)) (8)
~PyPry+ (Pr+Pry1) Now1(0,0)
+ Mow+1(0,0)- Now+1(0,0) 9)

If both Gaussian random variables X and Y have zero
mean and are independent, Z = XY has the probability
density of Bessel function:
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Therefore, Equation (8) can be rewritten as:
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We now take a close look at the denominator || P,
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I P, follows the behavior of non-central Chi-square dis-
tribution with 2W + 1 degrees of freedom. Therefore, co-
sine similarity of two vectors corrupted with Gaussian
noise (Equation (7)) is:
Py Pyi -

IPrlIPpsrll

Py Pry1+ (Pr+Prir) Nowe (0,0) + 1 Ko(l2)
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(15)

The probability density function remains complicated
with the ratio distribution of Bessel distribution and prod-
uct of two non central chi-square distributions. There-
fore, we use simulation to study the performance of Equa-
tion (4) with regard to B, together with its high-SNR coun-
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Figure 1. Objective function visualization with different SNR.
Upper panels: simulated images without noise. Lower panels:
corresponding objective functions in response to  with Gaus-
sian noise added.

We simulate one edge (same as main Fig. 3) and one
ridge. We set N = 1 for the convenience of visualiza-
tion. We find that B,,;,, which corresponds to the min-
imum objective value, is invariant to different amplitudes
of Gaussian noise (Figure 1). This simulation demon-
strates that argmin L. remains the same, meaning our

method can be noise-tolerant up to o = 0.55.

4. Computational complexity

Time complexity estimation. We here calculate the
time complexity per iteration per unit length via multi-
ple variable notation [7]. First, the time complexity of
Y(B@) = xN B9+ is O(N), where N is degree of a
polynomial defined in Main Sec. 3.1. Therefore, the
total time cost of polynomial operation (step 6 in Al-
gorithm 1) is O(2N). Next, 1D convolution operator
P.(|Y(B)],| X(a®])) x Nq has a time cost of G(2W +
1)2), where W is the half of scanning window size, de-
fined in Main Sec. 3.2. After convolution, cosine similar-
ity is also calculated. Given that each of P; and P4 has
the size of 2W +1). Time complexity of cosine similarity

m is G((2W +1)2). Therefore the total time cost of

step 7is G(2W + 1*). Both Lig)g and L¢ont have a constant
time complexity ©(NN). Hence the total time complexity
before gradient calculation is ~ @((2W + 1)*) (Step 6-10)
Based on the auto-differentiation [2], Time complexity
of gradient calculation is proportional to the number of
parameters, which is G2NQ2W + 1)?). Next, parameters
are updated at ©'(2). Hence the time cost from step 11-13

is ~OQ2NQW +1)?).

In summary, the total time cost of our method is ~
O (EL2W +1)*), where L is the integrated length of the
curve and E is the total iterations before converge. Given
that N and W are relatively small in value (Tab. 1), E and
L dominate the time complexity of our method.

Space complexity estimation. Auto-differentiation
[2] requires for all operations to build a graph. The
space complexity of Y(f) and X(a) is G@2N + 2).
P.(|Y(B)],|X(a?@])) has the space cost of G(2W +
1)?). Objective function has a constant complexity of
0 (3). Therefore, ~ G((2W + 1)?) per iteration is required
to perform automatic differentiation. At last, ©(3NK) is
required to describe the curves sufficiently after paramet-
ric tracing is complete, where K is the number of knots
defined in Main Sec. 3.1.

It is worth mentioning that we here only provide the
estimated time complexity and space complexity as they
also depend on the choice of gradient-based algorithms.

5. Segmented results of lane following

() FCDenseNet (d) DeeiLahv3

Shown in Figure 2

(a) Input (b) Unet
-

Figure 2. A few examples of segmented results using DCN under
various lighting conditions, including bright and dim lighting:
(a) Inputs, (b) U-Net [12], (c) FCDenseNet [8,9], (d) DeepLabv3+
[4] + MobileNetv2 [13].

6. Numerical Experiment on Seismic dataset

We here continue to evaluate the performance of our
method with seismic data, a spacial application. In con-
tract to applications shown in main text, where curves
are following any arbitrary non-smooth (SPT/SMT) and
smooth (lane following) response, the underlying para-
metric model to describe a curve in seismic data is often
known to be polynomial.

Seismic introduction. A seismic gather is a collec-
tion of seismic traces, where a detector source sends a
compressional wave through a medium (in our case, lay-
ers of rock) and a receiver records the amplitudes re-
flected back. These reflections are caused by a refrac-
tive index mismatch between rock layers, where there is
an impedance change between the density of the layers.



Noise level g=0 0=0.1 0=0.3 0=0.55
Methods 3 7 7 3 7 7 3 7 7 3 7 7
NIM [3] + Otsus [10] - - 0882 6661 0836 | 0871 16038  2.103 | 0881 14825  1.957
BM3D [5] + Otsu’s [10] - - 0866  17.870 2353 | 0841 17912 2402 | 0819 17551 _ 2.351
FMM [11] € = 0.01 2015 0.793 2252 0.344 - 2010 0.324 - 1850 0304
FMM [11]e=1 - 4190 0653 - 2314 0352 - 2.083 0331 - 1916 0311
UNet [12] 0.691 1.136 0.276 0.697 1.641 0.399 0.721 1.802 0.419 0.732 1.972 0.456
FC-DenseNet [9] 0.933 1.560 0.308 0.906 1.465 0.307 0.880 2.242 0.476 0.850 1.601 0.362
BDCU-Net [1] 0.904 0.834 0.169 0.895 0.989 0.205 0.883 0.904 0.195 0.877 1.086 0.250
Ours 0931 0529 0124 | 0892 0529  0.121 | 0.889  0.616  0.138 | 0.882  0.658  0.193
Table 5. Evaluation results of seismic event picking. Best in bold.
@ x (b) (0 =0.0,0.1,0.3 and 0.55) are added to test the robustness
= o1 of our method under low SNR.
= Results. Figure 3 illustrates two examples in the test-
= 0.07

=
=
—
=_7 0.04
=
— 0 5 10 15
— 0.1
e
—
| —
e 0.07

0.04

0 5 10 5
Iteration

Figure 3. Objective function value decrease after a few iterations
during parametric curves tracing in seismic gathers. (a) Two raw
seismic gathers and their parametric curves overlaid on top of
the inputs (Best viewed with zoom). (b) Average L of the corre-
sponding gather during iterative optimization.

Since a reflection at a given depth (Figure 3, y-axis) can
be observed at different reflection angles between source
and receiver, these traces are “gathered” by the angle (Fig-
ure 3, x-axis) to form an image. In many seismic imaging
workflows, collecting a parametric curve along a reflect-
ing event is vitally important because curved events rep-
resent errors in the estimate of the velocity of the subsur-
face layers, as the arrival times of signal differ by the dis-
tance traveled in the medium. Horizontally “flat” events
indicate that the velocity model of the subsurface is cor-
rect.

Traditionally, this information is collected by fitting the
second-order polynomials: y = ap+ a1 x+ a X2, x€[0,X].
This means that the underlying model of the curves is
known and there’s only one time interval (K = 1). In
contrast, the underlying parametric model for the exam-
ples shown in the main text is unknown. Therefore, we
construct a dataset containing around 1000 seismic gath-
ers with a broad range of depth (Figure 3, y-axis) and
scattered locations, reflecting various seismic conditions
in every spatial dimension. Ground truth is annotated
manually by experts. To improve the accuracy, annota-
tions with the highest certainty are selected, leading to
sparse labeling.Different amplitudes of Gaussian noise

ing set, together with the curve tracing results and objec-
tive function value decrease during optimization. Using
metrics defined in the main text, we also show the results
and visual comparison among all competing methods in
Tab. 5 and Figure 4. However, due to the sparse anno-
tation, we only compare the output curves which over-
lap with the ones labeled in the ground truth by calculat-
ing the distance of 0-th coefficient between outputs and
ground truth (GT): llao,cT — ao,0utputll < 1.

Unlike the results from SPT/SMT where all methods
perform well in high SNR, the high-density and possi-
bly overlapping signals presented in the seismic dataset
pose a challenge for traditional methods and FMM to
trace the curves accurately even in high SNR. Among all
DCN methods, BDCU-Net has better accuracy in terms
of 2 and 7 while FCDenseNet is detecting longer curves
%£. However, our method outperforms the state-of-the-
art methods in 2 and 7 significantly since we directly
optimize polynomial parameters. Our approach can also
detect curves efficiently, comparable to the best perfor-
mance of CDN methods.
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Figure 4. Visual comparison of seismic dataset. Note that images are normalized to 1.
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