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Abstract

Telehealth has the potential to offset the high demand for
help during public health emergencies, such as the COVID-
19 pandemic. Remote Photoplethysmography (rPPG) - the
problem of non-invasively estimating blood volume vari-
ations in the microvascular tissue from video - would be
well suited for these situations. Over the past few years a
number of research groups have made rapid advances in
remote PPG methods for estimating heart rate from digi-
tal video and obtained impressive results. How these var-
ious methods compare in naturalistic conditions, where
spontaneous behavior, facial expressions, and illumination
changes are present, is relatively unknown. To enable com-
parisons among alternative methods, the 1st Vision for Vi-
tals Challenge (V4V) presented a novel dataset containing
high-resolution videos time-locked with varied physiologi-
cal signals from a diverse population. In this paper, we out-
line the evaluation protocol, the data used, and the results.
V4V is to be held in conjunction with the 2021 International

Conference on Computer Vision '

1. Introduction

There has been a tremendous interest in the extraction
of human physiological signals using just facial videos.
Computer vision based physiological extraction has been
gaining momentum steadily because this technology has
significant benefits over traditional contact-based measure-
ments. Firstly, these methods allow reliable estimation of
Heart Rate (HR) and Respiration Rate (RR) in absence of
specialized equipment such as electrocardiogram (ECG).

'https://vision4vitals.github.io
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Figure 1. Skin reflection model [33]

These methods depend only on the video feed recorded
from a general RGB camera readily available in a commod-
ity smartphone. Secondly, these methods operate without
any contact with the subject. Hence, video-based phys-
iology estimation promotes social distancing and is more
patient-friendly than contact-based devices. Thirdly, these
methods aid in remote diagnosis of patients located in re-
mote areas where quality healthcare facilities are limited.
These methods have a wide range of applications including
telehealth, deep fake detection, affective computing, human
behavior understanding, and sports.

Clinicians use FDA-approved devices such as an electro-
cardiogram (ECG), a chest belt, and a photoplethysmogra-
phy (PPG) device for extracting human physiology signals
such as HR and RR. Since PPG is closely related to the
V4V challenge, we describe the functioning of a PPG de-
vice. It is a contact-based device capable of extracting the
subtle imperceptible color changes induced as a result of
periodic changes in the volume of blood flowing in the un-
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Table 1. Summary of previous challenges and recent methods in the area of video-based non-contact physiology estimation. Many of the
previous evaluation protocols use non-overlapping segments. In V4V 2021, we use a continuous frame-level error measurement metrics.

\ HR \ RR\ Datasets used \ Evaluation Protocol
Related Challenges
The 1st Remote Physiological Signal Sensing .

(CVPR™20) [15] | X VIPL-HR-v2, OBF 10s non-overlapping segment

The 2nd Remote Physiological Signal Sensing Continuous metric:

(ICCV’21) | VIPL-HR-v2, OBF Inter-beat interval
Recent Methods
MTTS-CAN (NeurIPS’20) [17] |/ AFRL, MMSE-HR 30s non-overlapping segment
Feature Disentanglement (ECCV’20) [23] v | v |OBF, VIPL-HR, MMSE-HR | 30s non-overlapping segment
1st Vision-For-Vitals Challenge
, Continuous metric:
Ours (ICCV’21) v |/ V4V dataset Frame-level HR/RR

derlying skin tissues. In a simplified setup, it consists of a
light emitter and receiver. While the emitter is used to fo-
cus the light beam on the skin tissue, the receiver is used
to record the intensity of light transmitted back to the PPG
device. It is known that the absorption spectrum of (oxy-)
hemoglobin lies in the color band corresponding to green
[32]. Accordingly, the emitter and receiver are designed to
capture the periodic color variations in the frequency range
of heart rate. Studies have also shown that the respiration
rate can be extracted either through motion analysis [10] or
using the PPG signals [31]. However, a PPG device is a
contact-based method and does not offer the attractive ben-
efits offered by a non-contact-based method. To this end,
several video-based non-contact remote physiology estima-
tion methods have been advanced.

The video-based physiology estimation methods [27, 32,
5, 33] exploit the reflectance properties of the skin (typically
facial region) with an aim to extract the human physiologi-
cal signals. Often, the skin tissue is modeled under Shafer’s
Dichromatic Reflection Model (DRM) [33] that provides a
way to model the behavior of the light energy incident on
surfaces. As shown in Fig. 1, the light incident on the
skin tissue reflects back to the camera as two components
- specular and diffuse reflectance. A fraction of the inci-
dent light energy that is reflected right off the skin surface
is the specular component. This appears as a glossy/shiny
reflection on the image captured using the camera. The dif-
fuse reflectance is the light component that passes through
the blood-rich tissues under the skin and is then transmitted
out. Therefore, the diffuse component contains the signa-
ture of physiological signals, while the specular component
does not. Similar to PPG, a careful analysis of the variations
in the diffuse component of the reflected light shows a pul-
satile signal in the frequency range of heart rate. Therefore,
video-based physiological measurements techniques are of-
ten referred to as Remote-PPG (rPPG) methods.

Several methods have been advanced for the extraction

of rPPG signals [5, 33, 27, 32, 3, 17, 23, 12, 19]. Owing
to the advancements in computer vision and deep learning,
remarkable results have been achieved on the task of hu-
man physiology estimation. However, there are two draw-
backs with existing methods. First, it is not clear how
these various methods compare in naturalistic conditions,
where spontaneous movements, facial expressions, and il-
lumination changes are present. Second, most previous
benchmarking efforts focused on posed situations. No com-
monly accepted evaluation protocol exists for estimating vi-
tal signs in spontaneous behavior with which to compare
them. Therefore, in the 1st Vision-For-Vitals 2021 chal-
lenge, we introduce a new dataset called Vision-For-Vitals
(V4V) dataset which includes challenging elements such as
spontaneous behavior. We also contribute a new evaluation
metric for a stronger benchmarking on the V4V dataset.

2. Related works

Table 1 summarizes the related challenges and most re-
cent methods in the area of remote video-based human
physiological estimation.

Related challenges. In conjunction with CVPR’20, the
Ist Remote Physiological Signal Sensing (RePSS) chal-
lenge was organized for estimation of heart rate using RGB
videos. The challenge consisted of a training dataset that
was drawn from VIPL-HR-v2 [22] and a test set that was
drawn from VIPL-HR-v2 [22] and the OBF [14] datasets.
There were about 2500 samples, each 10 seconds long, in
the training dataset. In order to test the efficacy of different
methods employed in the challenge, the organizers used a
segment-level evaluation protocol, i.e., one heart rate pre-
diction for a 10s segment.

The 2nd Remote Physiological Signal Sensing (RePSS)
challenge was held recently?, and it included samples drawn
from VIPL-HR-V2 and OBF. In this challenge, the orga-

2in conjunction with ICCV’21
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Figure 2. Subject participating in a cold presser (T8) task

nizers introduced an inter-beat-interval (IBI) based metric
for measuring the performance of the participants’ meth-
ods. Unlike the segment-level metric used in the 1st
RePSS, the IBI-based metric is more granular as it penal-
izes missed/extra heartbeat predictions. In the 2nd RePSS
challenge, the organizers also included respiration rate as
a separate challenge track. Our V4V challenge is similar
in spirit to the 2nd RePSS as we used granular evaluation
metrics and have both tracks (HR and RR). Further, we in-
troduce a newly curated dataset that contains challenging
elements such as spontaneous behavior and varied physio-
logical signals as part of our V4V challenge.

Methods. Traditional rPPG extraction methods typically
involve two stages. The signal is first extracted based on
the rPPG principles, and then the signal processing meth-
ods are used to compute the HR and RR. In [32], the pixels
in the green channel are used to extract the physiological
signals since it contains a strong signature of the pulsat-
ing rPPG signal. Some methods such as [28, 27, 4] use an
ICA method to determine the underlying rPPG signal fol-
lowed by 3rd order Butterworth bandpass filtering to obtain
the power spectrogram whose peak corresponds to the heart
rate (in a valid range of 0.7Hz - 2.5Hz). Tarassenko [31] et.
al propose a pipelined approach that uses face tracking and
pole selection mechanism to estimate heart rate, respiration
rate, and oxygen saturation. However, these methods are
susceptible to noise, motion, and lighting conditions of the
environment.

Advancements in deep learning [12, 17, 13, 24, 29, 18]
have made it possible to achieve remarkable performance
in the task of video-based human physiological estimation.
One of the early popular methods in this direction is Deep-
Phys [3]. This model is trained on many facial videos in a
supervised fashion, where ground truth blood volume pulse
was used as the label. The key idea is to use separate
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Figure 3. Subject participating in a silly song (T6) task

branches for modeling motion and appearance. The lat-
ter branch aids the former by providing attention over fa-
cial pixels. Similarly, a more recent method MTTS-CAN
[17] used the attention mechanism in conjunction with Tem-
poral Shift Modules [16] to achieve real-time performance
on the task. In [23], the authors demonstrated an effec-
tive method to disentangle spatio-temporal representation
of the video called MSTmaps into noisy signals and phys-
iological signals. In summary, deep learning methods have
demonstrated reliable performance on datasets containing
relatively stable physiological signals. In the V4V chal-
lenge, we introduce a dataset in which the physiological sig-
nals vary significantly due to the elicitation of spontaneous
emotions.

3. V4V dataset curation

As part of the V4V challenge, we curated a database
called the V4V dataset by carefully selecting subjects from
the Multimodal Spontaneous Emotion database (BP4D+)
[37] along with a number of new subjects that are collected
as BP4D+ extension. In this section, we describe the data
collection process, distribution of subjects, and data anno-
tation process used for creating the V4V dataset. In this
section, we also describe the significance of the dataset for
V4V challenge since the dataset contains challenging vari-
ations in the physiological signals induced through emotion
elicitation.

3.1. Data collection and annotation

The V4V dataset was curated with the goal of obtaining
a large-scale emotional corpus for human behavioral and
physiological analysis. The dataset is collected at Bingham-
ton University and includes subjects of age groups rang-
ing from 18 to 66. It has subjects from diverse ethnic-
ities/racial ancestries - African American, White, Asian
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Figure 4. Distribution of videos according to the ethnicity of sub-
ject for train, validation, and test subjects.

(East and Middle-east), Hispanic/Latino, Native American.
There are 179 subjects in total with a maximum of 10 ex-
perimental tasks per subject. Each task was specifically de-
signed to induce specific emotions among participants.

For recording the facial videos of each subject, a 3D Dy-
namic imaging system (Di3D) was used. All the videos
were recorded with a resolution of 1040 x 1392 pixels and
a fixed frame rate of 25 FPS in portrait mode. The Di3D
system also has a symmetric lighting system that is used as
the light source for capturing the videos. A board has been
placed in the background while recording the video to limit
any background motion and noise.

For collecting human physiological data, the Biopac
MP150 system was used. The specification of the device
is as follows:

* Blood pressure: For monitoring the blood pressure,
Biopac NIBP100D system with a measurement range
of (-25mmHg, 300mmHg) was used. It contains a fin-
ger unit and an inflatable cuff that can be placed on the
arm to measure blood pressure. The device recorded
high-quality measurements of systolic and diastolic
blood pressure and also recorded the continuous blood
pressure waveform at 1000Hz.

¢ Heart Rate (HR) measurement: We used off-the-shelf
software called Biopac AcqKnowledge to derive HR
measurement from the continuous blood pressure sig-
nal. This was achieved by performing noise removal,
followed by peak-to-peak time calculation. The soft-
ware used an HR range preset to (40, 180) beats-per-
min. The HR signal is then downsampled and synchro-
nized with each frame.

* Respiration Rate (RR) measurement: The respiratory
signal was captured by using the Biopac Respiration
Belt. Similar to the extraction of HR, we used the
Biopac Acgknowledge software to extract the respi-

Table 2. Ten tasks and the target emotion

Task Activity performed Emotion induced
T1 Funny joke Happiness
T2 Watch 3D avatar of self Surprise
T3 911 emergency call Sadness
T4 Sound Surprise
T5 True / False question Skepticism
T6 Silly song Embarrassment
T7 Dart threat Fear
T8 Cold presser Pain
T9 | Complaining against participant Angry

T10 Odor experience Disgust

Table 3. V4V Dataset: Data split

Data Fold Numper of Number of Average. video
subjects Videos length (in sec)
Train 100 724 44.2
Validation 39 276 42.9
Test 40 358 45.8

ration rate of the subject by computing peak-to-peak
time with RR range preset to (4, 20) breaths-per-min.

In order to synchronize the camera and physiological de-
vices, a controller was used to trigger the start of video cap-
ture and physiology measurement simultaneously.

3.2. Emotion elicitation protocol of the V4V dataset

Each subject participated in 10 different tasks that were
carefully designed to evoke a specific emotion. It is known
that an increased emotional activity often alters the human
physiological signals [34]. For example, fear arousal spon-
taneously increases the heart rate and respiration rate of a
subject. To achieve this goal, a skilled interviewer was hired
to conduct the tasks.

As shown in Table 2, the tasks included interpersonal
communication, film watching, cold pressure, and physical
activities. There is also a smooth transition in the emotions
induced across the 10 tasks. There was a brief pause be-
tween any two tasks for self-reporting purposes.

First, the interviewer ensured that the participant felt
comfortable and relaxed at the start of data collection by
advancing a joke (T1). Then the subject was shown their
own 3D avatar to invoke the feeling of surprise (T2). Next,
the T3 task required participant to watch a short film of a
911 emergency call to elicit a feeling of sadness. In the
T4 task, a loud noise was played to startle and surprise the
participant. The interviewer then induced skepticism by ad-
vancing a question (T5), followed by arousal of embarrass-
ment when the subject was required to conduct a silly task
(T6). In the T7 task, the interviewer invoked fear in the par-
ticipant by threatening to throw a dart at the subject. In T8,
the participant was required to submerge their hand into the
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Figure 5. Distribution of videos according to subject gender for
train, validation, and test splits.

ice water which invoked physical pain. The interviewer pre-
tended that the participant demonstrated poor performance
in task T8 and complained to the participant to evoke anger
(T9). In the final task, T10, the subject experienced a smelly
odor to evoke the feeling of disgust. At the end of each task,
the subject was asked to report the emotions experienced
from a list of choices and also rate the emotional intensity
in a 5-point rating style.

Owing to the carefully designed emotion elicitation, the
V4V dataset contains challenging intra-video physiological
variations. Further, due to the nature of the tasks T6-T10,
they often are associated with large head movements (> 10
deg) adding an additional element of challenge for physio-
logical estimation. Therefore, V4V dataset offers desirable
elements for benchmarking approaches effectively.

3.3. Post-processing

After creating the ground truth, we eyeballed each of
the heart rate and respiration rate sequences to discard any
video that had noisy readings, e.g. Shaking the contact-
based device during emotion elicitation tasks. We ensured
that every video had exactly 1 HR and 1 RR reading per
frame of the video after aligning the physiological signals.
After processing the data as described, we obtained 179
subjects and 1358 videos with heart rate and respiration rate
readings.

3.4. V4V Challenge phases and dataset split

The 1st V4V challenge was organized in two phases. In
the first phase, the participants used the validation set to
improve performance of their methods, and in the second
phase, the participants evaluated their method on the test
set. A public leaderboard was maintained in both the phases
indicating scores obtained by the methods on the evaluation
metrics described in Sec. 4.

As shown in Table 3, we used 1000 videos in phase 1 of
the challenge where the training set included 724 videos and

validation set included 276 videos. At the start of phase-1,
we released the training dataset and validation set videos.
The training set contains the compressed videos, heart rate
signal, respiration rate signal, and raw 1000 Hz blood pres-
sure waveform. At the start of phase-2, we released the test
set videos (a total of 358 videos) and validation-set ground
truth as well.

In order to ensure that the methods performed fairly
across different population groups, we used gender and eth-
nicity information self-reported by the subjects to create the
data folds. Fig. 4 shows the ethnic distribution of subjects
of train, validation, and test set. We tried to balance the eth-
nic distribution keeping them similar across the data splits
to avoid the biases brought by skin tone and affective at-
tributes. Fig. 5 presents the distribution of videos according
to the gender of the subject, which has been adjusted to have
near-balanced distribution, with the number of female sub-
jects slightly more than the number of male subjects in the
train and validation set.

4. Evaluation metrics

In the existing literature, Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Pearson Correla-
tion Coefficient (R) have been used commonly for evaluat-
ing the efficacy of the proposed method. The caveat is that
almost all of the existing works construct 30-second non-
overlapping segments and predict a single HR/RR value per
segment. While this is a good measure of the performance
of the method, it has some potential drawbacks.

Unlike other physiological datasets, the V4V dataset
consists of short video clips that have significant intra-video
variations in the HR and RR (as seen in Fig. 2 and Fig. 3)
for the duration of the video. Therefore, an accurate method
should be able to predict HR and RR at a more fine-grained
frame-level rather than at a segment-level. Further, contact
based devices predict the heart rate continuously, instead of
one prediction for every 30s. This is especially useful in di-
agnosing Atrial fibrillation (Afib) [26] which is associated
with high Heart Rate Variability. Based on these observa-
tions, we propose a metric that computes error by taking
into account the frame-level HR/RR.

In the 1st V4V challenge, we employ the following three
metrics - MAE, RMSE, and R - at a frame-level rather than
at segment-level. We denote these granular evaluation met-
rics as cMAE, cRMSE, and cR respectively.

fAp — SilHR — HE| o
N
TR _ 12
cRMSE = \/(EZ|HRZN HA) )

cR = PearsonCorrelation(f{—R, HR) 3)

2764



Table 4. Results obtained on the V4V dataset (test set) sorted by
cMAE (lower is better )

Approach cMAE (}) | cRMSE (]) | cR (1)
Stent et. al [30] 9.22 14.18 0.47
Hill et. al [9] 9.37 14.59 0.44
Kossack et. al [11] 10.15 15.38 0.44
Ouzar et. al [25] 11.60 14.90 0.20
Baseline (Green [32])| 15.45 20.73 [ 0.05 |

where H R; is the ground truth heart rate of the frame ¢
in the test set, f[?{z is the predicted heart rate for the frame
i in the test set and N is the total number of frames in the
test set. Similarly, we define equivalent evaluation metrics
for Respiration Rate using RR; and ﬁz

5. Methods used in the V4V challenge

There were four teams that participated in the V4V chal-
lenge. In Table. 4 results obtained by different teams and a
baseline (Green) method [32, 20] have been listed.

5.1. Estimating Heart Rate from Unlabelled Video

Stent et. al [30] use a self-supervised approach based on
[7] to overcome challenges that are typically faced by a su-
pervised approach such as imprecise and noisy data collec-
tion owing to complex ground truth capturing setup, propri-
etary hardware computations, etc. Further, by virtue of the
self-supervised nature of the proposed method, it can also
tackle any domain shift problem that arises during the test
phase. First, an image of size 192x 128 is extracted by us-
ing a face detector [36] and padded with an additional 25%
buffer. Then a PPG estimator consisting of 3DCNN [35] is
used to extract the rPPG signal.

The core idea of this approach is to formulate a self-
supervised framework by utilizing a video resampling mod-
ule to augment the dataset with new heart rate labels. E.g.,
the heart rate of the subject can be increased by squeezing
video. Similarly, stretching the video decreases the heart
rate. The module is not only used to increase/decrease the
heart rate by controlling the speed for video, but it is also
used to resample the output rPPG signal with corresponding
inverse frequency. Based on this idea, positive and negative
pairs are constructed for an effective contrastive learning
[8,2].

Owing to the self-supervised nature of the proposed
method, the method is able to train on the test samples
directly. The paper also implements several hand-crafted
tricks to further improve performance of the their method.
The authors employ specialist models to account for multi-
mode lighting conditions in the test set and also propose a
confidence model to mitigate errors caused by faulty PPG
prediction.

5.2. Beat-to-Beat Cardiac Pulse Rate Measurement
From Video

Hill et al. [9] proposed a hybrid-CAN-RNN framework
by incorporating a bi-directional GRU on the top of CAN
[17]. The original Hybrid-CAN has two branches: (1) the
appearance branch, and (2) the motion branch. The appear-
ance branch deploys 2D convolutions to extract the spatial
skin features. The temporal module leverages 3D convo-
lutions to capture the temporal relationships. An attention
module is used to bridge the connection between motion
and appearance branch, and the generated attention masks
make the network focus on the useful signals.

In addition, two layers of GRU (the first is bi-directional)
are used for learning the longer-term rPPG waveform tran-
sitions, and the reason is that the convolutional layers can
only capture local spatial and temporal features. Besides,
a synthesized dataset is used to improve the model gener-
alization ability, and other datasets such as AFRL [6] and
UBFC [1] are used for training. The variety of the training
data improves the model generalization ability, which helps
to deal with more complicated environmental biases.

5.3. LCOMS Lab’s approach to the Vision For Vi-
tals (V4V) Challenge

To model the spatial and temporal features concurrently,
Ouzar et al. [25] make use of the residual connected 3D
Depthwise Separable Convolution layers. The depth-wise
separable convolution significantly reduces the parameters
and saves the computational time, and achieves satisfactory
results. Moreover, their method can run in real-time both in
CPUs and GPUs.

Different from the others that directly feed the images
with the background to the deep networks, this paper uses
a precise face swapping-based segmentation method [21]
to exclude the background and only keep the facial regions.
The paper shows that most of the heart rate values are inside
the range of 70 BPM to 90 BPM. And to tackle this data im-
balance issue, they performed an offline data augmentation
to the sequences that have minority heart rate values.

Although the framework is end-to-end trainable and is
superior in speed and simplicity, the basic idea is still treat-
ing each task as a one-stage regression problem. The model
predicts one average heart rate value in two seconds video
segment. Proposing a solution to predict frame-wise heart
rate (e.g. combining frame-specific features with segment
features) can be a future work of this paper.

5.4. Automatic region-based heart rate measure-
ment using remote photoplethysmography

Kossack et. al [11] utilize a popular classical method
called “plane orthogonal to skin” (POS) [33] to measure
the heart rate. The core idea of this V4V submission is
to extract a signal from the region of the face that has the
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strongest signature of rPPG in it. In order to achieve this
goal, the face region is divided into five subregions - fore-
head, right cheek, left cheek, nose, and the entire face is
considered as the fifth subregion. For each of these ROIs, a
score is computed and the ROI with the best score is used
to determine the heart rate of the subject.

First, POS projection is applied to each subregion to ex-
tract the rPPG signal followed by FFT and bandpass filter-
ing to obtain a power spectrum density for each subregion.
Next, a scoring function is designed for the determination
of the best region of interest. This function is dependant on
two parameters, (1) Maximum magnitude (M max) and (2)
Row wise sum of the correlation matrix of 5 rPPG signals
(Csum). The sum of Mmax and C'sum yields the final
score which is used to determine the best region of interest.
Since this method does not take a deep learning approach,
the method can be used directly on the test set.

5.5. Results

Various approaches are evaluated for cMAE, cRMSE, cR
as shown in the Table 4. It is interesting to note that the self-
supervised formulation used by [30] is on top of the leader-
board demonstrating good performance on continuous eval-
uation metrics. However, their approach also involves care-
fully handcrafted tricks. The method presented in [9] used
additional datasets for training and obtained cMAE of 9.37.
All participants chose to participate only in the HR sub-
challenge. In summary, the results obtained by different
methods indicate that continuous prediction is still a chal-
lenging task and there is scope for further improvements.

6. Conclusion

In this paper, we have presented the first Vision-for-
Vitals challenge for benchmarking the performance of dif-
ferent rPPG methods on a newly curated large-scale dataset
called V4V dataset. The dataset contains desirable attributes
necessary for benchmarking various approaches including
challenging elements such as spontaneous behavior and var-
ied HR/RR signals. Further, in order to benchmark different
methods effectively, we evaluate various approaches using
granular frame-level error metrics rather than segment-level
error metrics employed by previous methods. The results
show that there is room for further improvement in methods
and evaluation protocols used for non-contact video-based
human physiological estimation.
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