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Abstract

Scale is often seen as a given, disturbing factor in many
vision tasks. When doing so it is one of the factors why
we need more data during learning. In recent work scale
equivariance was added to convolutional neural networks.
It was shown to be effective for a range of tasks. We aim for
accurate scale-equivariant convolutional neural networks
(SE-CNNs) applicable for problems where high granularity
of scale and small kernel sizes are required. Current SE-
CNNs rely on weight sharing and kernel rescaling, the latter
of which is accurate for integer scales only. To reach accu-
rate scale equivariance, we derive general constraints un-
der which scale-convolution remains equivariant to discrete
rescaling. We find the exact solution for all cases where it
exists, and compute the approximation for the rest. The dis-
crete scale-convolution pays off, as demonstrated in a new
state-of-the-art classification on MNIST-scale and on STL-
10 in the supervised learning setting.

1. Introduction
Scale is a natural attribute of every object, as basic prop-

erty as location and appearance. Hence it is a factor in al-
most every task in computer vision. In image classification,
global scale invariance plays an important role in achiev-
ing accurate results [16]. In image segmentation and ob-
ject tracking, scale equivariance is important as the output
map should scale proportionally to the input [1, 27]. Where
scale invariance or equivariance is usually left as a property
to learn in the training of these computer vision methods by
providing a good variety of samples [20], we aim for accu-
rate scale analysis for the purpose of needing less data to
learn from.

Scale of the object can be derived externally from the
size of its silhouette, e.g [36], or internally from the scale
of its details, e.g [4]. External scale estimation requires the
full object to be visible. It will easily fail when the ob-
ject is occluded and/or when the object is amidst a cluttered
background, for example for people in a crowd [26], when
proper detection is hard. In contrast, internal scale estima-

tion is build on the scale of common details [25], for ex-
ample deriving the scale of a person from the scale of a
sweater or a face. Where internal scale has better chances
of being reliable, it poses heavier demands on the accuracy
of assessment than external scale estimation. We focus on
improvement of the accuracy of internal scale analysis.

We focus on accurate scale analysis on the generally
applicable scale-equivariant convolutional neural networks
[34, 3, 28]. A scale-equivariant network extends the equiv-
ariant property of conventional convolutions to the scale-
translation group. It is achieved by rescaling the kernel ba-
sis and sharing weights between scales. While the weight
sharing is defined by the structure of the group [9], the
proper way to rescale kernels is an open problem. In [3, 28],
the authors propose to rescale kernels in the continuous do-
main to project them later on a pixel grid. This permits the
use of arbitrary scales, which is important to many applica-
tion problems, but the procedure may cause a significant
equivariance error [28]. Therefore, Worrall and Welling
[34] model rescaling as a dilation, which guarantees a low
equivariance error at the expense of permitting only inte-
ger scale factors. Due to the continuous nature of observed
scale, integer scale factors may not cover the range of vari-
ations in the best possible way.

In the paper, we show how the equivariance error affects
the performance of SE-CNNs. We make the following con-
tributions:

• From first principles we derive the best kernels, which
minimize the equivariance error.

• We find the conditions when the solution exists and
find a good approximation when it does not exist.

• We demonstrate that an SE-CNN with the proposed
kernels outperforms recent SE-CNNs in classification
in both accuracy and compute time. We set new state-
of-the-art results on MNIST-scale and STL-10.

The proposed approach contains [34] as a special case.
Moreover, the proposed kernels can’t be derived from [28]
and vice versa. The union of our approach and the approach
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Figure 1. Left: the necessary constraint for scale-equivariance. When it is not satisfied an equivariance error appears. Ls is an operator of
downscaling, κ and κs−1 are the convolutional kernel and its transformed version. Right: Equivariance error vs. Classification error for
scale-equivariant models on MNIST-scale. DISCO achieves the lowest equivariance error and this leads to the best classification accuracy.
Alongside DISCO, we test SESN models with Hermite [28], Fourier [39], Radial [13] and B-Spline [3] bases.

presented in [28] covers the whole set of possible SE-CNNs
for a finite set of scales.

2. Related Work
Group Equivariant Networks In recent years, vari-
ous works on group-equivariant convolution neural net-
works have appeared. In majority, they consider the roto-
translation group in 2D [9, 10, 15, 35, 30, 32], the roto-
translation group in 3D [33, 17, 29, 6, 31], or the rota-
tion group in 3D [6, 12, 8]. In [7, 18, 19] the authors
demonstrate how to build convolution networks equivariant
to arbitrary compact groups. All these papers cover group-
equivariant networks for compact groups. In this paper, we
focus the scale-translation group which is an example of a
non-compact group.
Discrete Operators Minimization of the discrepancies
between the theoretical properties of continuous models and
their discrete realizations has been studied for a variety
of computer vision tasks. Lindeberg [21, 22] proposed a
method for building a scale-space for discrete signals. The
approach relied on the connection between the discretized
version of the diffusion equation and the structure of im-
ages. While this method considered the scale symmetry of
images and significantly improved computer vision models
in the pre-deep-learning era, it is not directly applicable to
our case of scale-equivariant convolutional networks.

In [11], Diaconu and Worrall demonstrate how to con-
struct rotation-equivariant CNNs on the pixel grid for ar-
bitrary rotations. The authors propose to learn the ker-
nels which minimize the equivariance error of rotation-
equivariant convolutional layers. The method relies on the
properties of the rotation group and cannot be generalized
to the scale-translation group. In this paper, we show how to
minimize the equivariance error for scale-convolution with-
out the use of extensive learning.
Scale-Equivariant CNNs An early work of [16] intro-
duced SI-ConvNet, a model where the input image is

rescaled into a multi-scale pyramid. Alternatively, Xu et al.
[37] proposed SiCNN, where a multi-scale representation
is built from rescaling the network filters. While these net-
works significantly improve image classification, they are
several orders slower than standard CNNs.

In [28, 3, 39] the authors propose to parameterize the fil-
ters by a trainable linear combination of a pre-calculated,
fixed multi-scale basis. Such a basis is defined in the con-
tinuous scale domain and projected on a pixel grid for the
set of scale factors. The models do not involve interpola-
tion during training nor inference. As a consequence, they
operate within reasonable time. The continuous nature of
the bases allows for the use of arbitrary scale factors, but
it suffers from a reduced accuracy as the projection on the
discrete grid causes an equivariance error.

Worral and Welling [34] propose to model filter rescal-
ing by dilation. This solves the equivariance error of the
previous method at the price of permitting only integer scale
factors. That makes the method less suited for object track-
ing, depth analysis and fine-grained image classification,
where subtle changes in the image scale are important in
the performance. Our approach combines the best of the
both worlds as it guarantees a low equivariance error for
arbitrary scale factors.

3. Method
Equivariance A mapping g is equivariant under a trans-
formation L if and only if there exists L′ such that g ◦ L =
L′◦g. If the mapping L′ is identity, then g is invariant under
transformation L.

Scale Transformations Given a function f : R → R its
scale transformation Ls is defined by

Ls[f ](t) = f(s−1t), ∀s > 0 (1)

We refer to cases with s > 1 as up-scalings and to cases
with s < 1 as down-scalings, where L1/2[f ] stands for a
function down-scaled by a factor of 2.
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Model Basis MNIST MNIST+ Equi. error # Params.

CNN - 2.02± 0.07 1.60± 0.09 - 495 K
SiCNN - 2.02± 0.14 1.59± 0.03 - 497 K
SI-ConvNet - 1.82± 0.11 1.59± 0.10 - 495 K
SEVF - 2.12± 0.13 1.81± 0.09 - 475 K
DSS Dilation 1.97± 0.08 1.57± 0.09 0.0 494 K
SS-CNN Radial 1.84± 0.10 1.76± 0.07 - 494 K

SESN Hermite 1.68± 0.06 1.42± 0.07 0.107 495 K
SESN B-Spline 1.74± 0.08 1.49± 0.05 0.163 495 K
SESN Fourier 1.88± 0.07 1.55± 0.07 0.170 495 K
SESN Radial 1.74± 0.07 1.55± 0.10 0.200 495 K

DISCO Discrete 1.52± 0.06 1.35± 0.05 0.004 495 K

Table 1. The classification error of various methods on the MNIST-scale dataset, lower is better. We test both the regime with and without
data augmentation, where scaling data augmentation is denoted by “+”. All results are reported as mean ± std over 6 different, fixed
realizations of the dataset. The best results are bold.

The scale-translation group We are interested in equiv-
ariance under the scale-translation group H and its sub-
groups. It consists of the translations t and scale trans-
formations s which preserve the position of the center.
H = {(s, t)} = S o T is a semi-direct product of a
multiplicative group S = (R+,+) and an additive group
T = (R,+). For the multiplication of its elements we have
(s2, t2) · (s1, t1) = (s1s2, s2t1 + t2). Scale transforma-
tion of a function defined on group H consists of a scale
transformation of its spatial part as it is defined in the Equa-
tion 1 and a corresponding multiplicative transformation of
its scale part. In other words

Lŝ[f ](s, t) = f(sŝ−1, ŝ−1t) (2)

3.1. Scale-Convolution

A scale-convolution of f and a kernel κ both defined on
scale s and translation t is given by: [28]:

[f ?H κ](s, t) =
∑
s′

[f(s′, ·) ? κs(s−1s′, ·)](·, t) (3)

where κs stands for an s-times up-scaled kernel κ, ? and ?H
are convolution and scale-convolution. The exact way the
up-scaling is performed depends on how the down-scaling
of the input signal works.

Scale-convolution is equivariant to transformations Lŝ

from the group H , therefore the following holds true by
definition:

[Lŝ[f ] ?H κ] = Lŝ[f ?H κ] (4)

Expanding the left and the right hand side of this relation
by using Equation 3, choosing s = 1 and replacing s′ → s′ŝ
we find:

Ls[f ] ? κ = Ls[f ? κs−1 ], ∀f, s (5)

The mapping defined by Equation 3 is scale-equivariant
only if a kernel and its up-scaled versions satisfy Equa-
tion 5. It states the necessary condition, the sufficient con-
dition was proved in [28, 3, 39].

3.2. Exact Solution

In the continuous domain, convolution is defined as an
integral over the spatial coordinates. [28, 3, 39] derives a
solution for Equation 5:

κs(t) = s−1κ(s−1t) (6)

However, when such kernels are calculated and projected
on the pixel grid, a discrepancy between the left-hand side
and the right-hand side of Equation 5 will appear. We refer
to such inequality as the equivariance error.

We aim at directly solving Equation 5 in the discrete
domain. In general, for discrete signals down-scaling is a
non-invertible operation. Thus Ls is well-defined only for
s < 1. We start by solving Equation 5 for 1-dimensional
discrete signals. The 2-dimensional solution can always be
constructed as a linear combination of separable functions.
Thus, the relation between these cases is bijective.

Let us consider a discrete signal f represented as a vector
f of length Nin. It is down-scaled to length Nout < Nin
by Ls, which is represented as a rectangular interpolation
matrix L of size Nout × Nin. A convolution with a kernel
κ is represented as a multiplication with a matrixK of size
Nout×Nout, and with a kernel κs−1 written as a matrixKs−1

of sizeNin×Nin. Then Equation 5 can be rewritten in matrix
form as follows:

KLf = LKs−1f , ∀f ⇐⇒ KL = LKs−1 (7)

Without loss of generality we assume circular boundary
conditions. Then the matrix representations K and Ks−1
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are both circulant and their eigenvectors are the column-
vectors of the Discrete Fourier Transform F [2]. The so-
lution with respect to κs−1 is the dilation of κ by factor s.
Such a solution also known as the à trous algorithm [14]:

(κs−1)is =
∑
i

F ∗ij(KLF )1j/(LF )1j = κi (8)

3.3. Approximate solution

Let us consider a scale-convolutional layer with a set of
scales {1,

√
2, 2, 2

√
2, 4, 4

√
2, . . . }. The set of correspond-

ing kernels is {κ1, κ√2, κ2, κ2
√
2, . . . }. As the smallest ker-

nel is known, all kernels defined on integer scales can be
calculated as its dilated versions. And, when kernel κ√2

is defined, all intermediate kernels κ2√2, κ4
√
2, . . . can be

calculated by using dilation as well. Thus, the only kernel
yet unknown is kernel κ√2.

The kernel κ√2 can be calculated as a minimizer of the
equivariance error based on the Equation 5 as follows:

κ√2 = arg minEf‖L[f ] ? κ1 − L[f ? κ√2]‖2F
+ ‖L[f ] ? κ√2 − L[f ? κ2]‖2F

(9)

where L = L1/
√
2 is a down-scaling by a factor

√
2.

To construct scale-equivariant convolution we
parametrize the kernels as a linear combination of a
fixed multi-scale basis calculated accroding to Equation 8,
Equation 9. The basis is then fixed and only correspond-
ing coefficients are trained. The coefficients are shared
for all scales. We refer to scale-convolutions with the
proposed bases as Discrete Scale Convolutions or shortly
DISCO. As DISCO kernels are sparse, they allow for lower
computational complexity.

4. Experiments
4.1. Equivariance Error

To quantitatively evaluate the equivariance error of
DISCO versus other methods for scale-convolution [28, 39,
3], we follow the approach proposed in [28]. In particular,
we randomly sample images from the MNIST-Scale dataset
[28] and pass in through the scale-convolution layer. Then,
the equivariance error is calculated as follows:

∆ =
∑
s

‖LsΦ(f)− Φ(Lsf)‖22/‖LsΦ(f)‖22 (10)

where Φ is scale-convolution with weights initialized ran-
domly.

The equivariance error for each model is reported in Ta-
ble 1 and in Figure 1. Note that we can not directly compare
against [34] as it only permits integer scale factors. As can
be seen, there exists a correlation between an equivariance
error and classification accuracy. DISCO model attains the
lowest equivariance error.

Model Basis STL-10 Time, s

WRN - 11.48 10
SiCNN - 11.62 110
SI-ConvNet - 12.48 55
DSS Dilation 11.28 40
SS-CNN Radial 25.47 15
SESN Hermite 8.51 165

DISCO Discrete 8.07 50

Table 2. The classification error on STL-10. The best results are in
bold. The average compute time per epoch is reported in seconds.

4.2. Image Classification

Alongside DISCO, we test SI-ConvNet [16], SS-CNN
[13], SiCNN [37], SEVF [23], DSS [34] and SESN [28].
We additionally reimplement SESN models with other
bases such as B-Splines [3], Fourier-Bessel Functions [39]
and Log-Radial Harmonics [13, 24].

MNIST-scale Following [28] we conduct experiments on
the MNIST-scale dataset. As a baseline model we use the
SESN model, which holds the state-of-the-art result on this
dataset. Both SESN and DISCO use the same set of scales
in scale convolutions: {1, 21/3, 22/3, 2} and are trained in
exactly the same way. As can be seen from Table 1, our
DISCO model outperforms other scale equivariant networks
in accuracy and equivariance error and sets a new state-of-
the-art result.

STL-10 To demonstrate how accurate scale equivariance
helps when the training data is limited, we conduct exper-
iments on the STL-10 [5] dataset. As a baseline we use
WideResNet [38] with 16 layers and a widening factor of 8.
Scale-equivariant models are constructed according to [28].
All models have the same number of parameters, the same
set of scales {1,

√
2, 2} and are trained for the same number

of steps.
As can be seen from Table 2, the proposed DISCO model

outperforms the other scale-equivariant networks and sets
a new state-of-the-art result in the supervised learning set-
ting. Moreover, DISCO is more than 3 times faster than the
second-best SESN-model.

5. Discussion
In this work, we demonstrate that the equivariance

error affects the performance of equivariant networks.
We introduce DISCO, an approach to rescale a basis
in scale-convolution, so the equivariance error is mini-
mized. We experimentally demonstrate that DISCO scale-
equivariant networks outperform conventional and other
scale-equivariant models, setting the new state-of-the-art
MNIST-Scale and improving results on STL-10 datasets.
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