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Abstract

We present in this paper the LCOMS Lab’s approach to
the 1st Vision For Vitals (V4V) Challenge organized within
ICCV2021. The V4V challenge was focused on computer
vision methods for vitals signs measurement from facial
videos, including pulse rate (PR) and respiratory rate.

We propose a novel end-to-end architecture based on a
deep spatiotemporal network for pulse rate estimation from
facial video recordings. Unlike existing methods, we predict
the pulse rate value directly without passing by iPPG signal
extraction and without incorporating any prior knowledge
or additional processing steps. We built our network using
3D Depthwise Separable Convolution layers with residual
connections to extract spatial and temporal features simul-
taneously. This is very suitable for real-time measurement
because it requires a reduced number of parameters and a
short video fragment. The obtained results seem very sat-
isfactory and promising, especially since the experiments
were conducted in challenging dataset collected in uncon-
trolled conditions.

1. Introduction
The measurement of vital parameters including heart

rate, respiratory rate, blood pressure and body temperature,
is one of the first gestures most practiced in daily clinic [9].
Vital signs are primarily critical indicators that can inform
healthcare professionals about a person’s physical or psy-
chological well-being. They therefore allow the screening
and initial medical treatment of several diseases. Physi-
ological parameters are often measured using invasive or
non-invasive sensors in direct contact with the human body.
Despite all the advantages of contact technologies, they re-
main psychologically stressful and often uncomfortable due
to the use of contact sensors with the body [1]. In addition,
their use is almost impossible in cases of trauma, skin ulcer,

burns, congenital and contagious diseases [5]. Therefore,
these different limits, together with the strong demand for
reliable, comfortable, simple, portable, non-stressful and
low-cost technology, has prompted researchers to develop
new techniques for non-contact measurement of physio-
logical signals. Imaging PhotoPlethysmoGraphic (iPPG)
has been able to gain more attention over the past decade
through its various qualities by overcoming the drawbacks
of contact measurements mentioned above [17]. Thus, it re-
duces wiring and increases the safety of patients and med-
ical personnel by minimizing the risk of contamination in
case of a contagious disease [5] .

All the studies carried out on Photoplethysmographic
imaging have greatly improved its performance in terms
of reliability and robustness in case of controlled condition
(good lighting and motionless subject) [12, 17, 4, 20, 18].
However, at present most of these methods present a weak-
ness in the case of uncontrolled measurement conditions, in
particular the subject’s motions and low lighting conditions
as well as very dark skin (phototype 6) [1, 14]. In this field,
deep learning based methods show better performance than
conventional state-of-the-art algorithms based on image and
signal processing [11, 21]. Recently, several deep learning
architectures have been proposed to extract the iPPG signal
from a video stream. the resulting signal is then processed
to estimate pulse rate. These methods are not one stage.
They still require pre-processing or post-processing steps
as well as long-term recording for measurements. In addi-
tion, they employ private or public databases collected in
a controlled environment. However, this makes the study
less realistic as the experiences have to be carried out under
unconstrained scenarios.

2. Related works
The commonly adopted methods for contactless pulse

rate measurement using iPPG consist of two-stage pipelines
which divide the prediction process into iPPG signal ex-
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Figure 1. LCOMS Lab’s solution pipeline

traction and pulse rate estimation. According to the way
of iPPG signal extraction, we can divide the existing works
into two major approaches either conventional based meth-
ods using image and signal processing algorithms [12, 17,
4, 20, 18, 1], or deep learning based methods that extract
the iPPG signal automatically [3, 11, 21, 2]. In this section,
we review mainly the state-of-the-art deep learning based
methods for contactless pulse rate measurement.

There have been several CNN-based methods for iPPG
based contactless pulse rate measurement. Chen and Mc-
Duff [3] proposed a two-stream 2D CNN architecture, in-
cluding one stream of an appearance model to find the ap-
propriate regions of interest (ROI) and the other of motion
representation model. The two streams are trained to ex-
tract BVP waveform under heterogeneous lighting and sig-
nificant head motions. Radim et al. [15] proposed a two-
stage convolutional neural network method composed of 2D
CNN and 1D CNN respectively. The first one extracts the
iPPG signal while the second regresses the pulse rate value.

As the 2D CNN cannot directly exploit the temporal fea-
tures, spatial-temporal modeling techniques were involved
in a more explicit way. 3D CNN were used to learn spatial-
temporal features for reconstructing precise rPPG signals
or estimating pulse rate directly [22, 2]. Niu et al. [11]
combined a CNN with gated recurrent units to train spatial-
temporal maps generated from multiple ROI. Neural ar-
chitecture search (NAS) were also proposed to discover a
well-performing model with good generalization capacity
in less-constrained scenarios [21].

3. Our method

The general framework is illustrated in Figure. 1. we
consider the task of pulse rate estimation from facial videos
as a one stage regression task. We perform first face seg-
mentation [10] to get rid of the background and the non-
skin areas. Then, without any additional preprocessing or
post processing steps, batches of 50 frames (corresponding
to 2 seconds) are fed to a 3D fully convolutional network

to learn spatiotemporal features associated with the subtle
color changes on these regions to finally estimate the cor-
responding pulse rate. This section describes each step in
detail.

3.1. Face segmentation

The commonly used face and facial landmarks detectors
often fail in cases of large head motions, occlusions, fa-
cial expressions, and black skin. As the dataset used for
the challenge is collected under challenging conditions, we
perform face segmentation to get rid of non-skin regions
that don’t hold any color changes associated with cardiac
rhythm [10]. The employed algorithm is proposed initially
for face swapping and works ideally in challenging scenar-
ios. All the images of the segmented faces are cropped ac-
cording to the coordinates of the non-zero pixels and then
scaled to 160 × 120 × 3 pixels.

Figure 2. Distribution of the ground truth pulse rates in the V4V
database.
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3.2. Training set augmentation

The ground-truth pulse rates (in beats per minute) of v4v
dataset [13] has an inverse Gaussian distribution with more
examples for mid pulse rate range [70, 90 Bpm] and less for
very high and very low pulse rates (see Figure 2). To avoid
the poor predictions for the minority samples, we have per-
formed offline data augmentation on video sequences with
pulse rate values larger than 90 Bpm or smaller than 70
Bpm. We have randomly applied image transformations
as well (slight rotation, scale, brightness) for each batch to
avoid data redundancy and to add robustness of data varia-
tion to the network.

3.3. Pulse rate estimation neural network

The most existing methods on contactless pulse rate
measurement using iPPG consist of two-stage frameworks
which extract first iPPG signal and then estimate PR by
peak detection. [3, 22, 11, 15, 12, 6, 19]. This approach can
achieve more reliable predictions but increases the compu-
tation cost and require a long-time window, hence being less
convenient for real-time applications. Unlike the commonly
used approach, we treat this task as a one-stage regression
problem which predict the average pulse rate in only 2 sec-
onds video fragments (2 seconds or T = 50 frames) (see
Figure 3). Inspired by mobilenet architecture [7], we built
our network using a linear stack of depthwise separable con-
volution layers to reduce the computational cost and mem-
ory requirements. Residual connections are used as well to
avoid vanishing gradient problems. Each depthwise separa-
ble convolution layer is followed by a batch normalization
and ReLU activation function. The final activations of the
last convolution layer are then flattened and passed to two
dense layers with 1024 and 1 neurons respectively, to esti-
mate the pulse rate value.

4. Experiment

4.1. Dataset

V4V dataset provided by the organizers of the V4V
Challenge is used for both training and testing [13]. It con-
sists of totally 1400 RGB videos recorded from 140 partic-
ipants (82 females and 58 males) with diverse ethnic ances-
tries. Each participant is involved in 10 sessions that aimed
at evoking different emotions which makes it more chal-
lenging for heart rate estimation. The length of each video
is between 30 seconds to 1 minute. The frame rate is 25
fps, and the resolution of each image is 1040 x 1392 pix-
els. Heart rate is collected by a contact sensor operating at
a sample rate of 1 kHz. Since we use in our experiment 2
seconds video fragment to predict the pulse rate value, each
50 frames take the mean of 2000 pulse rate values as label.

Figure 3. The framework of spatio-temporal networks for pulse
rate estimation directly from facial videos recording.

4.2. Evaluation Metrics

We evaluate the performance of our approach on the test
set of V4V dataset provided for the V4V challenge [13].
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Three widely evaluation metrics were used including the
mean absolute error (MAE, see equation 1), the root mean
square error (RMSE, see equation 2), and the Pearson’s cor-
relation coefficient (r, see Equation 3).

MAE =
1

n

n∑
i=1

|PRi − P̂Ri| (1)

RMSE =

√√√√ 1

n

n∑
i=1

(
PRi − P̂Ri

)2

(2)

r =

∑n
i=1(PRi − PRi)(P̂Ri − P̂Ri)√∑n
i=1(PRi − PRi)2(P̂Ri − P̂Ri)2

(3)

The MAE and RMSE show the difference between the
predicted and the ground truth pulse values. While the pear-
son correlation coefficiennt R examines the strength and di-
rection of the linear relationship between them on scale of
[-1 1]. The smaller value indicates better performnace for
MAE and RMSE whilst the larger R indicates better perfor-
mance.

4.3. Implementation details

We implemented our method in keras and Tensorflow
frameworks and ran it on Nvidia Quadro P6000s. We used
Rectified Adam (RAdam) optimizer [8] to optimize MSE
loss. We trained the network for 30 epochs with batch size
= 50, learning rate 10−4 and decay = 10−2. It took approx-
imately 20 minute for each epoch. In addition to a dropout
layer [16] of 0.4 ratio that is applied before the final dense
layer of the networks, L1 and L2 regularization strategies
with coefficient equal 10−3 are employed which help to
overcome overfitting issue and improve the model gener-
alizability to new data.

5. Results

The proposed end to end approach is trained and tested
on the V4V dataset without using any external data. It
shows good performance with an MAE of 11.60 bpm, an
RMSE of 14.90 bpm and a r of 0.20.The obtained results
seem very satisfactory and promising, although the training
is carried out on an unbalanced data set. Moreover, our ap-
proach was initially developed to perform a prediction upon
every 2 second recording portion (50 frames). But predic-
tion per frame was instructed in the challenge. Thus, we
think that our model was not fully adapted with this require-
ment, and this may be the reason why the average error over
the entire test set was a bit high. Despite that, our model
runs in real-time both at GPU ( 150ms) and CPU ( 260ms).

6. Conclusion
In this paper, we proposed LCOMS Lab’s approach for

contactless pulse rate estimation from facial videos. Pulse
rate values estimated with this method was submitted for
the 1st V4V Challenge [13]. All the experiments were
conducted on the challenging V4V dataset provided by the
challenge organizers.

The proposed solution is an efficient model built on a
linear stack of depthwise seprable convolution layers con-
catenated with residual connections. This combination sig-
nificantly reduces the number of parameters and the com-
putational time without any performance degradation. This
architecture performs competitively and can serve as a base-
line for future robust architecture in real time applications.
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