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Abstract

Segmentation-based tracking is currently a promising
tracking paradigm due to the robustness towards non-
grid deformations, comparing to the traditional box-
based tracking methods. However, existing segmentation-
based trackers are insufficient in modeling and exploit-
ing dense pixel-wise correspondence across frames. To
overcome these limitations, this paper presents a novel
segmentation-based tracking architecture equipped with
spatio-appearance memory networks. The appearance
memory network utilizes spatio-temporal non-local similar-
ity to propagate segmentation mask to the current frame,
which can effectively capture long-range appearance varia-
tions and we further treat discriminative correlation filter as
spatial memory bank to store the mapping between feature
map and spatial map. Moreover, mutual promotion on dual
memory networks greatly boost the overall tracking perfor-
mance. We further propose a dynamic memory machine
(DMM) which employs the Earth Mover’s Distance (EMD)
to reweight memory samples. Without bells and whistles,
our simple-yet-effective tracking architecture sets a new
state-of-the-art on six tracking benchmarks. Besides, our
approach achieves comparable results on two video object
segmentation benchmarks. Code and model are released at
https://github.com/phiphiphi31/DMB.

1. Introduction
Visual object tracking (VOT) is a fundamental task in

computer vision. In general, VOT aims at localizing the
target in subsequent frames based the given bounding box
in the first frame. So far, VOT still remains a challeng-
ing topic due to numerous factors such as deformation, oc-
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Figure 1. Comparison of tracking performance and offline training
cost with state-of-the-art trackers on VOT2018 [18]. We visualize
the Expected Average Overlap (EAO) with respect to the amount
of training frames. The radius of circle denotes the GPU memory
needed for training (16GB is needed for our tracker). DRT [39] is
a fully online tracker that achieves the best efficiency but a much
lower EAO than ours.

clusion, and background clutter [47, 18, 9]. Two domi-
nant methodologies of deep VOTs, Siamese correlation net-
works [22, 21, 50, 4] and discriminative correlation filters
(DCFs) [7, 1], mainly adopt a bounding box-level target
representation, making them limited in exploiting the fine-
scale representation of the target that is essential to achieve
a high tracking accuracy. To address these issues, pixel-
wise target estimation is needed, but it requires segmen-
tation datasets [49] for training which is far less than the
tracking datasets, such as TrackingNet [28], Lasot [9] and
GOT-10K [15], due to the extremely laborious annotations.

Several attempts have been made to develop
segmentation-based trackers. SiamMask [44] adds a
segmentation branch to Siamese architecture for allowing
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joint learning of bounding box regression and object
segmentation in training. Later, D3S [27] introduces a seg-
mentation branch following VideoMatch [13] and further
combines online DCF [2] to fuse target classification and
pixel-wise segmentation during inference. While the DCF
can be updated to cope with appearance variations across
frames, little study has been given to consider temporal
information in the segmentation branch.

To overcome the limitations, this paper exploits spatio-
appearance memory networks to capture long-range spatio-
temporal information. We present the appearance memory
network (AMN) for adapting the segmentation branch to
temporal appearance variation while avoiding model drift-
ing. In particular, we store keys and values of continuous
frames in the AMN, and design a memory reader to com-
pute the spatio-temporal attention to previous frames for
each pixel in the query image (i.e., the current frame). Thus,
albeit the network parameters of the memory networks are
fixed, we can dynamically update the memory samples to
achieve better tradeoff between model generalization and
flexibility. We further treat DCF as spatial memory network
(SMN) to model the mapping between feature map and spa-
tial map. Moreover, the SMN can help to filter out the noisy
samples in AMN while AMN provides SMN with more ac-
curate target geometrical center. This mutual promotion on
dual memory banks greatly boost the tracking performance.

In practice, the target object in the query frame usually
appears in the local neighborhood of memory frames. So
the importance of each sample stored in memory banks
varies due to target deformation and background clutters.
To solve the problems, we further propose a dynamic mem-
ory machine (DMM) to reweight the memory samples in
both spatial and temporal domain. DMM employs the Earth
Mover’s Distance (EMD) to improve the memory reader
module. It generates weighting values by obtaining the op-
timal matching flows between search and template patches.
Moreover, DMM applys a background suppression mech-
anism in EMD computation which not only minimizes the
impact of background clutters but still treats background as
important context information.

Extensive experiments show that our tracker sets a new
state-of-the-art on the popular tracking benchmarks includ-
ing VOT2016, VOT2018, VOT2019, VOT2020, GOT-10K,
and TrackingNet. Moreover, for the video object segmen-
tation (VOS) task, our tracker also achieves comparable re-
sults on the DAVIS16 and DAVIS17 benchmarks. In com-
parison to template-based trackers, our approach can reduce
the training data by more than an order of magnitude with
improved tracking performance (See Fig. 1).

The main contributions of this work are three-fold:

• We propose a novel segmentation-based tracking ar-
chitecture which uses appearance memory bank to cap-
ture and exploit the temporal appearance changes to

enhance the segmentation branch.
• We firstly employ a novel background suppression

mechanism into tracking problem and propose a dy-
namic memory machine applied to deep trackers with
memory networks.

• Extensive experiments show that our approach
achieves state-of-the-art results on six challeng-
ing tracking benchmarks and competitive results on
DAVIS16 and DAVIS17 for VOS.

2. Related Work
2.1. Segmentation based VOT

Video object segmentation (VOS) [40, 5, 3] methods
usually are slow in speed and are not effective on handling
the challenging factors in tracking scenarios, e.g., distrac-
tors and fast motion. It is mainly because the VOS task
considers segmentation of large objects with limited appear-
ance changes in short videos. SiamMask [44] attempts to
unify tracking and segmentation by adding a class-agnostic
segmentation branch to detection-based tracker. SiamR-
CNN [41] uses an well-trained segmentation model to es-
timate the mask in the box which considers the predicted
bounding box as hard spatial constraints. Similarly, many
VOT methods such as OceanPlus [17] and SiamMargin [17]
add extra segmentation head after predicting bounding box
to improve tracking accuracy. D3S [27] uses the DCF
as the classification branch and a geometrically invariant
template-based model for object segmentation. Compar-
ing to the traditional bounding box based tracking methods
[22, 21, 7, 1], our method adopts the segmentation tracking
architecture, and the spatio-appearance memory networks
are introduced to utilize temporal information.

2.2. Memory Network for Video Analysis

Memory network is a kind of neural network [10, 45]
that have external memory where information can be stored
and read by purpose. Recently, memory network has ex-
hibited its merits in temporal modeling for video tasks.
In visual tracking, MemTrack [52] uses a dynamic mem-
ory network to adapt the template to appearance variations.
STM [30] applies memory networks to semi-supervised
VOS and achieves appealing performance. However, most
of those VOS methods typically consider large targets with
low background distractor presence. In object tracking
benchmarks, the scenarios are more challenging. In this
work, we present spatio-appearance memory networks for
both VOS and visual tracking tasks. Mutual promotions en-
hance the overall performance on tracking scenarios.

2.3. Earth Mover’s Distance

EMD is suitable to compare structural representations
without explicit alignment information. Zhao et al. [55]
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Figure 2. Overview of our segmentation-based tracking architecture with spatio-appearance memory networks. The model consists of two
memory networks. One is SMN which is trained by online optimization. The other is AMN which makes dense non-local matching to
capture stable appearance information. The fused read-out from the spatio-appearance memory networks are fed to decoder to predict the
mask. Finally, the bounding box of the tracked target is estimated from the mask.

propose to calculate the differential EMD to solve the vi-
sual tracking problem. Li [23] uses a tensor-SIFT based
EMD to solve the contour tracking problem. Zhang em-
ploys the Earth Mover’s Distance (EMD) as a metric for
few-shot image classification task. In this work, we firstly
employ differential EMD to compute the temporal weights
of each sample in memory banks in both visual tracking and
VOS.

3. Proposed Method
In the following, we first introduce the overall pipeline

of our approach in Section 3.1, and then explain the appear-
ance memory network (Section 3.2), spatial memory net-
work (Section 3.3) in details. The benefits of our spatio-
appearance memory network design are explained in Sec-
tion 3.4, and finally, we provide the design of the dynamic
memory machine in Section 3.5.

3.1. Overall Pipeline

Fig. 2 illustrates the pipeline of our approach. Each
frame It is embedded into two triplets (Qt,KA,t, VA,t)
and (Qt,KS,t, VS,t). As in [46], Q, K, and V re-
fer to Query, Key, and Value, respectively. For the
tracking and segmentation of current frame It, an ap-
pearance memory encoder EncAM is used to compute
the appearance memory key and value representation
pairs {(KA,0, VA,0), ..., (KA,t−1, VA,t−1)} for the previous
frames {I0, ..., It−1}. Meanwhile, a spatial memory en-

coder EncSM is introduced to extract the spatial memory
keys {KS,0, ...,KS,t−1}. Following conventional tracking
setting, the values {VS,0, ..., VS,t−1} of the spatial mem-
ory are computed based on the annotation of the first frame
and the predicted target bounding boxes of previous frames.
Moreover, a query encoder EncQ is designed to obtain the
query Qt and the query value VQ,t for the current frame
It. Furthermore, the memory reader module is adopted to
generate the value VA,t for the current frame. As for spa-
tial memory, we take DCF as a memory module, and use it
to generate target location map. Subsequently, VA,t, VQ,t,
the target location map, and the query encoder features are
fused into a decoder to predict the segmentation mask of It.
Finally, the target bounding box can be estimated from the
segmentation mask. To adapt target appearance variations
over time during tracking, the memory keys and values are
stored and updated online.

3.2. Appearance Memory Network

Fig. 3 shows the architecture of our appearance memory
network that includes memory bank and a reader. Analo-
gous to conventional memory network [45, 31], our mem-
ory network consists of memory encoder EncAM , query en-
coder EncQ, and memory reader. In particular, for each of
the previous frames, the memory encoder takes the image I
and the foreground as well as the background segmentation
masks {Mf ,Mb} as the input to produce the key and the
value. And the current frame It is fed into query encoder
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Figure 3. Overview of our appearance memory network. Each
continuing frame and its foreground-background mask gener-
ates corresponding key and value through appearance memory
encoder. Query frame It will be encoded into query Qt and
value VA,t embedding. A dense non-local matching operation
will be performed between query Qt and stored memory keys
{KA,0, ...,KA,t−1}. The retrieved value VQ,t from read opera-
tion will be concatenated with query value VA,t as the read-out
value Rt. Then, the read-out value Rt will be fed into decoder for
final mask prediction.

to obtain query Qt and query value VQ,t. Then, query Qt is
passed into the memory reader to obtain the retrieved value
VA,t from AMB. Finally, VA,t and VQ,t are concatenated to
form the read-out value Rt. Next, we introduce the memory
encoder, query encoder and memory reader in detail.

Memory Encoder. The input of memory encoder in-
volves three components, i.e., an RGB frame, the fore-
ground and background segmentation masks with probabil-
ity between 0 and 1. Each component first goes through
three convolution layers individually and then be summed
and fed into the backbone. Here we take ResNet-50 [12] as
the backbone for both the memory encoder and the query
encoder, and use the Conv4 e layer as the common feature
map fM for computing the key and value. Then, the key
and value can be obtained by respectively deploying their
own convolution layer on the common feature map fM ,

KA = KeyA (fM ) , VA = ValA (fM ) . (1)

During tracking, keys and values from all previous frames
are stacked along the temporal order and are stored in the
appearance memory bank.

Query Encoder. The query encoder EncQ takes the
current frame It as the input. Analogous to memory en-
coder, we use the Conv4 e layer of ResNet-50 as the com-
mon feature map fQ. To generate the query Qt, a convo-
lution layer with linear activation is applied to reduce the
number of channels to the 1/8 of fQ. The channel number
of query value VQ,t is a half of fQ,

Qt = QueA(fQ), VQ,t = ValQ(fQ). (2)

Memory Reader. In the memory reader module, the
keys and values {(KA,0, VA,0), ..., (KA,t−1, VA,t−1)} of all

previous frames, and the query and query value (Qt, VQ,t)
of the current frame are used to produce the read-out value
Rt. In particular, the similarities between query Qt and
keys {KA,0, ...,KA,t−1)} are utilized to measure the spa-
tial and temporal non-local correspondence, which is then
used to generate the retrieved value VA,t for capturing tem-
poral appearance changes. Then, the retrieved value VA,t is
computed based on the non-local attention mechanism for-
mulated as follows,

V i
A,t =

∑
j

t−1∑
k=1

Ai,j,k
t V j

A,k, (3)

Ai,j,k
t =

exp
〈
Qi

t,K
j
A,k

〉
∑

p

∑t−1
k=1 exp

〈
Qi

t,K
p
t−1

〉 , (4)

where i, j, and p denote a spatial position of feature map,
k denotes the index of a frame, and ⟨·, ·⟩ denotes the dot
product between two vectors. Furthermore, for enhancing
the retrieved value VA,t, we concatenate it with the query
value VQ,t to obtain the read-out value,

Rt = concat [VA,t, VQ,t] , (5)

where concat[·, ·] denotes the concatenation operation. In
contrast to MAST [20] where the RGB image or segmenta-
tion mask are adopted as the value, we predict the appear-
ance value as embedding feature map. And we encode both
the query and the query value, where later is further con-
catenated with the retrieved value to get the read-out value.

Decoder. The fused read-out from the spatio-appearance
memory networks are fed to decoder to predict the mask.
Please refer to [31] for the decoder design.

3.3. Spatial Memory Network

Inspired by [7], we treat DCF as the Spatial Memory
Network (SMN) for target localization. The query encoder
EncQ in AMN shares weights with the memory encoder
and the query encoder for SMN. Let xk = EncQ(Ik) be
the feature map for a previous frame Ik, and yk be the cor-
responding spatial label. The DCF model can then be for-
mulated as,

f∗ = argmin
f

t−1∑
k=0

∑
p

∥⟨xp
k, f⟩ − yk∥

2

2
+ λ∥f∥22. (6)

The feature map of the current frame It is denoted by xt.
With the kernel tricks, we have,

Ri
S,t = ⟨f∗, xi

t⟩ =
t−1∑
k=0

∑
j

V j
S,kA

i,j,k
S,t , (7)

Ai,j,k
S,t =

〈
xi
t, x

j
k

〉
, (8)
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where i, j, and p denote a spatial position. We note that
{xk|k = 0, ..., t − 1} and xt can be explained as the keys
and query, while VS,k and RS,t are the value and read-out
value in SMN. Thus, DCF can be explained as a special im-
plementation of memory module to store the mapping be-
tween feature map and the read-out spatial map RS,t. More-
over, the spatial map RS,t can serve as the spatial encoding
of target localization, which is complementary to the read-
out value in AMN. In our approach, we combine AMN and
SMN to constitute the spatio-appearance memory banks for
improving segmentation and tracking performance.

3.4. Benefit from Dual Memory Banks

In general, SMB is complementary to AMB and can
collaborate to improve segmentation and tracking perfor-
mance. We also present elaborate design to make the two
banks cooperate well. The localization of SMB can be more
robust because of the geometrical robustness of target cen-
ter as shown in Fig. 3.

3.5. Dynamic Memory Machine

We apply the Earth Mover’s Distance (EMD) to reweight
memory frames by considering foreground and background
similarities and organize all the features by a weighted av-
eraging. In our design, the query feature of query frame
KQ,t can be regarded as destination while the key features
of memory frames KM,i, i ∈ {1, 2, ..., t − 1} are as sup-
plier. As shown in Fig. 5, after pooling layer, KQ,t and
KM,a are both resized to 6 × 6. Grid cell positions of KM,a

are supposed to be suppliers S = {sa|a = 1, 2, ..., 36}
and they required to transport goods to a set of destina-
tions D = {db|b = 1, 2, ..., 36} which is composed of
all positions of KQ,t, where sa denotes the supply units
of supplier a and db represents the demand of b-th deman-
der. The cost per unit transported from supplier a to de-
mander b is denoted by cab, and the number of units trans-
ported is denoted by xab. The goal of the transportation
problem is then to find a least-expensive flow of goods
X̃ = {x̃ab|a = 1, ...36, b = 1, ...36} from the suppliers
to the demanders: The supply units in sa and demand-
ing units in db denotes the importance of each grid cell
in KQ,T and KM,i. Actually, memory frames and query
frame have larger background regions than the target object.
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Figure 5. Overview of dynamic memory machine. The weights are
computed among query frame and memory frames and further be
applied to the memory reader.

Thus, large weights should be given to the foreground ob-
ject region during the EMD calculation. However, memory
frames whose background are similar to the query frame
contains more valuable information. The ultimate goal of
re-weight is not to completely eliminate the impact of back-
ground, but pay more attention to the foreground object.
We observe that the co-occurrent regions in two images are
more likely to be the foreground. On the case that two im-
ages have similar foreground and background, the distribu-
tion of weight values does not affect the distance severely.
Therefore, we use dot product between a vector and the av-
erage feature in the other structure to generate a relevance
score as the weight value:

sa = max{uT
a ·

∑HW
b=1 vb

HW
, 0}, (9)

where ua and vb denotes the vectors from KQ,t and KM,i.
H , W are the height, width. Then, we normalize all the
weights to make equality of both sides:

sa := sa
HW∑HW
b=1 sb

. (10)

Similarly, the weights for each demander can be obtained
in the same manner. Then, the weights of each memory
samples will be added to the corresponding attention calcu-
lation.

4. Experiments
4.1. Implementation details

Training phase. For a better feature extraction abil-
ity, we firstly use image datasets instead of video se-
quences. ResNet-50 is initialized from the ImageNet
pre-trained model. Similar to the training process in
[32], we use image datasets annotated with object masks
( [36], [25], [37], [24], [6]) to train our network. We apply
image augmentations like random affine, flip and blur to the
same image for generating a sequence of three images.
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Trackers SPM [43] SiamMask-opt [44] SaimRPN++ [21] ATOM [7] D3S [27] Ours (SAMN)

VOT-16
Acc.↑ 0.62 0.67 0.64 0.61 0.66 0.684
Rob.↓ 0.21 0.23 0.20 0.18 0.131 0.121
EAO↑ 0.434 0.442 0.464 0.430 0.493 0.535

Table 1. Results on VOT2016. Top-3 results of each dimension
(row) are colored in red, blue and green, respectively.

Trackers DiMP-50 [1] SiamBAN [4] D3S [27] Ocean-off [54] DCFST [56] Ours (SAMN)

VOT-18
Acc.↑ 0.590 0.597 0.597 0.64 0.598 0.652
Rob.↓ 0.203 0.152 0.178 0.150 0.169 0.145
EAO↑ 0.440 0.452 0.489 0.467 0.452 0.521

Table 2. Results on VOT2018. Top-3 results of each dimension
(row) are colored in red, blue and green, respectively.

Trackers SiamRPN++ ATOM Retina-MAML [42] SiamFCOT [19] Ocean-off Ours (SAMN)

VOT-19
Acc.↑ 0.580 0.603 0.570 0.601 0.590 0.639
Rob.↓ 0.446 0.411 0.366 0.386 0.376 0.231
EAO↑ 0.292 0.292 0.313 0.350 0.327 0.408

Table 3. Results on VOT2019. Top-3 results of each dimension
(row) are colored in red, blue and green, respectively.

After training the encoder block, we use Youtube-
VOS [48] and freeze the gradients of the encoder to train
the decoder. We randomly sample 3 temporally ordered
frames from the same video sequence and apply recurrent
training strategy. The first frame and its mask are fed into
memory encoder. The prediction of second frame is then
stored in AMB for predicting the third frame. Then, the loss
will be accumulated. We use randomly cropped 384×384
patches for training and set the minibatch to 4. We mini-
mize the cross-entropy loss and mask IoU loss using Adam
optimizer [16] with a fixed learning rate of 10−5. First-
stage training process takes 120 epochs and decoder train-
ing takes 40 epochs using four NVIDIA TITAN XP GPUs.

Testing phase. During inference, the sampling interval
in appearance memory bank is set to 5. The output of our
model is segmentaion map and will be transferred to ro-
tated box for tracking task. If a ground truth bounding box
is available, the SAMN follows the initialization procedure
proposed in [27].

4.2. Evaluation

Our tracker achieves the state-of-the-art (sota) results on
6 tracking benchmarks and competitive results on 2 VOS
benchmarks. We select representative benchmarks based
on their prediction output formats and challenging factors.
Our tracker shows its sota performance on three aspects:
traditional robust tracking, pixel-level tracking and video
object segmentation. Our tracker was evaluated on six ma-
jor short-term tracking benchmarks and compared with sota
trackers: VOT2016 [11], VOT2018 [18], VOT2019 [19],
GOT-10k [15], TrackingNet [28], VOT2020 [17]. Our
tracker is also evaluated on two popular VOS benchmarks
DAVIS16 [33] and DAVIS17 [35].

Rotated Bounding Box format VOT datasets are the
most challenging and convincing evaluation tools in track-

Trackers SiamRPN++ ATOM DiMP-18 DiMP-50 D3S Ocean-off Ours (SAMN)

GOT-10K SR.75↑ 32.5 40.2 44.6 49.2 46.2 - 52.2
AO↑ 51.8 55.6 57.9 61.1 59.7 59.2 61.5

Table 4. Results on GOT-10K. Top-3 results of each dimension
(row) are colored in red, blue and green, respectively.

Trackers SiamRPN++ ATOM DiMP-50 Retina-MAML D3S Ours (SAMN)

TrackingNet Prec.↑ 69.4 64.8 68.7 - 66.4 69.7
Norm. Prec.↑ 80.0 77.1 80.1 78.6 76.8 79.4

Succ.↑ 73.3 70.3 74.0 69.8 72.8 74.2

Table 5. Results on TrackingNet. Top-3 results of each dimension
(row) are colored in red, blue and green, respectively.

Trackers SiamMask STM DET50 [19] Ocean D3S Ours (SAMN)

VOT-20
Mask ✓ ✓ ✓ ✓ ✓ ✓
Acc.↑ 0.624 0.751 0.679 0.693 0.699 0.720
Rob.↓ 0.648 0.574 0.787 0.754 0.769 0.794
EAO↑ 0.321 0.308 0.441 0.430 0.439 0.461

Table 6. Results on VOT2020. “Mask” denotes that prediction
format is mask. Top-3 results of each dimension (row) are colored
in red, blue and green, respectively.

ing. VOT2016, VOT2018 and VOT2019 are widely-used
benchmarks for visual object tracking. Each of them con-
tains 60 sequences with various challenging factors. The
three datasets are annotated with the rotated bounding
boxes, and a reset-based methodology is applied for evalu-
ation. For both benchmarks, trackers are measured in terms
of accuracy (A), robustness (R), and expected average over-
lap (EAO).

Axis-aligned Bounding Box format Tracking We also
evaluate our tracker in the axis-aligned bounding box anno-
tated visual tracking benchmarks, i.e., GOT-10K [15] and
TrackingNet [28]. Axis-aligned bounding box annotation
is widely-used among object detection and tracking bench-
marks. GOT-10K is a recent large-scale dataset (10,000
videos in train subset and 180 in both val and test subset)
with 1.5 million bounding boxes. Average overlap (AO),
success rates at 75% threshold (SR75) and 50% threshold
(SR50) are the three ranking metrics. TrackingNet [28]
contains 30000 sequences with 14 million dense annota-
tions and 511 sequences in the test set. It covers diverse
object classes and scenes, requiring trackers to have both
discriminative and generative capabilities.

Pixel-wise Tracking VOT2020 [17] proposed a signif-
icant novelty compared to 2019 that the target position
was encoded by a segmentation mask. The VOT2020 [17]
benchmark introduces a new evaluation methodology for
the promising pixel-wise tracking paradigm which requires
trackers to robustly track the target while predicting an ac-
curate binary mask. Segmentation-based trackers need to
performs well both in segmentation accuracy and challeng-
ing scenarios, e.g., fast motion, distractors and blur. Ac-
curacy (A), robustness (R) and expected average overlap
(EAO) are three metrics to evaluate trackers.
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Video Object Segmentation We also evaluate our
tracker in two semi-supervised VOS benchmarks, i.e.,
DAVIS16&17 [33] [34], following official test protocol:
mean Jaccard index (JM ) and mean F-measure (FM ). JM
describes the region similarity while (FM ) measures the
contour accuracy of the predictions. VOS datasets typically
focus more on segmentation.

4.2.1 Comparing with sota methods

VOT2016&VOT2018&VOT2019: The VOT2016
top performers CCOT [8] and TCNN [29], two re-
cent sota segmentation-based trackers D3S [27] and
SiamMask [44], and most recently published sota deep
trackers SiamRPN++ [21], SPM [43], UpdateNet [53]
and ATOM [7] are compared with our trackers. Table 1
show that our tracker outperforms all trackers on all three
measures by a large margin. In terms of EAO, our tracker
outperforms the strongest sota tracker D3S by 4.2 points
and ATOM by 10.2 points. VOT2018 is the most widely
used benchmark so far. We compared SAMN with all offi-
cial results from [18]. We compared SAMN with the most
recent sota trackers: DCFST [56], Ocean [54], D3S [27],
SiamBAN [4], DiMP [1], ATOM [7], SiamRPN++ [21]
and SiamMask [44]. As shown in Figure, our tracker
outperforms all trackers on all three measures by a large
margin. In terms of EAO, our tracker outperforms the sota
tracker LADCF by 4.2 points and SiamRPN++ by 10.2
points. As shown in Fig. 6, SAMN is more accurate than
other trackers towards challenging factors like occlusion,
size and motion changes. This shows that our tracker is
robust towards occlusion, size changes and motion changes
in the target while having the ability to handle with camera
motion and illumination changes. SAMN is compared
to the recent prevailing trackers. As shown in Table 3,
our model surpasses all the competitive trackers in three
metrics. Our tracker outperforms the most recent published
Siamese correlation tracker Ocean by 2.9 points in EAO.
The accuracy of our tracker outperforms the ATOM by
4.6 points. The results demonstrate that our tracking

J 16
M F16

M J&F16 J 17
M F17

M J&F17

Ours(SAMN) 79.0 75.5 77.3 64.8 67.7 66.3
D3S [27] 75.4 72.6 74.0 57.8 63.8 60.8
SiamMask [44] 71.7 67.8 69.8 54.3 58.5 56.4
OnAVOS [40] 86.1 84.9 85.5 61.6 69.1 65.4
STM [31] 84.8 88.1 86.4 69.2 74.0 71.6
MAST [20] - - - 63.3 67.6 65.5
FAVOS [5] 82.4 79.5 80.9 54.6 61.8 58.2
VM [14] 81.0 - - 56.6 - -
OSVOS [3] 79.8 80.6 80.2 56.6 63.9 60.3
PLM [38] 75.5 79.3 77.4 - - -
OSMN [51] 74.0 72.9 73.5 52.5 57.1 54.8

Table 7. Comparison with segmentation-based trackers and VOS
methods on DAVIS16 and DAVIS17.

architecture has better performance towards both Siamese
correlation trackers and filter-based trackers.

GOT-10K&TrackingNet: GOT-10K is a recent large-
scale dataset consisting of 10K video segments and 1.5 mil-
lion classical axis-aligned bounding boxes. As shown in
Table 4, our tracker improves the SR75 by 3.0 points over
the sota filter-based tracker DiMP-50, while outperform-
ing DiMP-50 by 0.4 points in terms of AO. Comparing
to the Siamese correlation trackers, SAMN outperforms the
Ocean by 2.3 points in terms of AO. Compared to the sota
tracker D3S, SAMN has improvements of 3.0% on AO
and nearly 13.0% improvements on SR75, demonstrating
its ability to tracking objects over complex scenes.We fur-
ther evaluate SAMN on the large-scale TrackingNet. As
shown in Table 5, SAMN outperforms the strongest filter-
based tracker DiMP-50 by 0.2 points in AUC while our ac-
curacy surpasses the strongest segmentation-based tracker
D3S by 3.3 points.

VOT2020. Recently, the tracking community starts fo-
cusing on replacing the classical rectangle box with a seg-
mentation mask to accurately represent the target. Our
tracker is compared to 6 sota trackers with segmentation
ability and 4 trackers with classical bounding box prediction
format. All results are from VOT2020 official report [17] or
tested by official toolkit. As shown in Table 6, our tracker
surpasses all the trackers in EAO measure. SAMN outper-
forms the top sota tracker DET50 [17] by 1.2 points (0.453
vs. 0.441). Moreover, our tracker significantly outperforms
the top sota VOS method STM [30] by 14.5 points in EAO
(0.453 vs. 0.308).

DAVIS16&17. Our tracker is compared with the sota
segmentation-based trackers and competitive VOS meth-
ods. From Table 4.2.1, our tracker outperforms the SOTA
segmentation-based trackers D3S and SiamMask [44] by
a large margin. On the more challenging benchmark:
DAVIS17, our tracker even outperforms all the meth-
ods specialized to VOS task except STM in mean of
J&F . Compared to D3S, which also belongs discrimina-
tive segmentation-based tracker, our approach obtains gains
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Figure 7. Time interval indicates the sampling interval of mem-
ory bank. Zero interval indicates that only the first frame and its
ground truth is stored. Up-arrow (down-arrow) indicates higher
(lower) is better.

Table 8. Ablation study on VOT2018 and DAVIS16.
Last Add. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Interv. 5 5 5 10 5 5 15 20 5
Filter Samp. ✓ ✓ ✓ ✓ ✓ ✓
Pos. Encod. sum sum sum sum sum cat sum sum sum
DRM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
A ↑ 65.2 66.5 63.5 64.0 62.7 65.0 62.2 62.0 63.4
R ↓ 0.145 0.173 0.164 0.159 0.210 0.150 0.225 0.227 0.173
EAO ↑ 50.6 46.7 49.2 48.0 42.1 48.6 41.0 40.2 45.1
J&F16 ↑ 77.3 70.3 - 67.8 69.1 - 66.4 63.6 67.2

of 3.3/5.5 points on J &F for DAVIS16/17, respectively. It
demonstrates the strong accurate segmentation ability of our
approach.

4.3. Ablation Study

To further show our contributions, we conduct compre-
hensive ablation studies on VOT2018 and DAVIS16. The
performance on tracking and VOS benchmarks can address
the robust tracking and accurate segmentation ability of our
tracker, respectively.

Temporal Information: We set different sampling in-
terval of AMN. When sampling interval is 0, our tracker is
the same as template-matching methods where only the first
frame is used. As shown in Fig. 7, the all three measures
drop by a large margin in comparison to the modes utiliz-
ing temporal information. No temporal information used
causes 6.2 points performance drop in EAO. in contrast to
storing every sample. It further validates the superiority of
our tracking architecture to the template-based trackers.

The amount of samples stored also matters. When sam-
pling interval is 1, our trackers reaches the top accuracy
performance which is 0.663. Performance of EAO reaches
the top which is 0.506 when sampling interval is 5 frames.
Comparing to the 5 frames interval, 30 frames interval
which is sparse reduces the EAO by 7.9 points. When the
last frame always be added to appearance memory bank, our
tracker boosts its overall performance EAO by 3.9 points
and robustness performance by 2.8 points when sampling
interval is 5 frames.

Positional Encoding: Inspired by CoordConv [26], we

Figure 8. Comparisons of weights generation method.

concatenate two coordinate channels to read-out features.
On the other hand, we simply do positional encoding as
that in natural language processing. We add the single spa-
tial matrix to the read-out features. As shown in Tab. 8,
adding spatial matrix to the read-out features outperforms
the concatenating way by 2 points in terms of EAO. Thus,
we choose adding style as our positional encoding way for
its simplicity and effectiveness.

Sample Filtering: As shown in Table 8, the collabora-
tion between dual memory banks is significant to the over-
all performance. Without the samples filtered from SMB,
the EAO drops from 0.506 to 0.421 when sampling interval
equals to 5. The mean of J&F on DAVIS16 also reduces
from 77.3 to 69.1. This indicates that one single mem-
ory bank cannot handle these challenging tracking scenar-
ios separately. SAMN can handle with both VOT and VOS
tasks while keeping fast inference speed.

Validation of the DRM To evaluate the contribution of
the EMD to reweight samples in temporal domain on track-
ing task, we compare it with cosine distance and linear
decay strategy. The weights generations are compared in
Fig. 8. The cosine metric significantly assigns larger val-
ues to recent frames which eliminates the impacts of past
frames. EMD metrics can balance the weight values be-
tween cosine metric and linear time decay strategy. Table 8
also validates the improvements from DRM.

5. Conclusion
In this work, we propose a new tracking architec-

ture which fully exploits temporal information by spatio-
appearance memory network. Our tracker shows its sota
performance on three prediction format. This fully demon-
strates the promising potential of segmentation-based track-
ing methods. In the future, we will further improve the
SAMN tracking architecture, especially in efficient memory
management and make dual memory networks more collab-
orative and unified. We hope to develop a model that has
sota performance on both VOT and VOS tasks while keep-
ing real-time inference speed under this architecture.

Acknowledgment
This work was supported by the NSFC under Nos.

61773117, 61876088 and 62006041.

2685



References
[1] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-
ing. In ICCV, 2019.

[2] David S Bolme, J Ross Beveridge, Bruce A Draper, and
Yui Man Lui. Visual object tracking using adaptive corre-
lation filters. In 2010 IEEE computer society conference on
computer vision and pattern recognition, 2010.

[3] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset,
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