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Abstract

Few-shot learning has been a long-standing problem in
learning to learn. This problem typically involves training
a model on an extremely small amount of data and test-
ing the model on the out-of-distribution data. The focus of
recent few-shot learning research has been on the develop-
ment of good representation models that can quickly adapt
to test tasks. To that end, we come up with a model that
learns representation through online self-distillation. Our
model combines supervised training with knowledge distil-
lation via a continuously updated teacher. We also identify
that data augmentation plays an important role in produc-
ing robust features. Our final model is trained with CutMix
augmentation and online self-distillation. On the commonly
used benchmark miniImageNet, our model achieves 67.07%
and 83.03% under the 5-way 1-shot setting and the 5-way
5-shot setting, respectively. It outperforms counterparts of
its kind by 2.25% and 0.89%.

1. Introduction

Few-shot learning is a crucial problem in learning to
learn. In contrast to the common deep learning settings
where a large amount of training data is available, few-shot
learning often deals with scenarios where the training data
is scarce. So this problem boils down to how to design mod-
els that can quickly adapt to test tasks. Recently, RFS [22]
proposes a simple supervised-training baseline that outper-
forms meta-learning algorithms. It learns a representation
model on the joint set of training tasks and improves the
representations through self-distillation. The success of this
method indicates that a good embedding is more important
than sophisticated meta-learning algorithms.

However, RFS relies on a two-stage training pipeline
consisting of supervised training and self-distillation, which
reduces its practicability. To that end, we come up with a
one-stage method that incorporates supervised training and
knowledge distillation into a unified pipeline. The teacher

*: Equal contribution.

network in our model is an exponential moving average of
the student network and is continuously updated through the
training process. The student network is trained with a com-
bination of cross-entropy loss and self-distillation loss. Our
model is significantly simpler than RFS [22] and other vari-
ants. In addition, we identify that CutMix [25] can greatly
improve the representation model. Without bells and whis-
tles, our model achieves 67.07% under the 5-way 1-shot set-
ting and and 83.03% under the 5-way 5-shot setting on the
miniImageNet [3] dataset.

2. Preliminary

We establish preliminaries of few-shot learning by learn-
ing representation [22] in this section. First, we formu-
late the problem in §2.1. Then, we present the details of
RFS [22] in §2.2. For ease of comparison to previous work,
we use the same notation as [22].

2.1. Few-shot Learning formulation

In few-shot learning, the data consists of o a meta-
training set T = {(Dtrain

i ,Dtest
i )}Ii=1 and a meta-testing

set S = {(Dtrain
j ,Dtest

j )}Jj=1. The meta-training set and
the meta-testing set do not share the same categories. Each
task Dtrain

i contains a small number of samples. Dtrain =

{(xt, yt)}Tt=1 and Dtest = {(xq, yq)}Qq=1 are sampled from
the same distribution. A base learner A, given by y∗ =
fθ(x∗) , is trained on Dtrain and evaluated on Dtest. To re-
duce the dimensionality of x∗, training examples and testing
examples are mapped into a feature space by an embedding
model Φ∗ = fϕ(x∗). The objective of the few-shot learn-
ing algorithms is to learn a good embedding model, so that
the average test error of the base learner on a distribution of
tasks is minimized. This is given by,

ϕ = argmin
ϕ

ET [Lmeta(Dtest; θ, ϕ)], (1)

where θ = A(Dtrain;ϕ). Finally, the model is evaluated
over the distribution of the test tasks:

ES [Lmeta(Dtest; θ, ϕ)]. (2)
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2.2. Few-shot Learning by learning the representa-
tion

RFS [22] proposes a simple method to learn the repre-
sentation of the embedding model. Tasks from the meta-
training set are merged into a single classification task,
which is given by

Dnew = {(xi, yi)}Kk=1

= ∪{Dtrain
1 , . . . ,Dtrain

i , . . . ,Dtrain
I },

(3)

where Dtrain
i is the task from T . The embedding model is

ϕ = argmin
ϕ

Lce(Dnew;ϕ), (4)

and trained by optimizing a cross-entropy loss Lce.
In addition to this ordinary supervised training, RFS

also introduces a self-distillation stage to further improve
the representation. After obtaining the embedding model
ϕ, a new embedding model parameterized by ϕ′ is trained
to minimize a weighted sum of the cross-entropy loss be-
tween the predictions and ground-truth labels and the Kull-
back–Leibler divergence (KL) between predictions and soft
targets:

ϕ′ = argmin
ϕ′

(αLce(Dnew;ϕ′)+

βKL(f(Dnew;ϕ′), f(Dnew;ϕ))).
(5)

Conceptually, this step is a variant of self-distillation where
the teacher network and the student network have the same
model architectures.

Once the training is finished, the model is evaluated on
the meta-testing set. The base learner is trained on the task
Dtrain

j sampled from meta-testing distribution, given by

θ = argmin
{W ,b}

T∑
t=1

Lce
t (W fϕ′(xt) + b, yt) +R(W , b),

(6)

where the base learner is parameterized by θ = {W , b},
R is the L2 regularization, and the embedding model fϕ′ is
fixed.

3. Method
We will detail our method in this section. We introduce

the online self-distillation in §3.1. Then, we discuss one
special data augmentation technique – CutMix [25] in §3.2.

3.1. Few-Shot Learning with Online Self-
Distillation

We propose a training pipeline that combines supervised
training with self-distillation, in contrast to existing meth-
ods that consist of separate stages. We use ϕ and ϕ′ to de-
note the teacher network and the student network, respec-
tively. Instead of learning ϕ in a pre-training stage, our

Figure 1: Overview of online self-distillation. Back-
propagation and SGD are not performed in the fϕ branch.

Figure 2: Update rules of the teacher network fϕ.

method updates ϕ on-the-fly as well as distilling the knowl-
edge from ϕ to ϕ′ (Figure 1). Mathematically, we alternate
between these two steps:

ϕ′ = argmin
ϕ′

(αLce(Dnew;ϕ′)+

βKL(f(Dnew;ϕ′), f(Dnew;ϕ))),
(7)

and

ϕ = γϕ+ (1− γ)ϕ′ (8)

where γ = 0.99 controls the velocity of the parameter up-
date. Different from common machine learning models, ϕ
is not updated through gradient descent but direct parameter
update.

3.2. CutMix

We present a special data augmentation–CutMix [25]–
that improves few-shot learning performance. The goal of
CuxMix is to generate a new training example (x̄, ȳ) by
combining examples (xa, ya) and (xb, yb), given by

x̄ = M⊙ xa + (1−M)⊙ xb
ȳ = mya + (1−m)yb,

(9)
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miniImageNet 5-way

model backbone 1-shot 5-shot

MAML [6] 32-32-32-32 48.70 ± 1.84 63.11 ± 0.92
Matching Networks [23] 64-64-64-64 43.56 ± 0.84 55.31 ± 0.73
IMP [1] 64-64-64-64 49.2 ± 0.7 64.7 ± 0.7
Prototypical Networks† [19] 64-64-64-64 49.42 ± 0.78 68.20 ± 0.66
TAML [9] 64-64-64-64 51.77 ± 1.86 66.05 ± 0.85
SAML [8] 64-64-64-64 52.22 ± n/a 66.49 ± n/a
GCR [11] 64-64-64-64 53.21 ± 0.80 72.34 ± 0.64
KTN(Visual) [15] 64-64-64-64 54.61 ± 0.80 71.21 ± 0.66
PARN[24] 64-64-64-64 55.22 ± 0.84 71.55 ± 0.66
Dynamic Few-shot [7] 64-64-128-128 56.20 ± 0.86 73.00 ± 0.64
Relation Networks [21] 64-96-128-256 50.44 ± 0.82 65.32 ± 0.70
R2D2 [2] 96-192-384-512 51.2 ± 0.6 68.8 ± 0.1
SNAIL [12] ResNet-12 55.71 ± 0.99 68.88 ± 0.92
AdaResNet [13] ResNet-12 56.88 ± 0.62 71.94 ± 0.57
TADAM [14] ResNet-12 58.50 ± 0.30 76.70 ± 0.30
Shot-Free [17] ResNet-12 59.04 ± n/a 77.64 ± n/a
TEWAM [16] ResNet-12 60.07 ± n/a 75.90 ± n/a
MTL [20] ResNet-12 61.20 ± 1.80 75.50 ± 0.80
Variational FSL [26] ResNet-12 61.23 ± 0.26 77.69 ± 0.17
MetaOptNet [10] ResNet-12 62.64 ± 0.61 78.63 ± 0.46
Diversity w/ Cooperation [5] ResNet-18 59.48 ± 0.65 75.62 ± 0.48
Fine-tuning [4] WRN-28-10 57.73 ± 0.62 78.17 ± 0.49
LEO-trainval† [18] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12

RFS-simple ResNet-12 62.02 ± 0.63 79.64 ± 0.44
RFS-distill ResNet-12 64.82 ± 0.60 82.14 ± 0.43
Ours-online-distill (w/o CutMix) ResNet-12 64.33 ± 0.25 82.13 ± 0.17
Ours-online-distill ResNet-12 67.07 ± 0.26 83.03 ± 0.18
Ours-online-distill-trainval † ResNet-12 68.96 ± 0.26 84.22 ± 0.17

Table 1: Comparison to prior work on miniImageNet. Re-
sults reported with input image size of 84x84. † results ob-
tained by training on the union of training and validation
sets.

where M is a binary mask and ⊙ is element-wise multipli-
cation. m ∈ [0, 1] is sampled from a beta distribution. To
generate the binary mask M, we sample the bounding box
B = (rx, ry, rw, rh) where

rx ∼ Uniform(0,W ), rw = W
√
1−m

ry ∼ Uniform(0, H), rh = H
√
1−m.

(10)

The binary mask is produced by filling 0 within the bound-
ing box B, otherwise 1.

4. Experiment
Dataset. We conduct experiments on the widely used
benchmarks miniImageNet, CIFAR-FS, and FC100. mini-
ImageNet is a subset of ImageNet; it contains 64, 16,
20 categories for training, validation, and testing, respec-
tively. The CIFAR-FS and FC100 are both derivatives of the
CIFAR-100 dataset. CIFAR-FS has 64, 16, 20 categories
for training, validation, and testing while FC100 has 60, 20,
20 categories for training, validation, and testing.

Model. We use the same ResNet12 with MetaOptNet [10]
and RFS [22]. This ResNet contains four blocks, where
each block consists of three 3x3 convolutional kernels and
one 2x2 max pooling layer. A global average pooling layer

CIFAR-FS 5-way FC100 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

MAML [6] 32-32-32-32 58.9 ± 1.9 71.5 ± 1.0 - -
Prototypical Networks [19] 64-64-64-64 55.5 ± 0.7 72.0 ± 0.6 35.3 ± 0.6 48.6 ± 0.6
Relation Networks [21] 64-96-128-256 55.0 ± 1.0 69.3 ± 0.8 - -
R2D2 [2] 96-192-384-512 65.3 ± 0.2 79.4 ± 0.1 - -
TADAM [14] ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4
Shot-Free [17] ResNet-12 69.2 ± n/a 84.7 ± n/a - -
TEWAM [16] ResNet-12 70.4 ± n/a 81.3 ± n/a - -
Prototypical Networks [19] ResNet-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
MetaOptNet [10] ResNet-12 72.6 ± 0.7 84.3 ± 0.5 41.1 ± 0.6 55.5 ± 0.6

RFS-simple ResNet-12 71.5 ± 0.8 86.0 ± 0.5 42.6 ± 0.7 59.1 ± 0.6
RFS-distill ResNet-12 73.9 ± 0.8 86.9 ± 0.5 44.6 ± 0.7 60.9 ± 0.6
Ours-online-distill ResNet-12 76.18 ± 0.21 87.1 ± 0.2 45.43 ± 0.24 61.7 ± 0.3

Table 2: Comparison to prior work on CIFAR-FS and
FC100.

is included at the end of the model to produce global fea-
tures. The number of filters in each block is (64, 160, 320,
480). We use α = β = 0.5 to balance the weights of
the cross-entropy loss and the knowledge distillation loss.
For other hyperparameters including batch size, learning
rate and etc, we use the same configuration with RFS. The
model is trained totally for 200 epochs. We use CutMix
augmentation with m sampled from Beta(0.2, 0.2).

Results. As shwon in Table 1 and Table 2, our method
with CutMix achieves stage-of-the-art performance on all
settings; this indicates the effectiveness of incorporating
online self-distillation and CutMix. Without CutMix, our
method outperforms RFS (w/o distillation, one stage) and
is comparable to RFS (w/ distillation, two stage) while
our method only uses one-stage training. In addition, our
method uses the same evaluation protocol and does not in-
troduce any further computational overhead.

5. Conclusion

We propose a one-stage online self-distillation pipeline
for few-shot learning. Our method relies on distilling
knowledge from a momentum-updated teacher to a student.
Our method suggests that multi-stage self-distillation is not
imperative. We also identify that CutMix significantly im-
proves the representation. With these combined techniques,
our method achieves new state-of-the-art on the commonly
used datasets. We hope our method will shed new lights
into the few-shot learning research.
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