
A. Motivations And Details Behind TREK-150

In this section, we provide more motivations and de-
tails behind the construction of the TREK-150 benchmark
dataset.

First of all, we remark that TREK-150 has been designed
for the evaluation of visual tracking algorithms in FPV re-
gardless of their methodology. Indeed, this paper does not
aim to provide a large-scale dataset to improve the perfor-
mance of deep learning based trackers. Instead, its goal is
to assess the impact of the first-person viewpoint on current
trackers and, to the best of our knowledge, this analysis was
never done before. Hence, as a first step towards providing
an answer to such a point (which is also highlighted in the
title of the paper), we focused on benchmarking the track-
ing progress made by the computer vision community in the
last years.

Video Collection. The video sequences contained in
TREK-150 have been sampled from the EPIC-Kitchens-55
(EK-55) dataset [19]. This has been done because EK-55
is currently the largest dataset for understanding human-
object interactions in FPV (it provides up to 55 hours of
human-object interaction examples). Thanks to its dimen-
sion, it is the only database that provides a significant
amount of diverse interaction situations between various
people and several different types of objects. Hence, it al-
lowed us to select suitable diverse tracking sequences that
reflect the common scenarios tackled in FPV tasks.

Bounding Box Annotations. To represent the spatial lo-
calization of objects, we employed axis-aligned bounding-
boxes. This design choice for the TREK-150 benchmark is
supported by the fact that this representation is largely used
in many FPV pipelines [32, 34, 33, 19, 45, 83, 79]. There-
fore, computing performance results based on such allows
us to correlate them to the results of other FPV tasks that
employ the same object representation. Hence, we can bet-
ter highlight the impact that trackers would have in such
contexts. Moreover, we would like to highlight the dif-
ficulty that the FPV setting poses on the development of
more sophisticated annotations for object categories that ap-
pear commonly in FPV scenarios. Figure 6 shows some ex-
amples of these. The first two images from the left show
the objects “cheese” and “onion” (these are considered as
single objects according to the EK-55 annotations [19])
which prevent the determination of the angle for an oriented
bounding-box, or an even accurate segmentation mask due
to their spatial sparsity. The two images on the right present
objects for which providing a segmentation is very ambigu-
ous. Indeed, most of the pixels in the image area of the knife
(third image) belong actually to foam, while the heavy mo-
tion blur happening on the object of the fourth image (where

the target is a bottle) prevents the definition of the actual
pixels belonging to the object. In all these scenarios, axis-
aligned bounding-boxes result in robust target representa-
tions that provide a consistent delineation of the object. For
these motivations, and to make representations and annota-
tions consistent across the whole dataset, we employed such
annotation representations.

Moreover, the latest progress of visual tracking algo-
rithms on various benchmarks that use this state repre-
sentation [91, 66, 35, 59, 67, 31, 41] demonstrates that it
provides sufficient information about the target for consis-
tent and reliable performance evaluation. Furthermore, us-
ing more sophisticated target representation would have re-
stricted our analysis [86, 60, 28, 10] since the majority of
state-of-the-art trackers output just axis-aligned bounding
boxes [11, 23, 40, 68, 6, 7, 39, 21, 46, 80, 54, 84, 71, 53, 97,
22, 8, 93, 24, 42, 92, 18, 16, 98, 9].

Finally, we point out that the proposed axis-aligned
bounding-boxes have been carefully and tightly drawn
around the visible parts of the objects. Figure 7 shows some
examples of the quality of the bounding box annotations of
TREK-150 in contrast to the ones available in the popular
OTB-100 tracking benchmark.

Frame Rate. The videos contained in TREK-150 have
a frame rate of 60 FPS. This is inherited from the EK-55
dataset [19], from which videos are sampled. According to
the authors [19], EK-55 has been acquired with such a set-
ting because of the proximity of the camera point of view
and the main scene (i.e. manipulated objects), which causes
very fast motion and heavy motion blur when the camera
wearer moves (especially when he/she moves the head).

We empirically evaluated the fast motion issue by assess-
ing the average normalized motion happening on the frames
that include fast motion (FM) (we computed them by con-
sidering the automatic procedure defined in [91, 67] to as-
sign the FM attribute). Such a motion quantity has been
computed as the distance between the center of two consec-
utive ground-truth bounding boxes normalized by the frame
size. Considering TREK-150 with the videos at 30 FPS,
such a value achieves 0.075. This is higher than the 0.068
obtained for OTB-100, the 0.033 of UAV123, or the 0.049
of NfS considered at 30 FPS. These comparisons demon-
strate that the FPV scenario effectively includes challenging
scenarios due to the faster motion of targets/scene. Con-
sidering the 60 FPS frame rate, the fast motion quantity of
TREK-150 is reduced to 0.062, which is comparable to the
values obtained in other third-person tracking benchmarks.

Sequence Labels. To study the performance of trackers
under different aspects, the sequences of TREK-150 have
been associated with one or more of 17 attributes that indi-
cate the visual variability of the target in the sequence (see



Figure 6: Examples of target objects contained in TREK-150 that are difficult to represent with more sophisticated represen-
tations (e.g. rotated bounding box or segmentation mask). The first two images from the left show objects such as “cheese”
and “onion” which prevent the determination of the angle for an oriented bounding box, or an accurate segmentation mask.
The last two images present objects which prevent a consistent definition of a segmentation.
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Figure 7: Examples of the quality of the bounding box
annotations contained in TREK-150 in comparison with
the ones available in the popular OTB-100 benchmark.
TREK-150 provides careful and high-quality annotations
that tightly enclose all the target objects.

Table 2 of the main paper for the details). The extended
usage of this practice [91, 66, 35, 52, 67, 31, 41] showed
how this kind of labeling is sufficient to estimate the track-
ers’ performance on particular scenarios. We therefore fol-
low such an approach to associate labels on TREK-150’s
videos. However, we argue that, by using this labeling set-
ting, attention must be paid to how trackers are evaluated.
The standard OPE protocol, which has been generally used
to perform such evaluations, could lead to less accurate es-
timates. For example, it could happen that a tracker would
fail for some event described by an attribute (e.g. FOC)
in the first frames of a video, but that the sequence also
contains some other event (e.g. MB) in the end. With the
score averaging procedure defined by the OPE protocol, the
low results achieved due to the first event would set low
scores also for the second event, while the tracker failed
just for the first one. Therefore, the performance estimate
for the second attribute would not be realistic. We believe a
reasonable option is to use a more robust evaluation proto-

col such as the multi-start evaluation (MSE). Thanks to its
points of initialization which generate multiple diverse sub-
sequences, this protocol allows a tracker to better cover all
the possible situations happening along the videos, both for-
ward and backward in time. All the results achieved on the
sub-sequences are then averaged to obtain the overall scores
on a sequence. We think the scores computed in this way
to be more robust and accurate estimates of the real perfor-
mance of the trackers. Hence, in this work, we follow such
an approach to evaluate trackers over sequence attributes.

Single Object Tracking. In this paper, we restricted our
analysis to the tracking of a single object per video. This has
been done because in the FPV scenario a person interacts
through hands with one or two objects at a time in general
[19] (if a person interacts with two objects they can be still
tracked by two single-object trackers). Moreover, focusing
on a single object allows us to analyze better all the chal-
lenging and relevant factors that characterize the tracking
problem in FPV. We believe that future work could investi-
gate the employment of multiple object tracking (MOT) so-
lutions [25] for a general understanding of the position and
movement of all objects visible in the scene. We think that
the study presented in this paper will give useful insights
even for the development of such methods.

Differences With Other Tracking Benchmarks. We be-
lieve that the proposed TREK-150 benchmark dataset of-
fers complementary features with respect to existing visual
tracking benchmarks.

Table 1 and Figure 2(a) and (b) of the main paper show
that TREK-150 provides complementary characteristics to
what is available today to study the performance of visual
trackers. Particularly, our proposed dataset offers different
distributions of the common challenging factors encoun-
tered in other datasets. For example, TREK-150 includes a
larger number of examples with occlusions (POC), fast mo-
tion (FM), scale change (SC), aspect ratio change (ARC),
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Figure 8: Comparison between TREK-150 (last column of plots) and other popular visual tracking benchmarks on the
distributions computed for different bounding box characteristics. Each column of plots reports the distribution of bounding
box sizes, scale changes, and aspect ratio change (the x-axis of each plot reports the range of the bounding box statistic).

illumination variation (IV), and motion blur (MB), while it
provides a competitive number of scenarios for low resolu-
tion (LR), full occlusion (FOC), deformable objects (DEF),
and presence of similar objects (SOB). Additionally, even
though the 4 new attributes high resolution (HR), head mo-
tion (HM), one-hand interaction (1H), two-hands interac-
tion (2H), define particular FPV scenarios, we think that
they can be of interest even for the visual tracking com-
munity. For example, as shown by the second row of im-
ages of Figure 7, 1H and 2H can be considered as attributes
that define different levels of occlusion, as objects manip-
ulated with two hands generally cause more extended hid-
ing of the targets. Besides these sequence-level features,
TREK-150 offers up to 34 target categories which, to the
best of our knowledge, have never been studied. As shown
by the Figures 6 and 7, these objects have challenging ap-
pearances (e.g. transparent or reflective objects like lids,
bottles, or food boxes) and shapes (e.g. knives, spoons, cut
food) that change dramatically due to the interaction or mo-
tion induced by the camera viewer.

We additionally computed some statistics on the bound-
ing box ground-truth trajectories contained in the proposed
dataset. Figure 8 reports these distributions. For compar-
ison, we report the distributions computed on the popular
tracking benchmarks VOT2019, UAV123, OTB-100. As

can be noted, our dataset exhibits different distributions, and
thus offers different behaviors of the target appearances and
motions. Particularly, observing the first plot of the last col-
umn, it can be noted that TREK-150 has a wider distribu-
tion of bounding box sizes, hence making it suitable for the
evaluation of trackers with targets of many different sizes.
Particularly, TREK-150 has a larger number of bounding
boxes with greater dimension. The plot just below the first
shows that TREK-150 provides more references to assess
the trackers’ capabilities in tracking objects that become
smaller. Finally, the last plot shows a wider distribution
for the aspect ratio change, showing that TREK-150 offers
a large variety of examples to evaluate the capabilities of
trackers in predicting the shape change of targets.

Additionally to these characteristics, we think TREK-
150 is interesting because it allows the study of visual object
tracking in unconstrained scenarios of every-day situations.

B. Tracker Details

Generic Object Trackers Details. Table 5 reports some
additional information about the 31 considered generic-
object trackers such as: venue and year of publication;
type of image representation used; type of matching strat-
egy; employment of target model updates; and category of
tracker according to the classification of [61]. For each



Table 5: Details of the trackers involved in our evaluation. In the Image Representation column the acronyms stand for: CNN
- Convolutional Neural Network; HOG - Histogram of Oriented Gradients; Pixel - Pixel Intensity; Color - Color Names or
Intensity. Regarding the Matching strategy column the acronyms stand for: CF - Correlation Filter; CC - Cross Correlation;
T-by-D - Tracking by Detection; Reg - Regression; Had - Hadamard Correlation. The ✓ symbol in the Model Update column
expresses the target model update during the tracking procedure. The last column reports the tracking method class according
to [61] (ST - Short-Term trackers, LT - Long-Term trackers).

Tracker Venue Image Representation Matching Model Update [61] Class
MOSSE [11] CVPR 2010 Pixel CF ✓ ST0

DSST [23] BMVC 2014 HOG+Pixel CF ✓ ST0

KCF [40] TPAMI 2015 HOG CF ✓ ST0

MDNet [68] CVPR 2016 CNN T-by-D ✓ ST1

Staple [6] CVPR 2016 HOG+Color CF ✓ ST0

SiamFC [7] ECCVW 2016 CNN CC ✗ ST0

GOTURN [39] ECCV 2016 CNN Reg ✗ ST0

ECO [21] CVPR 2017 CNN CF ✓ ST0

BACF [46] ICCV 2017 HOG CF ✓ ST0

DCFNet [85] ArXiv 2017 CNN CF ✓ ST0

VITAL [80] CVPR 2018 CNN T-by-D ✓ ST1

STRCF [54] CVPR 2018 HOG CF ✓ ST0

MCCTH [84] CVPR 2018 HOG +Color CF ✓ ST0

DSLT [58] ECCV 2018 CNN CC ✓ ST0

MetaCrest [71] ECCV 2018 CNN CF ✓ ST1

SiamRPN++ [53] CVPR 2019 CNN CC ✗ ST0

SiamMask [86] CVPR 2019 CNN CC ✗ ST0

SiamDW [97] CVPR 2019 CNN CC ✗ ST0

ATOM [22] CVPR 2019 CNN CF ✓ ST1

DiMP [8] ICCV 2019 CNN CF ✓ ST1

SPLT [93] ICCV 2019 CNN CF ✓ LT1

UpdateNet [96] ICCV 2019 CNN CC ✓ ST0

SiamFC++ [92] AAAI 2020 CNN CC ✗ ST0

GlobalTrack [42] AAAI 2020 CNN Had ✗ LT0

PrDiMP [24] CVPR 2020 CNN CF ✓ ST1

SiamBAN [16] CVPR 2020 CNN CC ✗ ST0

D3S [60] CVPR 2020 CNN CF ✗ ST0

LTMU [18] CVPR 2020 CNN CF/CC ✓ LT1

Ocean [98] ECCV 2020 CNN CC ✗ ST0

KYS [9] ECCV 2020 CNN CF ✓ ST1

TRASFUST [29] ACCV 2020 CNN Reg ✗ ST1

tracker, we used the code publicly available and adopted
default parameters for evaluation purposes.

FPV Trackers Details. In this section, we provide de-
tails on the LTMU-F and LTMU-H FPV trackers consid-
ered as baselines in our study. For a better understanding,
we briefly recap the processing procedure of the LTMU
tracker [18]. After being initialized with the target in the
first frame of a sequence, at every other frame LTMU first
executes the short-term tracker DiMP [8] that tracks the tar-
get in a local area (based on the target’s last known position)
of the frame. The image patch extracted from the bounding
box prediction of DiMP is evaluated by an online-learned
verifying module which outputs a probability estimate for
the target being contained in the patch. Such an estimate
is employed to decide if the short-term tracker is tracking
the target or not. If it is, the box predicted by the short-
term tracker is given as output for the current frame. In the

other case, a re-detection module is executed to search for
the target in the global frame. The detector returns some
candidate locations to contain the target and each of these
is checked by the verification module. The candidate patch
with the highest confidence is given as output and used as a
new target location to reset the short-term tracker.

In our setting, we employ FPV-based detectors to im-
plement such a re-detection module. For LTMU-F, we em-
ployed the EK-55 trained Faster R-CNN [19]. Among the
many detections given as output, this module has been set to
retain the first 10, considering a ranking based on the scores
attributed by the detector to each detection. If no detection
is given for a frame, the last available position of the target
is considered as candidate location. For LTMU-H, we em-
ploy the object localization contained in the hand-object in-
teraction detections given by the FPV version of Hands-in-
contact [79] to obtain the target candidate locations. Such
a solution [79] is implemented as an improved Faster R-
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Figure 9: Visual representation of the LTMU [18] scheme performed at every frame that has been adapted for the development
of the baseline FPV trackers LTMU-F and LTMU-H.

CNN which is set to learn to provide, at the same time, the
localization of hands and objects, and their state of interac-
tion. As before, if no detection is given for a frame, the last
available position of the target is considered as candidate
location. For both methods, the original pre-trained models
(made available by the authors) which consider FPV data
have been used. The described setups, which the common
scheme is presented in Figure 9, give birth to two trackers
that implement conceptually different strategies for FPV-
based object localization. Indeed, the first solution reasons
just to find objects in the scene, while the second reasons
in terms of the interaction happening between the camera
wearer (i.e. hands) and the objects. We would like to re-
mark that other FPV trackers (such as the ones described in
Section 2 of the main paper) have not been tested on TREK-
150 because their implementations are not available.

Implementation Details. The evaluations were
performed on a machine with an Intel Xeon E5-
2690 v4 @ 2.60GHz CPU, 320 GB of RAM, and
an NVIDIA TITAN V GPU. We considered the
Python publicly available implementations of each
tracker and adopted default parameters. Annota-
tions, results of the trackers, and code are available at
https://machinelearning.uniud.it/datasets/trek150/.

C. Experimental Details

Details On The Generalized Robustness. The robust-
ness measure has been first introduced in [51]. This metric
was defined as the number of drifts (i.e. the complete non-
overlap between predictions and ground-truths) performed
by a visual tracking algorithm. In the last iteration of the
VOT challenge [47], such a robustness measure has been
revised and defined as the extent of a tracking sequence be-
fore the tracker’s failure. Such an extent is determined as the
number of frames positively tracked normalized by the total
number of frames in the sequence. The failure event is trig-
gered when the overlap between the predicted and ground-
truth bounding-boxes becomes lower than a fixed threshold
(the value 0.1 is used in [47]). In simpler words, this mea-
sure expresses the fraction of a tracking sequence that is
correctly tracked from its beginning. We think this measure
is of special interest to the FPV community. Indeed, it can

assess the ability of a tracker to maintain reference in time
to the target objects. Since many FPV tasks are devoted to
understand the action performed by the camera viewer or
its interaction with objects [32, 34, 33, 19, 73], having so-
lutions capable of maintaining temporally longer references
to target nouns can be advantageous to model such events.
However, we believe that having a single fixed threshold is
restrictive, as different applications can make different as-
sumptions on the concept of tracking failure. Therefore,
following [91] which proposed to evaluate trackers with
plots computed after thresholding bounding-box overlaps
with different values, we propose to build a plot considering
different overlap thresholds for the determination of failure
in the robustness measure [47]. This leads to the creation of
the Generalized Success Robustness Plot (Figure 3(c) of the
main paper) which reports the different robustness scores
for the different thresholds. The latters have been studied
just in the range [0, 0.5] because it is common practice, in
the computer vision literature, to consider overlaps greater
than 50% as positive predictions. Notice that failures could
be also defined in terms of center error. In this paper, we fo-
cused on overlap-based failures since bounding-box overlap
has been shown to be superior for target localization accu-
racy [99], but future work will investigate the employment
of the center error as this kind of bounding box distance
is used in FPV tasks [79]. Moreover, to compare trackers
with a single score, following [91] and [67], we compute
the AUC of the Generalized Success Robustness Plot which
we refer as to generalized success robustness (GSR). This
value expresses the average of all the scores obtained with
the different thresholds. In other words, the GSR score ex-
presses the average successful extent of the predictions of a
tracker.

Details On The Evaluation Protocols. In this section, we
give further details on the experimental protocols used for
the execution of the trackers.

The one-pass evaluation (OPE) protocol, which is de-
tailed in [91], consists of two main stages: (i) initializing a
tracker with the ground-truth bounding box of the target in
the first frame; (ii) let the tracker run on every subsequent
frame until the end of the sequence and record predictions
to be considered for the evaluation. For each sequence, pre-
dictions and ground-truth bounding boxes are compared ac-

https://machinelearning.uniud.it/datasets/trek150/
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Figure 10: SS, NPS, and GSR performance of the 33 benchmarked trackers on the proposed TREK-150 benchmark under
the MSE protocol. The general low performances confirms the conclusions achieved with the OPE protocol.

cording to the employed measures (only for frames where
ground-truths are present) to obtain the performance scores.
The overall scores, presented in brackets in Figure 3 of the
main paper, are obtained by averaging the scores achieved
for every sequence.

For the implementation of the multi-start evaluation
(MSE) protocol, we followed the details given in [47]. For
each sequence, different points of initialization (called an-
chors) separated by 2 seconds (in our setting every 120
frames) are defined. Anchors are always set in the first and
last frame of a sequence. Some anchors are shifted forward
for a few frames to obtain a more consistent bounding-box
for tracker initialization. A tracker is run on each of the
sub-sequences yielded by the anchor (in total 1032 sub-
sequences are generated), either forward or backward in
time depending on the longest sub-sequence the anchor gen-
erates. The tracker is initialized with the ground-truth in
the first frame of the sub-sequence and let run until its end.
Then, similarly as for the OPE, predicted and ground-truth
bounding boxes are compared to obtain the performance
scores for each sub-sequence. Scores for a single sequence
are computed by a weighted average where the scores of
each sub-sequence are weighted by its length (as number of
frames). Similarly, the overall scores for the whole dataset
(which are shown in Figure 10) are obtained by a weighted
average where each sequence’s score is weighted by the
number of frames in that sequence.

The real-time evaluation (RTE) protocol has been imple-
mented following the details in [48, 55]. Similar to the OPE
protocol, a tracker is initialized with the ground-truth in the
first frame of a sequence. Then the tracker is presented
with a new frame only after its execution over the previ-
ous frame has finished. The new presented frame is the last
frame available for the time instant in which the tracker be-
comes ready to be executed, considering that frames occur
regularly according to the frame rate of the video. In other
words, all the frames occurring in the time interval between
the start and end time instants of the tracker’s execution are
skipped. For all the frames skipped, the last bounding box
given by the tracker is used as location for the target in such

frames. The sequence and overall scores are ultimately ob-
tained as for the OPE protocol.

Experiments On The Impact of Trackers In FPV. In
this section, we report more details on the experiments per-
formed to evaluate the impact of trackers in FPV tasks (pre-
sented in the paragraph “Do Trackers Already Offer Any
Advantage in FPV?” of Section 6 of the main paper.)

In the first experiment, we assessed the capabilities of
continuous object localization of an object detector, as
this method is usually exploited in many FPV pipelines.
We executed the EK-55 trained Faster-R-CNN [19] on all
the frames of TREK-150, by recording in each frame the
bounding box of the detection having the same class of the
target and the highest confidence score. Such bounding box
predictions were then compared to the ground truth anno-
tations using the considered tracking evaluation measures.
This experimental strategy respects the evaluation proce-
dure of the OPE protocol. In this way, we can compare
the performance of the tracking approach and the detection
approach in providing localization and temporal reference
of/to objects.

In the second experiment, we evaluated the impact of
trackers in a video-based hand-object interaction detection
setting. Since this paper is focused on objects (visual object
tracking), we restricted our study in evaluating the detec-
tion of the objects involved in the interactions. To this aim,
we first built tracks of hand-object interactions over the se-
quences of TREK-150. The hand-object interaction detec-
tor Hands-in-contact [79] has been executed to obtain sparse
interaction detections that involved the object defined by the
ground-truths of TREK-150. Clusters of detections have
been then set to form separate tracks if the interval between
two detections was longer than 30 frames. The missing de-
tections within a cluster have been filled with the TREK-
150’s object ground-truth bounding boxes and the most fre-
quent interaction state (i.e. if the object was in interaction
with the left hand, the right hand, or both) appearing in the
cluster. Once had these references, we ran the trackers in an
OPE-like fashion. Each tracker was initialized in the first



Table 6: Performance achieved by the 33 benchmarked
trackers on TREK-150 using the RTE protocol.

Tracker FPS SS NPS GSR
Ocean 21 0.365 0.358 0.294
SiamBAN 24 0.360 0.366 0.313
SiamRPN++ 23 0.362 0.356 0.293
PrDiMP 13 0.352 0.349 0.243
DiMP 16 0.336 0.331 0.224
SiamMask 23 0.335 0.333 0.298
SiamFC++ 45 0.330 0.331 0.308
SiamDW 32 0.327 0.334 0.317
KYS 12 0.327 0.317 0.237
ATOM 15 0.319 0.312 0.179
UpdateNet 21 0.311 0.297 0.295
DCFNet 49 0.299 0.286 0.335
TRASFUST 13 0.296 0.270 0.185
SiamFC 34 0.293 0.295 0.280
LTMU 8 0.284 0.257 0.169
D3S 16 0.276 0.263 0.182
BACF 9 0.276 0.262 0.234
SPLT 8 0.265 0.247 0.203
STRCF 10 0.264 0.250 0.218
DSLT 7 0.260 0.234 0.211
ECO 15 0.252 0.231 0.173
GlobalTrack 8 0.253 0.227 0.139
MCCTH 8 0.251 0.231 0.232
Staple 13 0.249 0.236 0.169
GOTURN 44 0.247 0.242 0.119
MOSSE 26 0.227 0.190 0.141
LTMU-H 4 0.213 0.174 0.161
MetaCrest 8 0.207 0.175 0.165
LTMU-F 4 0.205 0.161 0.162
VITAL 4 0.204 0.165 0.158
DSST 2 0.191 0.145 0.161
KCF 6 0.186 0.157 0.177
MDNet 1 0.185 0.140 0.161

frame of a track with the object detection given by Hands-
in-contact [79], and then let run for the other frames of the
track. We then evaluated the performance in a track by the
normalized count of frames having intersection-over-union
≥ 0.5 with the object’s ground-truth. The overall result is
obtained by averaging the outcomes of all tracks. This ex-
perimental procedure gives us an estimate of the accuracy
of the hand-object interaction detection system if trackers
would have been included in its pipeline. More interest-
ingly, it allows also to build a ranking of the trackers based
on the results of a downstream application.

D. Additional Results
MSE Protocol Results. Figure 10 reports the overall per-
formance of the 33 benchmarked trackers on TREK-150 us-
ing the MSE protocol. The overall low performances of
all the trackers confirm the conclusions achieved using the
OPE protocol. The FPV setting introduces challenging fac-
tors for current visual trackers.

Qualitative Examples The first 7 rows of images of Fig-
ure 11 present qualitative results of 10 of the generic-
object trackers in comparison with the ground-truth (which

Table 7: Performance of the offline trackers SiamFC and
SiamRPN++ on a subset of 50 sequences of TREK-150
without and with fine-tuning on the remaining 100 videos.

Tracker Fine-tuning OPE MSE
SS NPS GSR SS NPS GSR

SiamFC ✗ 0.311 0.332 0.317 0.307 0.317 0.307
✓ 0.267 0.275 0.278 0.287 0.305 0.292

SiamRPN++ ✗ 0.384 0.395 0.377 0.367 0.385 0.333
✓ 0.348 0.407 0.313 0.336 0.406 0.314

is identified by the white rectangles). The action per-
formed by the camera wearer is also reported for each
sequence. The remaining 4 rows show the qualitative
performance of the FPV baseline trackers LTMU-F and
LTMU-H in comparison with LTMU and the ground-
truth. For a better visualization, a video can be found at
https://youtu.be/oX1nICHgEJM.

Per Attribute/Action Results. Figure 12 presents the SS,
NPS, and GSR scores achieved by the 33 trackers consider-
ing the attributes assigned to sequences. Similarly, Figures
13 and 14 report the results for the whole batch of trackers
with respect to action verbs and target nouns.

RTE Protocol Results. Table 6 reports the FPS, SS, NPS,
and GSR performance of all 33 benchmarked trackers ob-
tained using the RTE protocol. As stated in the main paper,
offline siamese trackers emerge as the best solution in this
scenario. Online deep discriminative trackers achieve com-
parable results in SS and NPS, but demonstrate a larger drop
in performance in the GSR score, showing that online learn-
ing mechanisms influence this performance in the real-time
setting.

Adaptation Of Offline Trackers. Many current visual
trackers employ deep learning architectures. Among these,
trackers based on siamese neural networks emerged as the
most popular approaches nowadays. These trackers are
said to be offline (e.g. SiamFC [7], SiamRPN++ [53],
SiamMask [86], SiamBAN [16]) because they are trained to
track objects on large-scale tracking dataset [26, 67, 41, 31],
and do not use online adaptation mechanisms at test time.
In our evaluation, such trackers have been employed as they
are described and trained in their original paper. Given their
generally low performance, one could wonder how these
trackers perform if knowledge about the FPV domain is ex-
ploited for learning. Our TREK-150 dataset, which is de-
signed to evaluate the progress of visual tracking solutions
in FPV, does not provide a large-scale database of learn-
ing examples as needed by these methods. Instead, it well
aligns with real-world datasets where millions of frames are
not available for training. In such scenarios, the reason-
able options the machine learning community suggest are

https://youtu.be/oX1nICHgEJM


Figure 11: Qualitative results of some of the studied trackers on the proposed TREK-150 dataset. The first 7 rows of images
show the qualitative performance of 10 of the selected generic-object trackers, while the last 4 rows show the results of the
baseline FPV trackers LTMU-F and LTMU-H in comparison with LTMU. For a better visualization, a video can be found at
https://youtu.be/oX1nICHgEJM.

https://youtu.be/oX1nICHgEJM


to use trackers as they are because of their general knowl-
edge, or to adapt them through fine-tuning using a smaller
training set. We tried the second strategy by randomly split-
ting TREK-150 in a training and test set of 100 and 50
videos respectively. We fine-tuned the popular offline track-
ers SiamFC and SiamRPN++ on the training set according
to their original learning strategy. We then tested the fine-
tuned versions on the test set and the results are reported in
Table 7. It shows that fine-tuning leads to substantial over-
fitting that cause the performance to drop in general. These
outcomes prove the decision to evaluate offline trackers as
they are is the right one given the current lack of large-scale
FPV tracking datasets. Moreover, given the overall results
presented in this paper, we hypothesize that visual tracking
in FPV will require more than just large-scale training. We
hope the results presented in this section will encourage the
community to work on domain adaptation techniques for
offline trackers that are currently starting to be investigated
[30].



Figure 12: SS, NPS, and GSR results per sequence attribute achieved by the 33 benchmarks on the TREK-150 benchmark.



Figure 13: SS, NPS, and GSR results achieved by the 33 benchmarks on the TREK-150 benchmark considering each verb
associated to the action performed by the camera wearer.



Figure 14: SS, NPS, and GSR results achieved by the 33 benchmarks on the TREK-150 benchmark considering the different
target categories.


