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1. Jacobian Matrices related to Pose Estima-
tion under Refraction

This appendix section gives the Jacobian matrices de-
rived for pose estimation under refraction.

1.1. Absolute Pose Refinement

By using the chain rule, we have the Jacobian matrix w.r.t
R and c as

JR = JlI(1,2,3)J
lI(1,2,3)
R + JlI(4,5,6)J

lI(4,5,6)
R ,

Jc = JlI(1,2,3)J
lI(1,2,3)
c + JlI(4,5,6)J

lI(4,5,6)
c .

(1)

where JlI(1,2,3) = −p∧I and JlI(4,5,6) = I. Here a∧ rep-
resents the skew-symmetric matrix of a vector a. Since R
and c are embedded in lI, again, by the chain rule, we have:
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where

JlI(1,2,3)
qI
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= [qI(4)I 0] ,
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(4)

1.2. Relative Pose Refinement

Recall the refractive epipolar constraint given as

fEC = r2I
>
(Ic2V −I c1V)

∧
r1I , (5)

using the chain rule, we have the Jacobian matrices w.r.t R,
c, and p as
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Similarly, for the reprojection error given as
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using the chain rule, we have the Jacobian matrices w.r.t R,
c, and p as

JREx = [JR,Jc,Jp] ,

JR = JpVJ
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Some intermediate Jacobian matrices in (7) and (10) are
given as follows:
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where γ =
√

(1− λ2) + λ2qI(3)2.

2. Setup of Synthetic Simulation

Fig. 1 show how the data are generated to evaluate the
absolute pose solvers in the non planar and planar cases.

Figure 1. Simulation setup for absolute pose estimation: The left
figure shows the setup for generating data (world points, image
points, camera pose) under refraction for the non planar case. The
right figure shows the setup for generating data for the planar case.

Fig. 2 show how the data are generated to evaluate the
relative pose solvers.

Figure 2. Simulation setup for relative pose estimation: The figure
shows the setup for generating data (world points, image points,
camera pose) under refraction.

Figure 3. Illustration of estimating refractive surface normal.
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2.1. Zoom-out Results

Fig. 4, Fig. 5, and Fig. 6 demonstrate the synthetic exper-
imental results, which are the zoom-out images correspond-
ing to Fig. 7, 8, and 9 listed in the paper.

3. Supplementary Details for Real Data Exper-
iment

This section presents supplementary details for the ex-
periment described in Section 5.3 and Section 5.4 in the
main paper.

3.1. Bathtub Dataset

The refractive index of water is set to 1.333. The sub-
merged checker pattern was segmented out of raw images,
as demonstrated in Fig. 7. We employed the estimated cam-
era poses for a semi-dense 3D reconstruction of the sub-
merged checker pattern, where the optical flow algorithm
proposed by [2] was used to establish feature correspon-
dences.

In Fig. 8, we show a refractive SfM reconstruction of the
submerged checker pattern. We tried to apply a classical
SfM reconstruction using the COLMAP software [3]. Un-
fortunately, it failed to give a sparse reconstruction result,
whereas our method was able to reproduce the 3D structure
of the submerged checker pattern.

3.2. Stag Beetle Dataset

The refractive index of the crystal resin is set to 1.6. We
segmented the refractive parts from raw images on which
the proposed algorithms were then executed, as demon-
strated in Fig. 9. The surface normal was estimated using
ArUco [1] fiducial markers glued on the surface, as shown
in Fig. 3. Note that, in scenario 2, we only need to estimate
it once.

Fig. 10 shows two representative side-view images of
the real stag beetle dataset. They are given here to help read-
ers visually evaluate the quality of the 3D reconstruction.
As shown in Figure 11 in the main paper and in Fig. 11,
the classical reconstruction fails to get the depth correct and
produces an almost flat reconstruction, whereas our method
more faithfully reproduce the 3D structure of the stag beetle
(especially the legs and their attachment on the body).

3.3. Whiskey Bottle Dataset

We carried out an additional real experiment where we
used a mobile phone camera to photograph a cylindrical
whiskey bottle container placed at the bottom of a bath-
tub filled with water, as shown in Fig. 12. Similarly, we
segmented the refractive parts from raw images on which
the proposed algorithms were then executed. In Fig. 13,
we show a refractive SfM reconstruction of the submerged
whiskey bottle and the tray.
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Figure 4. Comparison of absolute pose solvers for scenario 2 with respect to varying noise levels in the nonplanar case: the left box plot
shows rotation error; the right box plot shows the translation error.

Figure 5. Comparison of absolute pose solvers for scenario 2 with respect to varying noise levels in the planar case: the left box plot shows
rotation error; the right box plot shows the translation error.

Figure 6. Comparison of relative pose solvers for scenario 2 with respect to varying noise levels: the left box plot shows rotation error; the
right box plot shows the translation error.
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(a): Raw images.

(b): Segmented refractive images.
Figure 7. Representative raw and segmented refractive images of the bathtub dataset used for 3D reconstruction.

Figure 8. Representative side-view images of the real stag beetle dataset.
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(a): Raw images.

(b): Segmented refractive images.
Figure 9. Representative raw and segmented refractive images of the real stag beetle dataset used for 3D reconstruction.

Figure 10. Representative side-view images of the real stag beetle dataset.
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Figure 11. Supplementary SfM reconstructions based on 30 images, see Fig. 1. (Left) SfM reconstruction based on refractive SfM using
our method for Scenario 2. (Right) SfM reconstruction based on perspective camera using COLMAP [3].
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(a): Raw images.

(b): Segmented refractive images.
Figure 12. Representative raw and segmented refractive images of the real whisky bottle dataset used for 3D reconstruction.

Figure 13. Representative side-view images of the real whisky bottle dataset.
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