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Abstract

Non-invasive cardiac sensing has many applications.
Cameras specifically are ubiquitous, low-cost, spatial sen-
sors that can also be used to capture context alongside
physiological signals. However, sufficient precision is nec-
essary for this technology to have an impact and for it to
be trusted. Benchmark datasets and competitions have con-
tributed significantly to advancing the state-of-the-art meth-
ods and improving transparency. We present an entry to the
vision for vitals (V4V) challenge.

1. Introduction
Interest in the use of cameras to measure cardio-

pulmonary signals, including the cardiac pulse, has grown
tremendously in recent years. Camera-based measurement
has several attractive properties, as cameras are ubiquitous,
low-cost, and can perform spatial and concomitant mea-
surements without touching the body. Perhaps just as signif-
icantly, videos can be used to capture context that is difficult
to obtain from a wearable device, including the identity of a
subject, their non-verbal cues (e.g., facial expressions), po-
sition/posture, what activity they are performing, their envi-
ronment, and their appearance (e.g., build, height, etc.).

Foundational work has demonstrated that digital images
can be used to measure cardiac information from subtle
pixel changes in videos of the human body [22, 1, 17, 20].
Computational methods aimed at making these measure-
ments more robust were subsequently developed, many ini-
tially using unsupervised approaches [14, 4, 21, 18]. How-
ever, the performance of these methods has been superseded
by supervised training [3, 23, 8, 9]. Neural models are typ-
ically able to learn more complex spatial and temporal re-
lationships from video data. However, a large and diverse
training set is necessary if these models are to generalize
well.

Collecting training videos with the necessary diversity
to develop models that generalize to new datasets is not
trivial. The existing public imaging PPG datasets ([5, 24,

12, 2, 11, 13]) were each collected in a single environment.
Therefore, all videos have similar background, lighting con-
ditions, and position of the subjects relative to the camera.
Synthetic data is one way to address this. High-fidelity sim-
ulations can be used to create videos with varied appear-
ance, backgrounds, lighting conditions, motion, and facial
expressions [10].

In the field of computer vision, benchmarks and chal-
lenges have formed a significant contribution to the research
community [16, 19]. These efforts help establish a clear
picture of the performance of different algorithms and also
reveal limitations that can inspire future research. The re-
mainder of this paper will summarize: 1) the model used for
video-based pulse rate measurement, 2) the training proce-
dure and datasets used, and 3) the results on the V4V chal-
lenge data [15].

2. Hybrid-CAN-RNN
The Hybrid-CAN architecture [9] has been shown to be

highly effective at estimating pulse rate from video data,
and achieved state-of-the-art results across a multitude of
tasks. In the Hybrid-CAN architecture, the model is di-
vided into two branches: (1) an appearance branch, which
learns features from an RGB frame averaged over all time
points in a window, and (2) a motion branch, which ex-
tracts features from the differences between consecutive
video frames. Spatial attention mechanisms are used to
share information between the two branches, encouraging
the model to focus on regions of the image that contain use-
ful signal (i.e. participant’s skin) and ignore noisy regions
(i.e. background).

The Hybrid-CAN architecture leverages local changes in
both space and time. However, due to the convolutional na-
ture of the model, learning a longer-term time-based repre-
sentation is difficult to achieve. Therefore, to better model
the temporal aspect of the PPG waveform, we extend the
Hybrid-CAN architecture by integrating recurrent neural
network (RNN) layers on top of the convolutional layers
(Hybrid-CAN-RNN). Specifically, we apply 3D average
pooling to the final layer of learned CNN features and in-
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Figure 1. We present a novel neural architecture called Hybrid-CAN-RNN that leverages 3D Convolutions to perform spatial-temporal
modeling and bi-directional GRU layers to predict high-quality time-series pulse waveform.

corporate a bidirectional gated recurrent unit (GRU) layer
followed by an additional GRU layer to output the predicted
the waveform signal at each time step. Figure 1 depicts the
Hybrid-CAN-RNN architecture. This approach allows the
3D convolutional layers to extract features that are local in
both the space and time dimensions, and the RNN layers to
model the longer temporal transitions based on the repre-
sentation learned by the 3D convolutional layers.

3. Datasets

AFRL [5] The AFRL dataset includes a total of 300
videos from 25 participants (17 male and 8 female). Each
video in the dataset has a resolution of 658x492, and the
sampling rate is 30 Hz. Gold-standard PPG signals were
recorded using a contact reflective PPG sensor attached to
the subject’s index finger. Each participant was instructed
to perform three head motion tasks including rotating the
head along the horizontal axis, rotating the head along the
vertical axis, and rotating the head randomly once every
second to one of nine predefined locations. For horizontal
and vertical head motion tasks, the subjects were instructed
to conduct head motions with an increasing speed (10 de-
grees/second, 20 degrees/second, 30 degrees/second, 40 de-
grees/second, 50 degrees/second, 60 degrees/second).

BP4D+ [24] The BP4D dataset has 140 videos from 140
participants (82 female and 58 male) with ages ranging from
18 to 66 years old. The dataset also contains diverse racial
ancestries including Black, White, Asian (both East-Asian
and Middle-East-Asian), Hispanic/Latino, and others (e.g.,
Native American). The sampling rate used in the videos is
25 Hz, and the raw resolution is 1040 × 1392. The ground-
truth blood pressure waveform was collected by a Biopac

MP150 data acquisition system.
UBFC [2] The UBFC dataset has 42 videos from 42 par-

ticipants. Each video has a resolution of 640x480 and the
sampling rate is 30 Hz in uncompressed 8bit RGB format.
The reference PPG signal was collected using a CMS50E
transmissive pulse oximeter. The experiments were con-
ducted in different indoor illumination and sunlight condi-
tions.

Synthetics [10] To improve model generalization, we
leverage recent work that uses highly-parameterized syn-
thetic avatars to generate videos containing a diverse set of
simulated subjects, movements, and backgrounds [10]. Us-
ing physiological waveforms signals from the MIMIC Phy-
sionet [6] database, we randomly sampled windows of PPG
and respiration from real patients. The physiological wave-
form data were sampled to maximize examples from differ-
ent patients. These waveforms were then used to drive the
synthetic avatars’ appearance. Specifically, the PPG signal
is used to manipulate the base skin color and the subsurface
radius [10]. The subsurface scattering is spatially weighted
using an artist-created subsurface scattering radius texture
which captures variations in the thickness of the skin across
the face. Using the synthetic avatar pipeline, we generated
2800 6-second videos, where half of the videos were gen-
erated using hand-crafted facial motion/action signals, and
the other half using facial motion/action signals extracted
using landmark detection on real videos.

4. Training Details

We trained our model using a large dataset consisting
of participants from the AFRL, UBFC, BP4D+ (including
MMSE and V4V training datasets), in addition to the gen-
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Table 1. Beat-to-Beat Pulse Rate Prediction on V4V Dataset
Training Data MAE RMSE ρ

AFRL, Syn., UBFC 9.42 14.6 0.436
AFRL, Syn., UBFC, BP4D+ 9.37 14.6 0.440

MAE = HR Mean Absolute Error (beats/min), RMSE = HR Root Mean
Squared Error (beats/min), ρ = Pearson Correlation in HR estimation.

erated synthetic avatars. For each video, we reduced the
resolution of the video to 36x36 pixels to reduce noise and
computational requirements while maintaining useful spa-
tial signal. The input to the appearance branch was calcu-
lated as the average frame over all T time-points. The input
to the motion branch was a set of T normalized difference
frames, calculated by subtracting consecutive frames and
normalizing by the sum. We used a window size of T = 30
video frames to predict the PPG waveform for the corre-
sponding 30 time points. During training, a sliding window
of 15 frames was used to increase the total number of train-
ing examples. The model was trained for eight epochs using
the Adam [7] optimizer, with a learning rate of 0.001.

5. Results and Discussion

A 6th-order Butterworth filter was applied to the model
outputs (cut-off frequencies of 0.7 and 4.0 Hz). Standard
metrics were computed over all windows of all the test
videos in a dataset: mean absolute error (MAE), root mean
square error (RMSE), and Pearson’s correlation coefficient
(ρ) between the estimated HR and the ground truth HR. Ta-
ble 1 shows the results achieved by our model.

Fig. 2 shows examples of waveforms generated by our
model. We do not have access to the ground-truth PPG sig-
nals measured via a contact sensor; however, these exam-
ples show clear periodic signals, suggesting that the pulse
signal was recovered well. There are no other obviously
periodic changes in the video, other than respiration and
blinking, and these waveforms do not match the frequency
and/or dynamics that would be expected from those signals.
One way to inspect which regions of the video frames are
used by the model to recover the estimated PPG signal is
to plot the attention mask weights. Fig. 2 shows attention
masks for frames from a subset of the test videos. These ex-
amples illustrate that the model correctly learns to segment
the participant’s face from the background, in addition to
highlighting regions of the face containing skin. These re-
gions are crucial for detecting the subtle skin color changes
caused by the change in blood flow.

Beat-to-beat (or instantaneous) pulse rate measurement
from video remains a challenging task. While many mod-
els can achieve average pulse rate measurement accuracy
(e.g. over 30 seconds) of close to 1-2 beats/minute mean
absolute error, achieving that level of performance on a
beat-to-beat level is very difficult. In this work we used

Figure 2. Examples of predicted waveforms and attention mask
examples from the V4V test dataset

a model trained on a large corpus of real videos combined
with synthetic data. Our final model achieved an MAE of
9.37 beats/minute on the test dataset (see Table 1). Qualita-
tively, the extracted PPG waveforms had a reasonably high
signal-to-noise ratio (see Figure 2). Training with data from
a similar distribution (BP4D+) to the testing data (V4V test
set) had only a marginal benefit, as the HR MAE decreased
from 9.42 to 9.37 beats/minute. The apparent generaliza-
tion is encouraging. There are other reasons to be optimistic
too. Over the past 10 years performance dramatic improve-
ments have been made in many areas of machine learning,
including computer vision. Work in camera-based physio-
logical measurement has yet to take advantage of many of
these, including unsupervised pretraining and developments
in transformer architectures.

6. Conclusion
We have presented a neural architecture, model, and re-

sults for camera-based vital sign measurement that captures
spatial and temporal information for recovering cardio-
pulmonary signals from video. To help promote the gen-
eralizability of this supervised model, we leverage a set
of synthetic avatars during training, alongside real video
datasets. Our results show reasonable performance on the
V4V challenge data. However, instantaneous (beat-to-beat)
pulse rate estimates remain challenging.
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