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Abstract

Visual attention mechanisms are a key component of neu-
ral network models for computer vision. By focusing on
a discrete set of objects or image regions, these mecha-
nisms identify the most relevant features and use them to
build more powerful representations. Recently, continuous-
domain alternatives to discrete attention models have been
proposed, which exploit the continuity of images. These ap-
proaches model attention as simple unimodal densities (e.g.
a Gaussian), making them less suitable to deal with images
whose region of interest has a complex shape or is com-
posed of multiple non-contiguous patches. In this paper,
we introduce a new continuous attention mechanism that
produces multimodal densities, in the form of mixtures of
Gaussians. We use the EM algorithm to obtain a clustering
of relevant regions in the image, and a description length
penalty to select the number of components in the mixture.
Our densities decompose as a linear combination of uni-
modal attention mechanisms, enabling closed-form Jaco-
bians for the backpropagation step. Experiments on visual
question answering in the VQA-v2 dataset show competitive
accuracies and a selection of regions that mimics human at-
tention more closely in VQA-HAT, substantiating the impact
of the structure induced by our visual prior. We present sev-
eral examples that suggest how multimodal attention maps
are naturally more interpretable than their unimodal coun-
terparts, showing the ability of our model to automatically
segregate objects from ground in complex scenes.

1. Introduction
Visual attention mechanisms are an important compo-

nent of deep learning models [26, 1, 22, 28]. They appear as
a way to mimic the human visual system, which selectively
attends to the most relevant parts of visual stimuli, enabling
processing large amounts of information in parallel [19].

A neural network with an attention mechanism automat-
ically learns the relevance of any element of the input by
generating a set of weights and taking them into account
while performing the proposed task. In addition to boosting
the performance of a model, attention mechanisms can pro-
vide insights into the model’s decision process, being suit-
able for interpretability purposes [25, 5]. In particular, the
visualization of attention weights can help us analyze the
outputs of a neural network and possibly understand some
unpredictable outcomes [8].

Most models for visual attention operate over discrete
domains, where images are split into a finite set of regions
or pixels [26, 1, 22, 28]. However, this sometimes leads to
lack of focus, where the attention distribution over the im-
age becomes too scattered. Discrete attention mechanisms
disregard the fact that images are inherently “continuous”
objects. Recently, continuous attention mechanisms have
been proposed [14], which are able to attend over continu-
ous domains and to select compact regions of interest in the
image, such as ellipses. Nevertheless, this approach (which
we review in §2) is limited in which it models attention with
a simple unimodal density, making it less suitable to deal
with images whose region of interest has a complex shape
or is composed of multiple non-contiguous patches.

In this paper, we address the limitation above by intro-
ducing multimodal continuous attention mechanisms, in
the form of mixtures of unimodal distributions (§3). These
mechanisms are able to generate more flexible attention
maps while enjoying the best properties of their unimodal
counterparts. In particular, we inject prior knowledge as
structural bias, restricting the attention density to a mixture
of Gaussians. We use the Expectation-Maximization (EM)
algorithm to obtain a clustering of relevant regions in the
image (§4), and we apply a description length penalty to
select the number of components in the mixture (§5). Cru-
cially, our densities decompose as a linear combination of
unimodal attention mechanisms, enabling tractable and ef-
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Figure 1. Examples of attention maps for VQA. Left: discrete attention. Middle: Unimodal continuous attention. Right: Multimodal
continuous attention (ours). For continuous attention models, we identify the means of the Gaussians with black dots.

ficient forward and gradient backpropagation steps.
Our experiments in visual question answering show

competitive accuracy results in the VQA-v2 dataset [10]
(§6). More compelling is the fact that the proposed mod-
els lead to more interpretable decisions, being able, for
example, to attend to multiple objects without becoming
overly unfocused, as illustrated by the example in Fig-
ure 1. To obtain a quantitative measure of how well artificial
models represent human attention, we use the VQA-HAT
dataset [5]. We conclude that the attention maps provided
by the proposed models lead to an overall higher similarity
than the ones obtained with discrete or unimodal continu-
ous attention, confirming that the structure induced by our
visual prior is appropriate.1

2. Continuous attention
2.1. Discrete attention

Attention mechanisms are typically discrete [2, 26]. In
vision applications, the starting point is an input image from
which L feature vectors in RD are extracted (e.g., grid-
level or object-level representations), leading to a feature
matrix V ∈ RD×L. Given some conditioning context (for
example a question in natural language), a score vector
f = [f1, . . . , fL]

⊤ ∈ RL is computed, where high scores
correspond to more relevant parts of the input. These scores
are converted into a probability vector p ∈ △L (the atten-
tion weights), where △L := {p ∈ RL | 1⊤p = 1,p ≥ 0}
is the L-dimensional probability simplex, typically via a
softmax transformation, p = softmax(f). Finally, the
probability vector is used to compute a weighted average
of the input (known as the context vector), c = V p ∈ RD,
that is used to produce the network’s decision (for example,
an answer to the question).

While discrete attention mechanisms are very flexible,
since they allow arbitrary probability mass functions over
the input features, this flexibility can be harmful, resulting

1Our code is available at https://github.com/deep-spin/
vqa-multimodal-continuous-attention.

sometimes in attention maps that are too scattered and lack
focus – this may affect prediction accuracy and result in
poor interpretability.

2.2. Continuous attention

To avoid the shortcoming above, Martins et al. [14] in-
troduced continuous attention mechanisms, where images
are represented as smooth functions in 2D, instead of being
split into regions in a grid.

Feature function. In this framework, instead of the fea-
ture matrix V ∈ RD×L above, the image is represented as
a continuous feature function V : R2 → RD, where each
point in the R2 plane is assigned a vector representation.
This function is linearly parametrized as

VB(x) = Bψ(x), (1)

where x = [u, v]⊤ are coordinates in the image, ψ :
R2 → RN are N bivariate Gaussian radial basis functions
(RBFs) with different means and covariance parameters,
and B ∈ RD×N are parameters fit with ridge regression
(see [14, §3.1] for details). If N ≪ L (fewer basis functions
than regions), the continuous representation of the image is
more compact than the discrete feature matrix.

Score function and attention density. Likewise, the
score vector f = [f1, . . . , fL]

⊤ above is replaced by a
quadratic score function f : R2 → R, defined as

f(x) = −1

2
(x− µ)⊤Σ−1(x− µ), (2)

where µ ∈ R2 is a location parameter and Σ ≻ 0 is a posi-
tive definite matrix in R2×2. This way, relevance is directed
to a single location in the image (specified by µ) and it has
an elliptical shape, determined by Σ. The score function is
mapped to a probability density p : R2 → R+ via a reg-
ularized prediction mapping [4]. With an entropy regular-
izer, this results in a Gibbs distribution p(x) ∝ exp(f(x)),
which for quadratic scores leads to a Gaussian density,
p(x) = N (x;µ,Σ).
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Evaluation and gradient backpropagation. In contin-
uous attention mechanisms, the output weighted average
(context vector) is written as the expectation of the feature
function with respect to the probability density,

c = Ep[VB(x)] = B

∫
R2

p(x)ψ(x) ∈ RD, (3)

where we used (1). If ψ(x) are Gaussian RBFs and p(x) is
a Gaussian, expression (3) becomes the integral of a product
of Gaussians, which has a closed form. The backpropaga-
tion step can be done either with automatic differentiation or
by using a covariance expression to compute the Jacobians
∂c/∂µ and ∂c/∂Σ [14, §3.2].

3. Multimodal continuous attention

In this paper, we extend the continuous attention frame-
work described in §2.2 to multimodal distributions. This
is done by letting the attention density be a mixture of uni-
modal distributions pk : R2 → R+, for k ∈ {1, . . . ,K}:

p(x) =

K∑
k=1

πkpk(x), (4)

where π = [π1, . . . , πK ]⊤ ∈ ∆K are mixing coefficients,
defining the weight of each component of the mixture. We
let each pk(x) be a Gaussian distribution, so that p(x) be-
comes a mixture of Gaussians; we discuss below possible
methods for obtaining the mixing coefficients π. By doing
this, we increase the expressive power of continuous atten-
tion mechanisms: by using a sufficient number of Gaus-
sians and adjusting the parameters of the mixture, almost
any continuous density can be approximated to arbitrary ac-
curacy [3, §2.3.9].

Forward step. Using (3) and invoking the linearity of ex-
pectations, we can compute the output of the multimodal
attention mechanism as

c = Ep[Bψ(x)] =

K∑
k=1

πk Epk
[Bψ(x)]︸ ︷︷ ︸
ck

=

K∑
k=1

πkck, (5)

where each ck is the context representation after applying
each individual (unimodal) attention mechanism; i.e., c is a
mixture of the context representations for each compo-
nent.

Backpropagation step. The backpropagation step for the
multimodal case is also simple, since it decomposes into a
linear combination of unimodal attention mechanisms, each
of which has a simple/closed-form Jacobian.

Relation to multi-head attention. Our multimodal at-
tention has some resemblances with multi-head attention
mechanisms [24], if we regard each component of the mix-
ture as if it were a different attention head. Note, how-
ever, that our construction differs from multi-head attention,
where the projection matrices learned as model parameters
are head-specific. On the contrary, we assume thatB in (5)
is fixed, i.e., it does not depend on k. This avoids head-
specific computations and enables a probabilistic interpre-
tation of the resulting density as a mixture of densities.

How can we estimate the parameters of the attention
density? To choose the mixing coefficients π, along with
the means (µk)

K
k=1 and covariance matrices (Σk)

K
k=1 of

each component of the mixture, we start from a given set
of observed image locations along with their importance
weights {(xℓ, wℓ)}Lℓ=1. Intuitively, the higher the weight,
the more important the contribution of that specific region
should be to the network’s decision. To parametrize the at-
tention density as a simple unimodal distribution, it is pos-
sible to use moment matching. For multimodal distribu-
tions, we can think of this problem as that of fitting a mix-
ture model to weighted data. In that context, we have to
deal with two different issues: how to estimate the number
of components, which we discuss in §5, and how to esti-
mate the parameters defining the mixture model. A popular
choice to address the second problem is the EM algorithm,
which seeks a maximum likelihood estimate of the mixture
parameters and is guaranteed to converge to a local maxi-
mum [6, 16]. If pk is a Gaussian, we can easily adapt the
EM algorithm to deal with weighted data (e.g., discrete at-
tention weights and corresponding grid locations), so that
we can estimate the full set of parameters of a mixture of
Gaussians – defining a multimodal attention density, p(x).
This is described in detail in the next section.

4. The EM algorithm for mixtures of Gaussians

The EM algorithm is the standard method to estimate
the parameters defining a mixture model. It starts with an
initial estimate for the parameters of the mixture and itera-
tively updates them until convergence or up to a predefined
number of iterations (see [16] for a detailed exposition). In
this paper, we assume that each component of the mixture is
a Gaussian, i.e., the multimodal attention density p(x) takes
the form of a mixture of Gaussians.

4.1. EM with weighted data

Let X = {(x1, w1), . . . , (xL, wL)} be the observed data
along with their weights. In our approach, each xℓ ∈ R2 is
the center of a grid region, and wℓ ∈ [0, 1] is the correspond-
ing discrete attention weight. Our goal is to maximize the

1049



likelihood function

L(Θ) =

L∑
ℓ=1

wℓ log p(xℓ | Θ), (6)

where Θ = {(πk,µk,Σk)}Kk=1. We adapt the EM algo-
rithm for mixtures of Gaussians to handle weighted data,
by changing the way the parameters are re-estimated at each
iteration. The algorithm goes as follows:

1. Initialize the parameters {πk,µk,Σk}Kk=1 and eval-
uate the initial value of the weighted log-likelihood
function:

L(Θ) =

L∑
ℓ=1

wℓ log

{
K∑

k=1

πkN (xℓ;µk,Σk)

}
, (7)

where the log-likelihood of each point is multiplied by
the correspondent weight.

2. E step. Evaluate the responsibilities using the current
parameter values:

γℓk =
πkN (xℓ|µk,Σk)∑K
j=1 πjN (xℓ|µj ,Σj)

. (8)

3. M step. Re-estimate the parameters using the current
responsibilities:

πnew
k =

L∑
ℓ=1

wℓγℓk, (9)

µnew
k =

1

πnew
k

L∑
ℓ=1

wℓγℓkxℓ, (10)

Σnew
k =

1

πnew
k

L∑
ℓ=1

wℓγℓk(xℓ − µnew
k )(xℓ − µnew

k )⊤.

(11)

4. Re-evaluate the weighted log-likelihood (7) using the
current parameter values and check for convergence of
either the parameters or the log likelihood. Return to
step 2 if the convergence criterion is not satisfied.

If the weight associated with each observation is the same,
i.e., wℓ = 1/L, we recover the usual expressions for the EM
algorithm.

4.2. Initialization

The EM algorithm requires an initial choice for the set of
parameters Θ = {πk,µk,Σk}Kk=1. This is a relevant issue
because EM is not guaranteed to converge to a global max-
imizer of the log-likelihood function, but rather a local one,
meaning that the final estimate depends on the initialization.
An effective strategy is to run EM multiple times with dif-
ferent random initializations and choose the final estimate
that leads to the highest likelihood [16].

5. Estimating the number of components
The maximum likelihood criterion cannot be used to es-

timate the number of components K in a mixture density:
If Mk is a class composed by all Gaussian mixtures with
K components, it is trivial to show that MK ⊆ MK+1 and
thus the maximized likelihood is a non decreasing function
of K, useless as a criterion to estimate K [7]. For this rea-
son, several model selection methods have been proposed
to estimate the number of components of a mixture [17,
Chapter 6]. We focus on penalized likelihood methods such
as the Bayesian Information Criterion (BIC, [21]) or the
Minimum Description Length (MDL, [20]), where the EM
algorithm is used to obtain different parameter estimates for
a range of values of k, {Θ̂k, k = kmin, . . . , kmax}, and the
number of components is chosen according to

k⋆ = arg min
k∈{kmin,...,kmax}

C(Θ̂k, k), (12)

where C(Θ̂k, k) is a model selection criterion. We use a
criterion of the form

C(Θ̂k, k) = −2 log p(X|Θ̂k) + P(k), (13)

where P(k) is an increasing function penalizing higher val-
ues of k (e.g., PBIC(k) = k log n, where n is the number
of data points). For the weighted data scenario presented in
§4.1 we cannot use the number of points; thus, we write

P(k) = λ k, (14)

where λ > 0 is an hyperparameter obtained using cross-
validation. The resulting model selection criterion,

C(Θ̂k, k) = −2 log p(X|Θ̂k) + λ k, (15)

will be used in §6 to estimate the number of components in
a multimodal continuous attention density.

Attention model. Using the results of the previous sec-
tion, we model each attention density as a K-component
mixture of Gaussians. At training time, we pick the number
of components randomly from a uniform distribution, up
to a predefined maximum. This way we expose the model
to different numbers of components, maintaining the sim-
plicity of the training procedure without added runtime. At
test time, we select the optimum K⋆ from a set of possi-
ble choices, using the model selection criterion (15). See
Algorithm 1 for pseudo-code. (Although we consider mul-
tiple random initializations along with the model selection
criterion, we omit this step in the algorithm, for simplicity.)

Our extension from unimodal to multimodal continuous
attention does not increase the number of neural network
parameters. Thus, in practice, it is possible to leverage the
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Algorithm 1: Multimodal continuous attention with Gaussian RBFs. During training, we pick the number of
components randomly and apply WeightedEM, followed by MultimodalAttention. At test time, we apply
ModelSelection in between the previous functions to select the number of components.

Parameters: Centers of grid regions and their weights X = {(xℓ, wℓ)}Lℓ=1, initialization Θ(K) = {(πk,µk,Σk)}Kk=1, number
of iterations I , Gaussian RBFs ψ(x) = [N (x;µj ,Σj)]

N
j=1, value function VB(x) = Bψ(x).

Function WeightedEM(X ,Θ(K), I):
for i← 1 to I do

for ℓ← 1 to L do
for k ← 1 to K do

γℓk ← πkN (xℓ|µk,Σk)∑K
j=1 πjN (xℓ|µj ,Σj)

// (8)

for k ← 1 to K do
πk ←

∑L
ℓ=1 wlγℓk // (9)

µk ← 1
πk

∑L
ℓ=1 wℓγℓkxℓ, Σk ← 1

πk

∑L
ℓ=1 wℓγℓk(xℓ − µk)(xℓ − µk)

⊤ // (10), (11)
return Θ = {(πk,µk,Σk)}Kk=1

Function ModelSelection(X , {Θ(k)}kmax
k=1 , I, λ):

for k ← 1 to kmax do
Θ̂k ← WeightedEM(X ,Θ(k), I)

log p(X|Θ̂k)←
∑L

ℓ=1 wℓ log
{∑K

k=1 π̂kN (xℓ|µ̂k, Σ̂k)
}

, C(Θ̂k, k)← −2 log p(X|Θ̂k) + λ k // (7), (15)

k⋆ = arg mink{C(Θ̂k, k)} // (12)
return k⋆, Θ̂k⋆

Function MultimodalAttention(VB , Θ = {(πk,µk,Σk)}Kk=1):
for k ← 1 to K do

rkj ← Ep[ψj(x)] = N (µk,µj ,Σk +Σj), ∀j ∈ [N ] // [14, §3]

ck ← Brk // (3)

c←
∑K

k=1 πkck // (5)
return c (context vector)

learned representations from a pretrained model using either
discrete or unimodal continuous attention mechanisms (e.g.
discrete or continuous softmax) and fine-tune it with our
multimodal attention densities. This allows us to model the
attention distribution as an expressive density function that
could not be properly modeled using a single Gaussian.

6. Experiments
6.1. Visual Question Answering

Dataset and metrics. We use the VQA-v2 dataset [10]
with the standard splits (443K, 214K, and 453K question-
image pairs for train/dev/test, the latter subdivided into test-
dev, test-standard, test-challenge and test-reserve). We re-
port results in terms of accuracy in the test-dev and test-
standard splits. All the models we experiment with are
trained only on the train split, without data augmentation.

Architecture. We adapt the implementation of the
encoder-decoder version of the Modular Co-Attention Net-
work (MCAN, [27]),2 and represent the image input with

2https://github.com/MILVLG/mcan-vqa

grid features generated by Jiang et al. [11], using a ResNet
pretrained on Visual Genome [13] that outputs a feature
map of size L × 2048, where L is the number of features
(L = 506 and Lmax = 608). To represent the ques-
tion words we use 300-dimensional GloVe word embed-
dings [18], yielding a feature matrix representation.

Attention models. We consider three different attention
models: discrete attention, unimodal continuous attention,
and multimodal continuous attention (ours). The discrete
attention model attends over a grid and uses the softmax
transformation to map scores into probabilities. For the con-
tinuous attention models, we normalize the image size into
the unit square [0, 1]2. Then, we transform the image into
a continuous function VB : R2 → RD using ridge regres-
sion, and fit a Gaussian (unimodal continuous attention) or
a mixture of Gaussians (multimodal continuous attention)
as the attention density. In the first case, we obtain µ and
Σ with moment matching; in the second case, we use the
method described in §3 – we set the maximum number of
components to kmax = 4 and, during training, we pick the
number of components randomly from a uniform distribu-
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ATTENTION Test-Dev Test-Standard
Yes/No Number Other Overall Yes/No Number Other Overall

Discrete softmax 86.76 52.90 60.78 70.59 86.91 53.22 61.10 70.94

Unimodal continuous 86.57 53.69 60.38 70.41 86.73 53.55 60.75 70.73
Multimodal continuous 86.62 53.23 60.46 70.42 86.88 53.31 60.79 70.79

Table 1. Accuracies of different models on the test-dev and test-standard splits of VQA-v2.

Figure 2. Examples of attention maps in the VQA-v2 dataset. Left: discrete softmax attention. Middle: unimodal continuous attention.
Right: Multimodal continuous attention (ours).

tion; at test time, we use 3 random initializations for each k
and apply the model selection criterion (15) to choose the
optimum number of components. In both cases, we use
N = 100 ≪ 506 Gaussian RBFs N (x; µ̃, Σ̃), with µ̃ lin-
early spaced in [0, 1]2 and Σ̃ = 0.001 · I. The number of
neural network parameters is the same in all attention mod-
els, both discrete and continuous.

Settings. All models are trained for a maximum of 15
epochs using the Adam optimizer [12] with a learning rate
of min(2.5t · 10−5, 5 · 10−4), where t is the epoch num-
ber. After 10 epochs, the learning rate is multiplied by 0.2
every 2 epochs. For continuous attention models, we use a
penalty of 0.01 in the ridge regression step. For multimodal
continuous attention, we perform 5 and 10 iterations of the
EM algorithm during training and testing, respectively. We
set λ = 5, which leads to the selection of K⋆ = 1 in 80.8%
of the examples, K⋆ = 2 in 12.4%, K⋆ = 3 in 4.4%, and
K⋆ = 4 in 2.4%.

Results. The results in Table 1 show similar accuracies
for all attention models with a slight overall advantage for
the discrete attention model. Note however that the multi-
modal and unimodal continuous attentions use much fewer
basis functions than image regions (N ≪ L = 506).

Attention visualization. We identify two main strengths
of multimodal continuous attention when compared to dis-
crete or unimodal continuous attention. First, previously
proposed continuous attention models face difficulties in

complex scenes (e.g., if there are multiple regions of in-
terest that are far from each other), due to being limited to
a single mode. In those cases, unimodal attention ellipses
become wide and less interpretable, assigning a high prob-
ability mass to a region that is not the most relevant one;
or they focus on a single region and completely disregard
the others. As suggested by Figure 1, multimodal atten-
tion densities tend to perform considerably better in such
situations, by increasing the number of components in the
attention mixture and adequately setting the mean and co-
variance matrix of each Gaussian component.

Another interesting case is illustrated by the example in
Figure 2. Although there is a single region of interest in
the image, its complex shape confuses the non-structured
and scattered discrete attention model. Besides, as a re-
sult of being overly focused, a simple Gaussian distribution
is not enough to fully encompass all the relevant objects
in the scene. By increasing the number of components in
the mixture, continuous attention models become capable
of more accurately segregate objects from ground, encom-
passing their actual shapes.

Comparing multimodal attention maps. Figures 3
and 4 illustrate how the model selection criterion (15) is
used to estimate the number of components in the attention
mixture. In the first example, when asked how many ze-
bras are facing left, our attention model chooses K⋆ = 3,
aligning the ellipses properly. It is interesting to see that by
decreasing or increasing the number of components in the
mixture, the attention map becomes less interpretable (see,
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Figure 3. Attention maps generated when answering the question: How many zebras are facing in the left direction? Our model
selection criterion chooses K⋆ = 3.

Figure 4. Attention maps generated when answering the question: How many trains? Our model selection criterion chooses K⋆ = 2.

for instance, that for K = 2 there is a distribution peak be-
tween two zebras, and for K = 4, we can clearly identify
one extra component with its mean located on the ground).
A similar analysis can be done for the example in Figure 4,
where our model opts to use only two components.

6.2. Human attention

To quantitatively evaluate how interpretable different at-
tention models are, we compare the attention distributions
obtained using different models with human attention. For
this purpose, we use the VQA-HAT dataset [5] that con-
tains human attention maps obtained through a deblurring
procedure: human annotators were presented with a blurred
image and a question about it, and were asked to progres-
sively sharpen the regions of the image that help them an-
swer the question correctly. In order to compare the at-
tention distributions with the human attention, we measure
the Jensen-Shannon (JS) divergence between them. This
metric was proposed in [15] and addresses the limitations
of order-based metrics like the Spearman’s rank correlation
used in [5], by taking into account the magnitude of the at-
tention distributions at a given spacial location.3

The results reported in Table 2 show that the attention
distributions obtained with multimodal continuous attention
mechanisms are more similar to human attention than the
ones obtained with discrete or unimodal continuous atten-
tion. These results suggest that our method is able to gener-
ate more human-interpretable attention maps.

3The output of all the attention models is strictly dense, assigning a
probability mass to every image feature. Since less relevant features are all
assigned a very small positive attention value, order-based metrics are less
suitable for measuring the similarity between attention distributions.

ATTENTION JS divergence ↓

Discrete softmax 0.64
Unimodal continuous 0.59
Multimodal continuous 0.54

Table 2. JS divergence between attention distributions obtained
with the different models and human attention.

Attention visualization. Figures 5, 6 and 7 illustrate how
the attention maps generated by different models relate to
human attention. To answer the questions, humans sequen-
tially look for regions in the image, until they found all the
information they need. Multimodal attention models repli-
cate this process by identifying multiple regions of interest.

7. Related work
EM algorithm for weighted data. Gebru et al. [9] pro-
posed to incorporate the weights into the model by ”observ-
ing x w times” and changing the log-likelihood function
accordingly: since N (x;µ,Σ)w ∝ N (x;µ,Σ/w), they
derive a new mixture model where w plays the role of preci-
sion. However, they focus on the case where the weights are
treated as random variables, which is different from ours.

Sparse continuous attention. Martins et al. [14] intro-
duced continuous attention mechanisms for 1D and 2D ap-
plications. Besides Gaussians, they consider densities with
sparse support (e.g., truncated paraboloids), establishing a
parallel with Tsallis-regularized prediction maps [23, 4]. In
our work, we restrict to Gaussian densities, which are sim-
pler and allow closed-form forward and backpropagation
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Figure 5. Attention maps generated when answering the question: Is the baby using the computer? Discrete attention (JS div. = 0.66),
unimodal continuous attention (JS div. = 0.66), multimodal continuous attention (JS div. = 0.60), human attention.

Figure 6. Attention maps generated when answering the question: What type of furniture is the cat sitting on? Discrete attention (JS
div. = 0.66), unimodal continuous attention (JS div. = 0.56), multimodal continuous attention (JS div.= 0.51), human attention.

Figure 7. Attention maps generated when answering the question: How many sheep are there? Discrete attention (JS div. = 0.68),
unimodal continuous attention (JS div. = 0.71), multimodal continuous attention (JS div. = 0.68), human attention.

steps. Furthermore, mixtures of Gaussians (the multimodal
extension we consider) are more amenable for use in soft
clustering with the EM algorithm, since they have tractable
and efficient expectation and maximization steps.

8. Conclusions and future work
We propose new continuous attention mechanisms that

produce multimodal densities in the form of mixtures of
unimodal distributions (e.g. a Gaussian) and show that they
decompose as a linear combination of unimodal attention
mechanisms, enabling tractable and efficient forward and
gradient backpropagation steps (§3). We use a weighted
version of the Expectation-Maximization (EM) algorithm to
obtain a selection of relevant regions in the image (§4), and
a penalized likelihood method to select the number of com-
ponents in the mixture (§5). Experiments on visual ques-
tion answering show that the selected regions mimic hu-
man attention more closely than previously proposed mod-

els, leading to more interpretable attention maps (§6).
There are several avenues for future research. We used

mixture of Gaussians only. However, it seems interesting to
consider mixtures of sparse family distributions (e.g. mix-
tures of truncated paraboloids) in which different compo-
nents may have disjoint supports. Another direction con-
sists in exploring our method in other vision tasks that re-
quire learning from images and video, which could equally
benefit from focusing on multiple objects simultaneously.
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