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Abstract

We present a Siamese-like Dual-branch network based
on solely Transformers for tracking. Given a template and a
search image, we divide them into non-overlapping patches
and extract a feature vector for each patch based on its
matching results with others within an attention window.
For each token, we estimate whether it contains the target
object and the corresponding size. The advantage of the
approach is that the features are learned from matching,
and ultimately, for matching. So the features are aligned
with the object tracking task. The method achieves better or
comparable results as the best-performing methods which
first use CNN to extract features and then use Transformer
to fuse them. It outperforms the state-of-the-art methods
on the GOT-10k and VOT2020 benchmarks. In addition,
the method achieves real-time inference speed (about 40
fps) on one GPU. The code and models are released at
https://github.com/phiphiphi31/DualTFR.

1. Introduction
Visual Object Tracking (VOT) is a fundamental problem

in computer vision which aims at tracking an object of inter-
est in a video given its bounding box in the first frame [50].
This is generally addressed by looking for the location in
the search image whose features have the largest correla-
tion with those in the template image. Introducing of deep
Convolutional Neural Network (CNN) has notably boosted
the tracking accuracy because of the improved features for
matching [2, 4].

The core of VOT is to extract features that are not only
robust to appearance variation of the same object in dif-
ferent frames, but also discriminative among different ob-
jects. To achieve the target, most of the recent tracking
methods [27, 58, 7, 18] manually select “optimal” features
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Figure 1: Comparison of our full Transformer method (a)
and the existing “CNN+Transformer” based methods (b)
which first use CNN to extract features and then fuse them
with Transformer networks. Siamese-based [2] and DCF-
based [3, 12] methods are two popular pipelines in tracking.

from either shallow or deep layers of CNN, or their fusion
based on empirical experience [21]. But our experiments
show that the features computed in this way are not opti-
mal mainly because CNN is not specifically designed for
the matching purpose. Instead, it only looks for the pres-
ence of certain image features of the interested classes but
does not understand the structural dependency among re-
gions of different objects in the image.

Vision Transformer (ViT) [14], which divides an image
into regular tokens, adds positional embedding, and en-
codes each token based on token-to-token similarities, is
a promising approach to extract features for visual object
tracking because it is aware of the dependency among all
tokens (objects) in all encoding layers. In other words, it
extracts features from matching, and for matching, which is
consistent with the ultimate task.

Some recent works have already applied Transformer to
VOT [37, 47, 7, 54]. But most of them still heavily rely on
CNN to extract features and only use Transformer in the last
layer to fuse them by global attention. Although they have
dramatically boosted the tracking accuracy on benchmark
datasets, a natural question arises— can Transformer also
benefit the earlier feature extraction step since it can model
the structural dependency among different regions? We aim
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to answer this question in this work.
In this work, we present the first study of using pure

Transformers to extract features for tracking. To that end,
a Siamese-like dual-branch network is proposed as shown
in Fig. 1 (a). It divides the template and search images into
tokens and extracts a feature for each based on its matching
results with others in the same image. This is achieved by
mixed efficient local attention blocks and powerful global
attention blocks as shown in Fig. 2. In addition, we pro-
pose cross attention blocks which fuse the tokens between
the template and search image. This helps to learn features
which are robust to variation in videos. We do not use
cross attention in every layer because it is expensive and
not necessary— the template and search images are usually
from neighboring frames thus having similar patterns which
can be captured by the local and global attention blocks. We
find using a single cross attention block at the final layer is
sufficient in our experiments.

To achieve a good balance between accuracy and speed,
we use local attention model on the high-resolution feature
maps of most shallow layers, and global attention model
only on the low-resolution feature maps as shown in Fig.
2. This notably improves the inference speed (about 40fps
on a single 2080Ti GPU). On top of the computed features
for each token, we add a MLP layer to estimate whether
it is the target (classification head) and the size of the tar-
get box in current frame (regression head). Without bells
and whistles, this simple approach already outperforms the
state-of-the-art methods on multiple tracking benchmarks.
We provide extensive ablation studies to validate different
factors of the approach. In particular, we find that the use of
transformer to extract tracking features is critical to the suc-
cess of the approach. The main contributions of this work
are summarized as follows:

• We present the first attempt to use pure transformer
network to compute tracking features, which accord-
ing to our experiments, is superior to the dominant
“CNN+Transformer” based methods.

• We introduce a very simple dual-branch architecture
which consists of local attention blocks and global at-
tention blocks in each branch, respectively, and cross
attention block to fuse features between the template
and search image. The approach achieves a good ac-
curacy/speed trade-off.

• The proposed approach outperforms the state-of-the-
art methods, including the “CNN+Transformer” based
methods, on multiple tracking benchmarks. In addi-
tion, we provide a lot of empirical experience to re-
searcher/engineers in this field with extensive ablation
studies.

2. Related Work
2.1. Visual Object Tracking

We classify the state-of-the-art object trackers into two
classes. The first class is the Siamese-based methods which
generally consist of three steps: CNN-based feature extrac-
tion for the template and search images, feature correlation,
and a prediction head. For example, SiamFC [2], which
is the pioneer work of the series of Siamese methods, di-
rectly locates the target object at the position with the largest
correlation. SiamFC obtains promising results but it can-
not estimate the size of the bounding box. SiamRPN ap-
plies a proposal network [28, 41] to the correlation map
to find the object location and size which is more power-
ful than SiamFC. In addition, many works are introduced
to improve Siamese trackers such as Feature Pyramid Net-
work [27, 31], deeper backbone [58], anchor-free detection
[53, 19] and feature-alignment [59].

The second class of methods are DCF-based [23, 11, 3,
13, 1, 60] which utilize online DCF to classify the target. A
response map is generated by computing the correlation be-
tween the online DCF and the features in the search region.
Current DCF methods are also heavily dependent on CNN-
based deep features [4, 12] and linear correlation filter. Our
approach belongs to the first class. But different from the
previous works, we use fully Transformer networks to ex-
tract features.

2.2. Vision Transformer

The success of transformer in natural language process-
ing has drawn wide attention from the computer vision com-
munity. The main advantage of ViT [14] over CNN is
that the global dependency can be easily captured. A va-
riety of ViTs [61, 44, 33, 10, 57] have been proposed which
achieve state-of-the-art performance on many downstream
computer vision tasks, such as object detection, seman-
tic segmentation and human keypoint detection. Among
them, DeepVit [44] attempts to make the ViT structure go
deeper for more powerful representations. PVT [49] adopts
pyramid structure like CNNs to better adapt ViT to im-
age tasks. SwinT [33] restricts the self-attention operation
within a local window which avoids quadratic complexity.
CrossVit [6] proposes a dual-path transformer-based struc-
ture to extract multi-scale features for enhanced visual rep-
resentations.

2.3. Transformer in Object Tracking

Some recent works have already explored to use Trans-
former in VOT [47, 7, 54]. In general, they still use CNN to
extract features for the template and search image and use
Transformer to enhance the CNN features which is the main
difference from our fully transformer-based method. For
example, TransMTracker [47] attempts to enhance features
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Figure 2: The architecture of our dual-branch fully Transformer-based pipeline (DualTFR).

of the search image by correlating them with the features of
multiple historical templates. TransT [7] and Stark [54] en-
hance features of both the template image and search image
based on attention which is more powerful than the standard
linear correlation operation in Siamese tracker [2, 29, 27].
The above methods outperform the previous state-of-the-
art methods by a notable margin. Our work differs from
[47, 7, 54] in that we discard CNN and use pure Trans-
former to extract features.

3. Dual-branch TransFormeR (DualTFR)
This section presents the technical details of DualTFR.

Section 3.1 first gives an overview. Then we dive into
the details of DualTFR including local/global attention and
cross attention in section 3.2. In section 3.3, we describe
multiple variants of DualTFR .

3.1. Architecture Overview

As in Fig. 2, there are two branches in DualTFR, one
for the search image x and the other for the template image
z. Both are split into non-overlapping patches of equal size
(4×4 pixels), respectively. Each of the patches is treated as
a token. In total, there are H

4 × W
4 tokens, with each having

a 48 dimensional feature vector.

Transformer-based Feature Extraction We first apply
a linear projection layer to increase the feature dimension
from 48 to C for all tokens. Then the resulting template fea-
ture maps fz ∈ R4C×Hz

16 ×Wz
16 and search feature maps fx ∈

R4C×Hx
16 ×Wx

16 are fed to Local Attention Blocks (LAB). The
LAB weights are shared between the two branches. Note
that LAB only computes attention within a small window
with 7 × 7 tokens in order to reduce the computation time.

A number of LAB and patch merging layers are stacked as
shown in Fig. 2.

The patch merging layer is used to decrease the spatial
resolution and increase the channel dimension of the fea-
ture maps both by a factor of two. The resolutions of the
template and search feature maps after the LAB stage are
fz ∈ R4C×Hz

16 ×Wz
16 and fx ∈ R4C×Hx

16 ×Wx
16 , respectively.

Then the two feature maps are fed to two Global Attention
Blocks (GAB), respectively. Different from LAB, GAB
computes attention among all tokens of the same image
which allows to capture long-range dependency. Finally,
they go into the Cross Attention Block (CAB) which com-
putes attention among tokens from both images. The final
resolution of the search feature maps remains the same as
input. In practice, we concatenate the output features from
the last two layers. So the resolution of the output feature is
fout ∈ R8C×Hx

16 ×Wx
16 . We feed them to the prediction head,

which will be described in detail in the subsequent section,
to estimate the target location and shape.

Prediction Head Similar to Siamese-based trackers [30,
53], we add a prediction head to the output features fout to
estimate whether each token (location) contains the target
object and its offset and size. The first is formulated as a
binary classification task while the second as a continuous
regression task. In particular, the size of the object is rep-
resented by normalized width and height as in DETR [5].
Both are realized by multi-layer perception (MLP) network
which consists of three linear projection layers and ReLU
layers, respectively.

3.2. Local, Global and Cross Attention

Multi-Head Attention After the image is split into to-
kens, we use pure attention operators to extract features fol-
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Figure 3: Local Attention and Global Attention. MHA de-
notes multi-head attention. Attention computation only oc-
curs inside the attention window.

lowing ViT [14]. The Multi-Head Attention (MHA) is the
core of the approach so we briefly describe it to make the
paper self-contained. MHA takes its input in the form of
three parameters, known as Query Q, Key K and Value V.
The three parameters are similar in structure. MHA is com-
puted as:

MHA(Q,K,V) = Concat(H1, ...,Hnh
)WO, (1)

Hi = Attention(QWQ
i ,KWK

i ,VWV
i ), (2)

where WQ
i ∈ Rdm×dk ,WK

i ∈ Rdm×dk ,WV
i ∈ Rdm×dv ,

and WO ∈ Rnhdv×dm are learnable parameters. More de-
tails about attention can be referred to [45].

Local Attention The main difference between LAB and
GAB lies in the size of the window to compute attention.
For local attention, we only compute attention for tokens
among a small window M × M . In our experiments, M
is set to be 7. Suppose an image is split into N non-
overlapping local windows and each window has M × M
tokens. Then the computation cost is:

FLOPLocal = 4NC2 + 2(M ×M)2C, (3)

Global Attention Global attention compute attention for
all tokens in the same image. It has the capability to model
long-range dependency across the whole image. But it also
brings heavy computation burden. In specific, the computa-
tion cost is:

FLOPGlobal = 4NC2 + 2M2NC, (4)

where C is the number of channel dimension. The com-
plexity of global attention is quadratic to the total number
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Figure 4: The network structure of a Global or Local Atten-
tion Block. MLP denotes Multi-Layer Perception.

of tokens. In contrast, the complexity of the local attention
is linear to the total number of tokens. Since the number of
tokens M2 within a small local window is fixed, the whole
complexity is linear to the image size. As a result, we only
use global attention when the resolution of the feature map
is small.

Fig. 4 shows the structure of a GAB or LAB. Layer nor-
malization, multi-layer perception (MLP) and residual con-
nection are used as in standard transformers. Mathemati-
cally, it is computed as:

Ŷi = MHSA
(
LN

(
Xi−1

))
+Xi−1,

Xi = MLP
(

LN
(
Ŷi

))
+ Ŷi,

(5)

where Xi denotes the output from the block i and Yi de-
notes the output from MLP in block i. MLP represents
multi-layer perception. MHSA denotes multi-head self at-
tention. In practice, we add the shifted-window mechanism
following the [33] for enhanced multi-scale feature repre-
sentation.

Cross Attention After we compute features for the tem-
plate and search image, respectively, with LAB and GAB,
we propose dual-branch Cross Attention to fuse features be-
tween the two images. It is similar to GAB except that we
compute attention among tokens from both images. More
specifically, in template branch, the template tokens are as
key and value and search tokens are as query. Search branch
is on the contrary. The operation allows to smooth appear-
ance variations in neighboring frames which notably im-
proves the tracking accuracy according to our experiments.
Since we only use Cross Attention when the resolutions of
the feature maps are small, the additional computation bur-
den is not significant.

3.3. Architecture Details

In order to strike a good balance between tracking ac-
curacy and speed, we evaluate multiple parameter choices.
We choose the following hyper-parameters which achieves
40fps inference speed on a single Nvidia 2080Ti GPU. We
set the projection dimension C to be 128. The window size
in LAB is 7× 7. Each token has 4× 4 pixels. The numbers
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of layers in LA, GA, CA blocks are 10, 6, 4, respectively.
Details can be seen in Fig. 2.

4. Details, Datasets and Metrics
This section describes implementation details, datasets

and metrics, and the results of the state-of-the-art methods.
To validate the effectiveness of DualTFR, we all adopt fixed
template strategy with no other tricks except for VOT2021
benchmark.

4.1. Implementation Details

Training We train the model in two steps. In the first, we
pre-train LAB on the large scale ImageNet-1K [43] dataset
in the context of classification. The dataset contains 1.28M
training images from 1000 classes. Following [33], we em-
ploy an AdamW [34] optimizer and train the model for 300
epochs. The batch size is 512 and the learning rate is 10−5

with 0.05 weight decay.
Next, we finetune the whole model on the tracking

datasets. In particular, for each pair of search/template im-
ages from the training dataset, we compute the losses based
on the classification and regression outputs from the predic-
tion head. We use standard cross-entropy loss for the clas-
sification loss: all pixels within the ground-truth box are re-
garded as positive samples and the rest are negative. We use
GIoU [42] loss and L1 loss for the regression loss. We load
the pre-trained LAB parameters and initialize the rest of the
parameters by Xavier [17]. We use 8 tesla V100 GPUs and
set the batch size to be 480. The search area factor of tem-
plate and search image is set to 1.5 and 3, respectively. The
total sample pairs of each epoch is 40 million. The learning
rate is set to be 10−5 for the pre-trained weights, and 10−4

for the rest. The learning rate decays by a factor of 10 at the
40th epoch. We finetune the model for 100 epochs.

The training datasets include the train subsets of La-
SOT [15], GOT-10K [24], COCO2017 [32], and Track-
ingNet [38]. All the forbidden sequences defined by the
VOT2019 challenge are removed. The pairs of training im-
ages in each iteration are sampled from one video sequence.
On static images, we also construct an image pair by ap-
plying data augmentation like flip, brightness jittering and
target center jittering.

Inference Details During inference, the regression head
and classification head generate feature maps which contain
estimated box shapes and location confidence values. The
maximum confidence value and its corresponding bound-
ing box size are chosen to be final prediction result. The
template and search image size are set to 112 × 112 and
224×224, respectively. We also evaluate our approach with
two tricks on VOT2021 benchmark. The approach with the
first trick is the spatio-temporal version. Inspired by [54],

Figure 5: Comparisons on GOT-10k test set.

we obtain a global context vector from the search branch
feature in the previous frame by global average pooling and
add it as a new token to the template token set. The up-
date interval is set to one. The second is the online version,
an online correlation filter is added to the model. The re-
sponse map from online filter is added to the classification
map with the weight value of 0.2. Note that the two tricks
are complementary to our approach.

4.2. Evaluation

We compare DualTFR to the state-of-the-art trackers on
five tracking benchmarks. Moreover, we also report results
on the recently introduced VOT2021 benchmark.

GOT-10K We only compare to the trackers which use ad-
ditional training datasets for fair comparison. Results are
obtained from the official evaluation server. As shown in
Table 1 and Fig. 5, our tracker outperforms all competing
trackers in terms of three metrics and achieves the best AO
score of 73.5. We also compare to a transformer-based
tracker TransT [7], our tracker improves the SR75 by 1.8
points while raises the AO by 1.2 points. As for the fully
CNN-based Siamese correlation trackers, DualTFR outper-
forms Ocean [59] by 12.4 points in terms of AO. The re-
sults validate the values of using Transformers to extract
features.

TrackingNet TrackingNet contains 511 test video se-
quences. We report the Success (AUC) and Precision
(Pnorm) results in Table 2, DualTFR achieves comparable
results with STARK-S50 [54]. Please note that DualTFR
adopts 224 × 224 as search image size which is smaller
than 320×320 in STARK. Both network stride of DualTFR
and STARK is 16. Thus, we claim that the discriminative
ability in smaller image size of DualTFR is more powerful.
SiamAttn [56] is a Siamese tracker with attention generated
from convolution operation. DualTFR improves SiamAttn
by 4.9 points in terms of AUC and 3.2 points in precision.
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Trackers SiamFC++ [53] SiamRPN++ [27] ATOM[12] DiMP-50[3] D3S[35] Ocean[59] SAMN[52] STARK-S50 [54] TransT[7] Ours

GOT-10K AO↑ 59.5 51.8 55.6 61.1 59.7 61.1 61.5 67.2 72.3 73.5
SR.50↑ 69.5 32.5 63.4 71.7 67.6 72.1 69.7 76.1 83.7 84.8
SR.75↑ 47.9 61.6 40.2 49.2 46.2 47.3 52.2 61.2 68.1 69.9

Table 1: Results on GOT-10K. Top-3 results of each dimension (row) are colored in red, blue and green, respectively.

Trackers SiamRPN++ [27] SiamFC++ DiMP50 MAML-FCOS [46] SAMN [52] SiamAttn [22] PrDiMP50[13] STARK-S50 [54] Ours

TrackingNet
AUC(%)↑ 73.3 75.4 74.0 75.7 74.2 75.2 75.8 80.3 80.1

Pnorm(%)↑ 80.0 80.0 80.1 82.2 79.4 81.7 81.6 85.1 84.9

Table 2: Results on TrackingNet.

Trackers MDnet[39] ECO[11] ATOM SiamBAN [8] SiamCAR[19] MAML [46] PrDiMP [26] SiamFC++ Ocean [59] TransT [7] Ours

LaSOT
AUC ↑ 39.7 32.4 51.5 51.4 50.7 52.3 59.8 54.4 56.0 64.9 63.5

Pnorm ↑ 46.0 33.8 57.6 59.8 60.0 - 68.8 62.3 - 73.8 72.0
P↑ 37.3 30.1 50.5 52.1 51.0 - 60.8 54.7 56.6 69.0 66.5

Table 3: Results on LaSOT.

Trackers DPMT[51] SuperDiMP [1] [20] DiMP ATOM SiamMask [48] STM [40] DET50 [25] Ocean TransT[7] Stark-S50 [54] Ours

VOT-20
Acc.↑ 0.492 0.492 0.457 0.462 0.624 0.751 0.679 0.693 - 0.761 0.755
Rob.↑ 0.745 0.745 0.740 0.734 0.648 0.574 0.787 0.754 - 0.749 0.836
EAO↑ 0.303 0.305 0.274 0.271 0.321 0.308 0.441 0.430 0.495 0.462 0.528

Table 4: Results on VOT2020. We use AlphaRefine[55] to generate mask for VOT benchmark.

ATOM SiamRPN++ DiMP STMTrack [16] SiamRN [9] Ours

AUC 64.3 61.3 65.3 64.7 64.8 68.2

Table 5: Results on UAV123.

Baseline Realtime
EAO Acc. Rob. EAO Acc. Rob.

Baseline 0.525 0.748 0.826 0.509 0.746 0.815
ST 0.536 0.755 0.836 0.512 0.751 0.816
On 0.539 0.757 0.837 0.395 0.681 0.741

Table 6: Results on VOT2021. ST denotes the spatio-
temporal version of DualTFR. “On” denotes the online ver-
sion of DualTFR.

LaSOT LaSOT contains 280 long-term video sequences
for testing. The evaluation protocol we adopted is one-
pass evaluation. The success rate (AUC) and precision (P)
of recent sota trackers are presented in Table 3. DualTFR
achieves comparable results with TransT [7] and surpasses
remaining trackers in three metrics. The main reason that
DualTFR does not perform better than TransT lies in the
network stride. TransT adopts stride 8 and 32 × 32 output
size while DualTFR adopts stride 16 and 14×14 output size.
Smaller stride is preferred as addressed in [58]. DualTFR
can be improved with smaller stride in the future.

UAV123 UAV123 contains 123 aerial video sequences of
small objects captured from low latitude UAVs. One pass
evaluation protocol is adopted (AUC denotes success rate).
Table. 5 shows the results. Compared to the recent SOTA
trackers SiamRN[9] and STMTrack[16], DualTFR has over
3.4 improvements on AUC and achieves better performance
than the remaining trackers.

VOT2020 VOT2020 adopts an anchor-based evaluation
protocol which conducts multiple tests for one video se-
quence without reset operation. VOT2020 accepts axis-
aligned, rotated box or binary segmentation mask format.
The final metric for ranking is the Expected Average Over-
lap (EAO). Here, we use the alpha-refine [55] for mask
generation. The VOT2020 top performers are RPT [36]
and Ocean [59], two recent sota transformer-based track-
ers Stark [54] and TransT [7], and classical deep trackers
SiamRPN++ [27], ATOM [12], DiMP [3] and sota video
obeject segmentation method STM [40] are compared with
our tracker. Table. 4 shows that our tracker outperforms all
trackers on all three measures. In terms of EAO, DualTFR
outperforms the strongest SOTA Stark-50 by 2.3 points and
TransT by 3.3 points. DualTFR has larger improvement
over other methods. Note that transformer-based trackers
(Stark, TransT, DualTFR) are nearly or higher than 0.50
EAO, it shows the superiority of attention-based models to-
wards current fully CNN-based trackers.

VOT2021 The evaluation metrics and protocol on the
VOT2021 dataset is the same with VOT2020 benchmark.
A certain number of hard video sequences are chosen to re-
place the easy video sequences on VOT2020. As described
in Sec. 4.1, we presents three versions of DualTFR in Ta-
ble. 6 to show its wide applicability. DualTFR achieves very
competing performance on the VOT2021 benchmark.

5. Ablation Studies
In this section, we discuss the potential of the fully

attention-based model in visual object tracking by a num-
ber of ablation studies.
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Figure 6: Visualization results. The cosine similarities between center point of template and the whole search-region feature.
Features are from the the last layer of CNN backbone or the last block of LAB. (a) (b) (c) are referred to the results of
DualTFR, TransT, SiamRPN++. Note that the search area scale of DualTFR is smaller, but it does not influence our analysis.

5.1. Transformer Features vs. CNN Features

To investigate why transformer-based features are bet-
ter than the CNN-based features, we visualize the attention
maps of the template and the search images before cross at-
tention block. We select three trackers which also follow the
Siamese framework for comparison. DualTFR belongs to
the fully attention-based tracking. TransT is a representative
method which combines CNN-based feature extraction and
attention-based fusion, SiamRPN++ is a pure CNN-based
Siamese tracker.

Instance-Discriminative Features As shown in Fig. 6,
the visualization results of the CNN-based trackers (last
two rows) all have large responses on all instances hav-
ing similar appearance. See the two human instances in
245th frame in the basketball example. Note that the re-
sponse map indicates the similarity between the feature of
the template center point and all features from the search
image. As for the attention-based features, the similarities
between template center and distractor objects are much
lower which greatly enhances the discriminative ability of
tracking model. Another interesting phenomenon is that
the high responses inside the target instance gradually ex-
pands from pure CNN-based, CNN+transformer to fully
Transformer-based model. For the pure CNN-based tracker
SiamRPN++, the response values are very focus and nar-
row which means the template center only shares high sim-

ilarity with the exact center point of target instance. In
contrast, the response map of DualTFR has high values al-
most over the whole target area. It indicates that attention-
based feature network is more focus on inter-instance dif-
ference rather than intra-instance. We name it instance-
discriminative features. Thus, we argue that the attention-
based features learned from matching are more suitable for
instance-level tasks. In Table. 9, we replace the LAB and
GAB in DualTFR by ResNet-50 which has comparable pa-
rameters. The performance on GOT-10k drops 2.7 points
in terms of AO from 73.5% to 70.8%. This validates the
superiority of attention-based feature.

Attention-Based Progressive Fusion Manner As illus-
trated in TransT [7], the transformer-based fusion performs
better than linear convolution operation. Here, we further
stress that the progressive manner of attention-based model
are the main distinctions towards CNN-based pipelines.
The attention-based CABs can gradually exchange the in-
formation between template and search branch which al-
lows for the progressive refinement. As shown in Fig. 7, the
attention in search-region gradually focuses on the target
and distinct the distractors on the nearby spatial location. In
the meantime, the feature embedding of template is adaptive
to the search-region feature . More specifically, the template
feature refines itself to be a more abundant feature bank for
matching the search-region feature. In Table. 9, we replace
the CABs with depth-wise correlation which results in a di-
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Figure 7: Cross attention in template and search-region fea-
ture when the CAB goes deeper.

method Backbone Param. FLOPs EAO
SiamRPN++ ResNet-50 53.9M 59.5G 0.356

STARK-ST101 ResNet-101 42.4M 18.5 G 0.497
TransT ResNet-50 23M 19.1G 0.495

DualTFR LAB 44.1M 18.9G 0.528

Table 7: Comparison of parameters and flops. EAO de-
notes the performance on VOT2020 benchmark. The EAO
of SiamRPN++ comes from the SiamMargin in [25].

ImageNet.Pre ✓ ✗ ✓ ✓
Trans.Extraction ✓ ✓ ✗ ✓
Conv.Extraction ✗ ✗ ✓ ✗

Trans.Fusion ✓ ✓ ✓ ✗

Conv.Fusion ✗ ✗ ✗ ✓
AO ↑ 73.5 48.5 70.8 54.2

Table 8: Ablation study on GOT-10k. ✓denotes the choice
between two modules. ✗represents model does not choose
this module. Trans.Fusion denotes transformer-based fea-
ture fusion. Conv.Fusion denotes depth-wise correlation
in Siamese tracker. Extraction denotes the type of back-
bone. Trans. denotes transformer-based while Conv. de-
notes CNN-based.
rect drop of performance from 73.5% to 51.2% in GOT-10k.
This demonstrates the advantage of attention-based fusion.

5.2. ImageNet Pre-training Vs. Train from Scratch

For traditional deep trackers, the backbone with Ima-
geNet pretrained parameters is vital for learning tracking
representations. As shown in Table. 9, if the weight-sharing
LAB part is pre-trained in ImageNet dataset, the whole per-
formance rises from 48.5% to 73.5%. This indicates that
the fully transformer-based pipeline needs the prior knowl-
edge from ImageNet pretraining. However, it brings extra
training burden which we hope to bridge the gap between
training from scratch and ImageNet-pretraining.

5.3. Impacts of LAB, GAB and CAB

We further investigate different configurations of blocks.
For convenience and fair comparison, the ablation settings
are all train-from-scratch and follow GOT-10k training pro-
tocol. With 2 GABs connected to the LAB, the perfor-
mance of AO rises from 42.1 to 46.1 comparing to no

LAB (2,2,6) (2,2,6) (2,2,6) (2,2,6) (2,2,18)
GAB ✗ ✗ 2 4 4
CAB 4 2 4 4 4

Param. 34.1 M 29.2 M 39.2 M 44.1 M 72.4 M
FLOPs. 14.2 M 11.3 G 16.5 G 18.9 G 30.0 G
AO ↑ 42.1 40.4 46.1 48.5 53.2

Table 9: Ablation study of LAB, GAB, and CAB in GOT-
10k. The triplets of LAB denotes the number of blocks in 3
different stages ( See Fig. 2 ). ✗denotes not used.

GAB settings. This is mainly because the global mod-
elling enhances the feature representation of LAB. More
stacked CABs which means more comprehensive feature
fusion also brings improvements (42.1 to 46.1). Though
more LABs can provide better feature extraction ability, the
parameters and flops increases sharply. With 4.7 improve-
ments in AO, 9 LABs brings extra 15M parameters and 12G
flops. For a trade-off, we choose the fouth settings which
has comparable parameters and flops to STARK to imple-
ment our DualTFR.

5.4. Future Work

As shown in Table 7, DualTFR has comparable param-
eters and flops while outperforms the STARK in VOT2020
benchmark. It is worth noting that the parameters of Du-
alTFR is twice of the TransT (44.1M vs. 23M ). It is mainly
due to the redundant independent module design. How-
ever, Siamese-style design may results in large computation
flops. Inspired by ViT design manner, a unified dual-path
block which can be stacked to formulate the whole tracking
model may reduce the parameters and flops. In the future,
DualTFR can be implemented by a more integral block.

6. Conclusion
In this work, we propose a dual-branch fully

transformer-based tracking architecture. Through the
dedicated design of GAB, LAB and CAB modules, we
achieve a good balance between the computation cost
and tracking performance. Furthermore, we prove the
superiority of fully attention-based paradigm to the tra-
ditional CNN-based tracking paradigm. In the future,
the fully transformer-based tracking model can further
be more light-weight through dedicated block design.
Extensive experiments show that DualTFR performs at the
state-of-the-art level while running at a real-time speed. We
hope this work could provides some insights on developing
more powerful fully transformer-based trackers.
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