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A. Convolutional Parametrizations
In the main paper, we experimented with fully connected architectures for representing manifold parametrizations. How-

ever, parametrizations represented by convolutional architectures also induce a prior useful for manifold reconstruction tasks.
In this section, we show experiments with denoising and single-view reconstruction. We start by defining a ConvBlock,
which consists of a bilinear upsampling layer followed by a 2D-conv, batch normalization [5] and Leaky ReLU activation
(slope=0.2). Every convolutional layer uses filter size 3 × 3, stride 1 and the number of filters is exactly half the number of
its input channels. In other words, at every ConvBlock, the output tensor spatially doubles the size of its input tensor, but
only has half the number of channels. This pattern follows throughout the whole network, except for the last layer, where the
output layer always have 3 channels, representing the (x, y, z) point coordinates.

A.1. Denoising

The denoising experiments follow the same procedure described in the main paper, except for the network architecture.
Instead of using a fully connected model, we employ a network with 3 ConvBlocks, starting from an input tensor with
shape 4 × 4 × 512 whose values are drawn from a standard gaussian distribution. The output of each parametrization is
a tensor with shape 32 × 32 × 3, which we can treat as a point cloud with 1024 and use Chamfer distance in the same
way as described in Section 5. We also use the position of the points in the output tensor to define the local neighborhood
utilized in the stretch regularization. Results are presented in Figure A1. As we can see, convolutional parametrizations also
induce a useful prior for manifold reconstructions and, similarly to the other parametrizations, it is significantly better than
the baselines. Quantitatively, using convolutional parametrizations in the denoising yields slightly worse results than using
fully connected networks – in terms of Chamfer distance, 4.58×10−4 vs. 4.48×10−4.
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Figure A1: Comparison of Conv and MLP networks for denoising. Average error across shapes to the right. Both models use 8
parametrizations and stretch regularization. Zoom for details.

A.2. Single-view Reconstruction

In this subsection we present quantitative and qualitative results for single-view image-to-shape using convolutional
paramterizations. We also train a convolutional decoder with stretch regularization on the single-view reconstruction bench-
mark [1]. This follows the same experimental setup as previous papers [2, 1, 4, 3]. However, unlike AtlasNet [4], our network
is trained in one stage, without the need to train the decoder in an auto-encoder setting before fine-tuning it with an image
CNN in a second step. We used Adam optimizer [6] with learning rate of 10−3. The model is trained for 40 epochs and the
learning rate is divided by 2 every 5 epochs. We use ResNet-18 as image encoder and 32 convolutional parameterizations.
Even though we use more parameterizations than AtlasNet, the total number of parameters is smaller (see Table 3. The
evaluation results per category are presented in Table 1. Compared to MRTNet, our model performs better in 12 out of 13
categories. Compared to AtlasNet, our method is better or ties (the firearm category) in 7 out of 13 categories. Overall our
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Figure A2: Image-to-shape reconstruction results from the test set. The images shown are the input (black background), our results
(32K points, rendered blue), and ground truth (rendered in light green). Qualitatively, our method is able to generate high-resolution point
clouds faithfully capturing fine geometric details such as the chair legs, arms, airplane engines, monitor stands etc.

approach outperforms AtlasNet in per-category mean by 0.21, a relative improvement of 4.4%. Also note that our model
outperforms AtlasNet mainly in categories with a large number of examples (tables, cars, airplanes, chairs). As a result, if
average over instances, our method has a per-instance mean of 4.0, vs. 4.38 by AtlasNet – a relatively improvement of 8.7%.

pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
AtlasNet [4] 2.17 3.39 3.93 3.40 4.56 5.05 12.24 8.79 2.15 4.58 4.15 3.25 3.93 4.74
MRTNet [3] 2.25 3.68 4.73 2.55 4.06 6.07 11.15 8.84 2.25 4.98 4.45 3.72 3.64 4.80
Ours (32 dec.) 2.06 3.40 4.46 2.60 3.76 5.94 10.66 8.38 2.15 4.64 3.96 3.45 3.40 4.53

Table 1: Quantitative results for single-view image-to-shape reconstruction. The table reports Chamfer distance metric (scaled by
103) computed per category, and the mean of all categories. For each method 4K points were used to compute the distance.

Ablation studies. Table 2 shows a quantitative comparison between a few architectural variations. We start by analyzing
a variation of our network that generates the same number of points (using a single decoder) as MRTNet (4K points) and
the same image encoder (vgg-16). The performance of this variation is 0.05 worse than MRTNet, but it has an order of
magnitude less parameters than MRTNet. Another variation is to still use a single decoder but generate a higher-resolution
point cloud (16K points). This variation results in improved Chamfer distance, by 0.1, than the first variation, indicating that
the increased resolution does improve reconstruction accuracy. Again, even when the number of generated points is higher
than 4K, our evaluation is done by randomly selecting 4K points, for fair comparison. The last row in the table is our default
setting (32 decoders outputting a total of 32K points). The number of network parameters are reported in Table 3. Even
though the number of points our network generates is 8 times that of MRTNet, its size is only about 1/6 of MRTNet, since
our network does not need to represent multiple resolutions at each layer. Compared to AtlasNet, our network is about 1/3 of
its size, due to the efficiency of using a fully convolutional architecture. Despite using a much smaller number of parameters,
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Architecture mean/cat. mean/inst.
MRTNet 4.80 4.26
1 dec./vgg16/4k 4.85 4.30
1 dec./res18/16k 4.75 4.22
32 dec./res18/32k 4.53 4.00

Table 2: Architecture variations and evaluation results. The table reports per-category mean and per-instance mean for MRTNet, and
three variations of our methods: single decoder with 4K output points, 16K output points, and 32 decoders with 32 output points. For all
cases, the Chamfer distance is calculated using 4K sample points, and results are scaled by 103.

Method #parameters
AtlasNet 42.6M
MRTNet 81.6M
Ours (1 dec.) 2.49M
Ours (1 residual dec.) 5.79M
Ours (32 dec.) 14.5M

Table 3: Comparing the # of network parameters.

our network outperforms MRTNet (in terms of Chamfer distance metric) by 0.27, and AtlasNet by 0.21.

Qualitative Results. Figure A2 shows image-to-shape reconstruction results for images from the test dataset. Overall our
method is able to accurately capture fine geometric details such as the chair legs, arms, airplane engines, monitor stands etc.
The number of points (32K) is considerably higher than previous work (e.g. 1K by [2] and 4K by [3]). Some specific shapes,
such as lamps and jet fighters, present significant challenges for the network as the input images do not contain all the visual
details. Nonetheless our method is able to produce a reasonable approximation.

Test on real images. The test set images are synthetically rendered and as such they look similar to the training images.
To evaluate our method on real images we use photos downloaded from the Internet, as shown in [3]. They are processed
by removing the background so only the foreground object remains. Figure A3 shows the results. The top row in the figure
shows furniture objects, which demonstrate that even though the network is trained using synthetic images rendered with
artificial lighting and materials, the model is able to generalize well to real shading, lighting, and materials. The second
row shows additional objects where the shading is considerably different from training images. In particular, the last image
(desktop computer) is in a category that the training has never seen. Nonetheless the reconstructed shape is reasonable.

Shape correspondence. Once trained, our network learns to generate shapes with corresponding structures. We demon-
strate this with the following experiment. First, we randomly select a point cloud generated by our network and call it a
reference shape. Then, we assign every point in the reference shape a color, where the hue is computed based on the point’s
distance to the center of gravity of the object. Then this color assignment is propagated to the other point clouds, such that a
point at index (i, j) in the output tensor is assigned the same color as the point on the reference shape at the same index. The
resulting colorized point clouds are shown in Figure A4. Similar color indicates similar index range in the output tensor. Note
that even though the network is not trained explicitly with point correspondences as supervisory signal, it learns to generate
corresponding parts in the same regions of the output tensor, as can be seen around the tips of the chairs’ arms, legs and seats.

B. Limiting distribution for the curvature
We start by parameterizing the derivative of a space curve ẋ = cos(f(t)) and ẏ = sin(f(t)) where f is a neural network.

From the standard analysis we know that f(t) converges to a Gaussian with mean µ and kernel k(·, ·). Without loss of
generality we can assume that the mean µ is such that cos(µ) 6= 0 and sin(µ) 6= 0. This can be achieved by adding a fixed
bias term µ to the output of the last layer. To compute the limiting distribution of ẍ and ẏ we apply the first order delta
method to obtain:

3



Figure A3: Image-to-shape reconstruction results on Internet photos. We test our method on real photos downloaded from the
Internet and the results are rendered in blue. The test images here are considerably different from the training set. Our method achieves
reasonable results with accurate geometric details. The last image (computer) represents a category that has not been seen during training.

Reference Reference

Figure A4: Visualizing Shape Correspondences. Our network learns approximate shape correspondences even though the training is
not supervised with such information. The shapes shown here are generated by 32 decoders.

ẋ→ N (cos(µ), σ2 sin2(µ)), (1)

ẏ → N (sin(µ), σ2 cos2(µ)). (2)

Note we can only apply the first order delta method when the derivatives are not zero. Hence we assumed that µ is set to
be a quantity which has this property. Otherwise we need the second-order delta method and the resulting distribution would
be χ2 for one of the derivatives.

Since the derivative is a linear operator it follows that ẍ and ÿ are also GPs. The curvature formula for a arc-length
parameterized space curve is κ2 = ẍ2 + ÿ2. From this it follows that κ2 is a χ2 random variable.

Graph parameterization. We also analyze the case where the curve is the graph of a one-dimensional function, i.e.,
x = x,y = f(x). In this case the curvature can be written as κ = f̈/((1 + ḟ2)

3
2 ). Once again all the derivatives ḟ and f̈

are Gaussian random variables. Assume that (ḟ , f̈) are distributed according to N(0,Σ). Here Σ = [σḟ ,ḟ , σḟ f̈ ;σḟ f̈ , σf̈ f̈ ]

denoting the joint covariance distribution. Applying the delta method with g(a, b) = b/(1+a2)3/2, we get that k is distributed
as a Gaussian random variable N(0,∇gT Σ∇g). Since∇g(a, b)|0,0 = [0, 1], we have k → N(0, σf̈ f̈ ).
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