
LiteEdge: Lightweight Semantic Edge Detection Network

Hao Wang, Hasan Mohamed, Zuowen Wang, Bodo Rueckauer*, and Shih-Chii Liu
Institute of Neuroinformatics, University of Zurich and ETH Zurich

Winterthurerstrasse 190
CH-8057 Zurich, Switzerland

shih@ini.uzh.ch

Abstract

Scene parsing is a critical component for understanding
complex scenes in applications such as autonomous driving.
Semantic segmentation networks are typically reported for
scene parsing but semantic edge networks have also become
of interest because of the sparseness of the segmented maps.
This work presents an end-to-end trained lightweight deep
semantic edge detection architecture called LiteEdge suit-
able for edge deployment. By utilizing hierarchical super-
vision and a new weighted multi-label loss function to bal-
ance different edge classes during training, LiteEdge pre-
dicts with high accuracy category-wise binary edges. Our
LiteEdge network with only ≈ 3M parameters, has a se-
mantic edge prediction accuracy of 52.9% mean maximum
F (MF) score on the Cityscapes dataset. This accuracy was
evaluated on the network trained to produce a low reso-
lution edge map. The network can be quantized to 6-bit
weights and 8-bit activations and shows only a 2% drop in
the mean MF score. This quantization leads to a memory
footprint savings of 6X for an edge device.

1. Introduction
Scene parsing and semantic segmentation [2] are fun-

damental problems in computer vision research. They can
provide information about major landmarks in the surround-
ing environment, as well as objects of interest in the fore-
ground. The resulting segmented output can be utilized for
downstream applications, such as navigation [11] and in-
door autonomous mobile robotics [3, 22]. Meanwhile, the
classical edge detection task has been shown beneficial for
solving many computer vision tasks such as 3d reconstruc-
tion [29], 3d shape recovery [20], medical image processing

*Current affiliation: Donders Centre for Cognition, Radboud Univer-
sity, Nijmegen, The Netherlands.

This work has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No
899287.

[24], as well as semantic segmentation [4, 6].
Semantic edge detection combines both edge detection

and semantic classification associating edge pixels with one
or more object categories [13, 33]. For every pixel on an
image the task solves whether the pixel lies on an edge and
which class(es) it belongs to. It is modeled as a multi-label
learning problem [33] since one pixel can belong to mul-
tiple classes, e.g. boundaries distinguishing vehicles on a
road have the semantic edge class ‘vehicle’ and ‘road’ at the
same time. Moreover, for each class, the output map will
mask out all pixels which do not fall on the outline of this
class, resulting in a highly sparse binary output. With rich
semantic information in addition to the basic edge location
information, semantic edges can be directly used or easily
extended to solve many tasks such as refined object detec-
tion [12], image-based geopositioning [26], panoptic seg-
mentation [17] and vision restoration applications in brain-
machine interface research [9, 27].

Previous work on semantic edge detection [1, 16, 33]
use heavy backbone networks. Because many of these net-
works have a large memory footprint and require high com-
putes, they cannot be deployed for real-time performance
on an edge device. This work proposes a lightweight, well-
performing end-to-end semantic edge detection network,
LiteEdge, which is suitable for deployment on the edge.
We implement two ways of keeping the network light but
accurate as validated using the Citiscapes dataset. First, we
start with the architecture of a state-of-the-art semantic seg-
mentation network [10] as the backbone and further reduce
the output image dimensions for lower computes. Second,
to improve the accuracy, we incorporate an additional hi-
erarchical supervision architecture to generate sparse edge
segmentation maps for each class, as well as edge class
weights in the loss computation. We show that our network
while maintaining good prediction quality runs at reason-
able inference speeds on edge devices. Moreover, by apply-
ing quantization aware training (QAT) [19], we are able to
compress the model size by 6 times without much loss in
accuracy.

2657



The main contributions of this work are as follows:

• A novel end-to-end semantic edge detection network
architecture named LiteEdge, which gives competi-
tive prediction accuracy on Cityscapes and uses only
≈3 M parameters resulting in a high throughput of 112
frames per sec (FPS) on an Nvidia RTX 2080Ti GPU.

• A hierarchical supervision module using only binary
edges that improves the semantic edge accuracy of
LiteEdge by 12.0%.

• A new weighted multi-label loss function to address
the class pixel imbalance problem. This loss takes
into consideration the difference of segmentation pixel
counts in different classes across the dataset, allowing
for improved semantic edge learning.

• By adding one segmentation branch to LiteEdge, the
new network (LiteEdgeSeg) outputs both semantic
edge and segmentation results simultaneously while
maintaining a similar inference speed to LiteEdge.

2. Related works
Edge detection Traditional edge detection algorithms

such as Canny [5] use convolutional filters, which gener-
ate category-free edges. In addition, a wide variety of deep
neural networks are driven towards the edge detection area,
such as Deep contour [30] and holistically-nested edge de-
tection (HED) [32]. However, these methods produce low-
level edges unlike semantic edge detection which is related
to both geometric edges and semantic understanding.

Semantic edge detection The idea of semantic edge de-
tection first comes up in [25]. In the work of [13], the Se-
mantic Boundaries Dataset (SBD) is introduced and an in-
verse detector is proposed. The inverse detector can detect
category-aware semantic edges because it has information
from both bottom-up edge and top-down detector. Many se-
mantic segmentation works can be loosely regarded as the
semantic edge detection task, since employing an edge de-
tector with the information from segmentation results can
produce semantic edges. For example, the “High-for-Low”
approach (HFL) [4] employs VGG to extract binary seman-
tic edges with the features from semantic segmentation net-
works to obtain category labels. However, these methods
are typically not end-to-end and need additional postpro-
cessing.

The CASENet [33] architecture is trained end-to-end us-
ing ResNet-101 [14] as the backbone. It combines both
low- and high-level features with a designed multi-label
loss function to produce semantic edges. In the work of
STEAL [1], the authors propose a new thinning layer and
loss, which can be added on top of any end-to-end edge

detector. The DFF model [16] is the first work to to use
an adaptive weight fusion module to dynamically generate
location-specific fusion weights that are conditioned on the
image content. These location-specific weights are applied
to fuse both the high-level and low-level response maps in
order to predict the semantic edges with higher accuracy.

A few studies have also combined the task of semantic
segmentation with semantic edge detection, such as JSENet
[18] which simultaneously predicts the semantic segmenta-
tion point mask and the semantic edge point map. How-
ever, all the architectures mentioned are relatively heavy,
either because of the large backbone model or the addition
of multiple modules for increasing accuracy. Previous end-
to-end trained semantic edge detection models reported in-
ference speeds that are below 10 FPS on a GPU. We believe
that LiteEdge is the first model that runs above 10 FPS and
reaches more than 100 FPS on a Nvidia RTX 2080Ti GPU.

3. Network
Problem formulation. The main goal of semantic edge

detection is to compute the semantic edge maps for each
category. Formally, given an input image x ∈ RH×W×Ch

with C defined semantic categories, the model predicts C
edge maps Ȳ = (ȳ1, ȳ2, ..., ȳC). The model is trained on
input images and ground truth semantic edge images, each
represented as Y = (y1, y2, ..., yC). yc and ȳc are binary
maps with dimensionality {0, 1}H×W . Pixels in yc or ȳc
with value equals to 1 belong to the c-th category and those
equal to 0 are not.

3.1. Basic architecture

The basic architecture is a modified form of the semantic
segmentation network, LiteSeg [10]. The details of LiteSeg
are shown in the light green box of Figure 1. It consists of
three main parts, the backbone network, the deeper atrous
Spatial Pyramid Pooling (DASPP) module and a decoder
module. The input and output of the DASPP module are
concatenated by using a short connection, and the output of
the 3rd block of the encoder is connected to the decoder by
using a long connection.

The backbone network. The task accuracy and compu-
tational efficiency of this network are highly dependent on
the chosen backbone network which can be any type of con-
volution network, such as VGG16 [31], MobileNet [15, 28]
and ResNet [14]. For real-time segmentation, MobileNet
v2 [28] can provide a good trade-off between accuracy and
computational efficiency in this architecture.

The DASPP module [10] (Figure 2) is based on
the Atrous Spatial Pyramid Pooling (ASPP) module in
DeepLabV3 [7]. It comprises a set of convolution blocks
with increasing dilation rates, which helps the network to
capture object features as well as useful image context at
multiple scales. Compared with the ASPP module, there

2658



LiteEdge
Model

total edge
loss

SemSeg
Decoder

Basic
Model

Figure 1: LiteEdge model (in blue outlined polygon) and LiteEdgeSeg. The base model is shown in the box with the light
green background. The encoder is shown in the box with the gray background. By adding the semantic segmentation decoder
(box with blue background) in upper right of figure, we get LiteEdgeSeg.

is an additional standard 3 x 3 separable convolution after
the 3 x 3 atrous separable convolution to refine the features
in the DASPP module, and a short residual connection to
fuse the features from the input and output of the DASPP
module. The number of filters for the convolution layers
in ASPP is reduced from 255 to 96 to further improve the
efficiency.

The decoder module is modified from Deeplabv3+ [7],
it is a simple architecture that only contains four convolu-
tions blocks, one upsample step and a concatenation step.
As shown in Figure 1, the concatenation step (long residual
connection) combines the information from the 3rd block
in the backbone network (MobileNet v2) and the feature
map after the upsample step to further merge low-level and
high-level features. Fusion of low-level features which of-
ten include edges or color blobs from bottom layers and
high-level features which often capture semantic informa-
tion from top layers is helpful for semantic edge prediction.

3.2. LiteEdge architecture

The LiteEdge model shown in Figure 1 uses the basic ar-
chitecture described in Sec. 3.1 as the backbone network. It
incorporates modified versions of the feature extraction and
the hierarchical supervision modules of JSENet [18]. These
modules are added to the side outputs of the backbone net-
work. We also include a new fuse classification module on
the output of the basic architecture.

Hierarchical supervision We use hierarchical supervi-
sion to regularize the side feature extraction during learn-
ing of the binary edges. This supervision is useful because
firstly, the context information learned in the bottom layers

Figure 2: Basic architecture of DASPP module. For the first
four branches, we use the atrous convolution with dilation
rates of 1, 3, 6 and 9 respectively.

plays a vital role in semantic classification. They help aug-
ment top classifications, therefore, merging the information
from side outputs can improve the MF score of edge pre-
diction. Secondly, the receptive field of the deeper layers
is limited, and the network can lose the detailed pixel-wise
information at this stage. Thus, it is beneficial to give a su-
pervision signal about semantic edges in the early stage of
the network. Unlike JSENet [18] where the first three side
outputs are supervised by binary edges and the last two side
outputs are supervised by the semantic segmentation map,
our LiteEdge model uses side feature extraction modules
that are all supervised by binary edge labels.

Side feature extraction module Motivated by JSENet
[18], the features from bottom layers help to improve the
accuracy of classification and segmentation task but need

2659



(a) (b)

Figure 3: Architecture of (a) the side output feature extrac-
tion module and (b) the fuse classification module.

to be processed to incorporate with the features from the
main backbone. The architecture of the side output feature
extraction module is shown in Figure 3a, these modules are
different from those in JSENet, they include an additional
3x3 convolution block and the deconvolution is replaced by
the upsampling block.

Fuse classification module In order to fuse the fea-
ture map from side feature extraction and the backbone
branch, we add a fuse classification module to the decoder
of LiteEdge. This module (see Figure 3b) has a shared
concatenation layer [33] and two convolution blocks. The
shared concatenation layer fuses the feature maps from side
outputs and the features from the main backbone. The last
layer of the fuse classification module is a 1x1 group con-
volution.

3.3. LiteEdgeSeg architecture

LiteEdge can be extended to a new model, LiteEdge-
Seg, which has two branches with a shared encoder. The
first branch predicts the semantic segmentation map, and the
second branch outputs the semantic edge maps. The struc-
ture is shown in Figure 1. Besides the fuse classification
module, the decoder for the semantic segmentation branch
has the same structure as the decoder for the semantic edge
detection branch. Compared to LiteEdge, LiteEdgeSeg has
only an additional 6% parameters.

3.4. Weighted multi-label loss function

Inspired by the class weighting scheme in [23], we pro-
pose a multi-label semantic edge loss term (`SE).

First, we definewpos as the ratio of non-edge pixels to the
edge pixels. The value of wpos is calculated per image. Sec-
ond, we introduce wcls as the weighted class frequency for
each class. Algorithm 1 shows how to calculate wcls. The
proposed loss term `SE is a modified version of the multi-
label loss in [33]. Our proposed loss integrates the class
weights wcls ∈ RC into the loss to overcome the class pixel
count imbalance problem. Given wcls as the class weights,

Algorithm 2 shows how to calculate wpos and the batched
semantic edge loss `SE-batch.

Algorithm 1 Calculate edge class weights wcls

Input: Training set of input image x, semantic segmen-
tation label s

1: for class c in {1, . . . , C} do
2: Define total pixel count for class c as Ic = 0
3: for s of each image x in the training set do
4: count pixels in s that belong to class c as I
5: Ic = Ic + I
6: end for
7: end for
8: for class c in {1, . . . , C} do
9: calculate the probability: pc = Ic/

∑C
c=1 Ic

10: calculate the weight: wc = 1/log(1.02 + pc)
11: end for
12: find the weight of median frequency class wmedian

13: standardize the final wc
cls for each class c: wc

cls =
wc/wmedian

14: return wcls

Algorithm 2 Calculate batched multi-label semantic edge
loss `SE-batch

Input: Batch with input image x, edge label Y =
(y1, . . . , yC)

1: Define semantic edge loss as `SE and set `SE-batch = 0
2: for each

(
x, Y = (y1, . . . , yC)

)
pair in the batch do

3: wpos = #non-edge pixels in x
#edge pixels in x

4: for class c in {1, . . . , C} do
5: `cSE = −yc · log

(
σ(ŷc)

)
· wpos

+ (yc − 1) · log
(
1− σ(ŷc)

)
· (1− wpos)

6: `cSE = `cSE · wc
cls

7: end for
8: `SE = mean(`SE)
9: `SE-batch = `SE-batch + `SE

10: end for
11: return `SE-batch

4. Experiments
We compare our LiteEdge model with other state-of-

the-art semantic edge detection models including CASENet
[33] and DFF [16], on the Citiscapes dataset. LiteEdge
was trained with a 512x1024 input size instead of the orig-
inal input size because of the lengthy simulation time. The
corresponding output size is 128x256 to reduce further
needed computes. Both CASENet and DFF were trained
on a 1024x2048 input image size. The resulting output
of 1024x2048 was downsampled by 4x on both axes for

2660



Model name mean MF # params input size output size FLOP FPS
real-time models

LiteSeg [10] + Canny 44.4 3.10M 512x1024 512x1024 4.459G 58
LiteEdge (ours) 52.9 ± 0.32 3.16M 512x1024 128x256 5.022G 112

non real-time models
CASENet [33] 58.3 43.53M 1024x2048 1024x2048 1860.007G 1.56/ 4.42*
DFF [16] 63.4 44.28M 1024x2048 1024x2048 5003.663G 1.43/ 4.28*

Table 1: Results of semantic edge detection models on the Cityscapes evaluation dataset. All MF scores are measured in
percent. Mean MF scores for all models were obtained by downsampling or upsampling the network output to 256x512. The
ground truth edge maps in the validation set are downsampled to 256x512 for the mean MF score calculation. *For the FPS
of CASENet and DFF, we show numbers inferencing on input size 1024x2048/ 512x1024 for comparison with LiteEdge.

the mean MF score calculation. The groundtruth on the
256x512 resolution and the pre-trained CASENet are ob-
tained from this repository1 and DFF is from this reposi-
tory2. The output of LiteEdge was bilinearly upsampled
to 256x512. We also include results from LiteSeg [10]
with the Canny edge detector; and the LiteEdgeSeg model
which outputs both the semantic edges and segmentation
maps. Two other studies are reported: An ablation study
of LiteEdge to show the importance of each module; and a
model compression study where we quantize this model to
reduce the model size. Results reported from LiteEdge and
LiteEdgeSeg are averaged over five runs.

4.1. Dataset

We use the Cityscapes [8] dataset which comprises com-
plex and diverse stereo video sequences recorded from 50
different cities in Europe. There are 5000 images that have
high-quality pixel-level annotations and 20000 images only
have coarse annotations. Out of the 5000 images, 2975 are
in the training set, 500 in the validation set and 1525 in the
test set. For evaluation, we use the validation dataset.

4.2. Evaluation protocol

The maximum F (MF) measure at the optimal dataset
scale (ODS) [13] is the metric used for the evaluation of se-
mantic edges. For each point on the precision-recall curve,
the F-score is calculated as 2·Precision·Recall

Precision+Recall , and the MF is the
maximum value of these F-scores. The ODS metric uses a
fixed threshold value that gives the maximum F-score on the
validation dataset. MF is computed for each class, and the
mean MF is the average value of the MFs across all classes.
The matching pixel distance tolerance is the maximum mar-
gin allowed for correct matches of edges to ground truth
during evaluation. The distance tolerance is often measured
as the proportion to the length of the image diagonal, which
we choose as 0.0035 in the experiments as in [16].

1https://github.com/anirudh-chakravarthy/CASENet
2https://github.com/Lavender105/DFF

4.3. Training setup

We used Stochastic Gradient Descent (SGD) with Nes-
terov, a momentum value of 0.9 and weight decay of 0.0005.
We train the network for 100 epochs using a batch size of 4.
The multiple learning rate policy is used. The initial learn-
ing rate, lr1, is set to 0.01, the learning rate changes every
5 epochs. The current epoch’s learning rate is computed by
lr1 ∗(1− ei

em
)0.9, where ei indicates the current epoch num-

ber and em indicates the maximum number of epochs. For
data augmentation, we use random horizontal flip with the
probability of 0.5, random scaling by a factor between 0.2
to 0.8 and random rotation (−5o to 5o) of the image. All
the experiments were performed on a single Nvidia RTX
2080Ti GPU and one Intel Xeon(R) W-2195 CPU.

4.4. Results

Table 1 compares the mean MF score, network parame-
ter size, and runtime metrics, i.e., floating point operations
(FLOP), frames per sec (FPS), of our LiteEdge model with
current state-of-the-art models.

For LiteSeg3 [10] and Canny, we took the evaluation
model with input of 512x1024, performed Canny on the
output, before downsampling the output to 256x512. Our
LiteEdge model uses at least 10X fewer parameters than
DFF and CASENet. The inference time of our LiteEdge
model is 22X faster than CASENet for the same input res-
olution. The mean MF score of LiteEdge falls behind the
heavy backbone CASENet by around 5% while enabling
the capability of deployment on edge devices. Directly
adding a Canny edge detector on a semantic segmentation
network will dramatically decrease the processing speed.
Note that Canny edge detection runs on the CPU.

Figure 4 shows the MF scores of LiteEdge on different
classes. In many small object classes where it is difficult
to extract intact and clean edges, LiteEdge has the best MF
(ODS) score. The comparison to other models is further
described in Section 4.5.

3https://github.com/tahaemara/LiteSeg

2661



Figure 4: Class-wise MF scores of semantic edge detection models. All MF scores are measured in percent. For evaluation,
the input size is 512× 1024. The predicted edge maps and ground truth edge maps are interpolated to 256× 512. LiteEdge*
indicates LiteEdge trained without class weight. Classes between gray dashed lines are small object classes; classes between
two blue dashed lines are low-frequency occurring classes (≤ 0.5%).

Figure 5 compares the predictions of the different net-
works on 5 example scenes from Cityscapes. The pre-
dictions of LiteSeg with a Canny detector show that the
network cannot distinguish individual objects of the same
class, for example, the edges of multiple cars in the middle
column form the edge of one connected object.

LiteEdgeSeg. By adding one extra branch, we cre-
ate a new model which can produce the semantic edges
and the semantic segmentation map simultaneously. The
pixel accuracy (PA), mean intersection of union (MIoU)
and frequency weighted intersection of union (FWIoU) are
three common evaluation metrics of semantic segmentation
task. PA reports the percentage of pixels in an image that
are correctly classified; IoU measures the percentage over-
lap between the target mask and the prediction mask, and
MIoU is the average value across all classes; FWIoU mul-
tiply the IoU with the frequency for each class and sum up
overall classes. The PA, MIoU and FWIoU of LiteEdge-
Seg’s semantic segmentation results are 93.80%, 66.94%
and 88.83%, which are close to the performance of the Lite-
Seg model. The mean MF of semantic edge evaluation for
LiteEdgeSeg is 53.0%, which is as good as the LiteEdge
model’s performance (52.9%).

4.5. Ablation study

We performed an ablation study to determine the im-
portance of the class weight and hierarchical supervision
modules. The results are presented in Table 2. By us-
ing class weight labels (following the calculation method in
Section 3.4) to train the network, we encourage the network
to better predict edges on rare or small classes.

Figure 4 gives the MF score of each class. The scores on
small objects (such as traffic light, person, rider and bike)

Class
weight

Hierarchical
supervision Mean MF

× × 34.5 ± 0.58
× X 46.5 ± 0.16
X X 52.9 ± 0.32

Table 2: Ablation study of LiteEdge model.

and the classes that are rare in the training set (such as truck
and bus) are improved, but influences the prediction on big
objects (such as road and building). The overall MF score
increases around 6.4% with the use of class weighted labels.

To determine the need for the hierarchical supervision on
bottom side outputs, we directly concatenate the side out-
puts with the decoder without supervising them to learn bi-
nary edges. Comparing the results in the first two rows of
Table 2, we see that the hierarchical supervision improves
the mean MF score by 11%.

4.6. Model compression study

Quantization has become a significant method for op-
timizing deep-learning models so that they can acceler-
ate inference when deployed on embedded systems with
restricted memory footprint and computing resource. In
this work, we use the Neural Network Intelligence toolkit4.
To increase the network accuracy, we use the quantization
aware training method (QAT) [19], where we started with
the trained model and further refined the model with quan-
tized parameters for 100 epochs.

The results in Table 3 show that the quantized model
with 8-bit weights and activations only has a small drop of

4https://nni.readthedocs.io/en/stable/Overview.html

2662



(a) Original image.

(b) Ground truth.

(c) CASENet.

(d) DFF.

(e) LiteSeg with Canny edge detector.

(f) LiteEdge.

(g) LiteEdgeSeg.

Figure 5: Class-wise results of semantic edge detection networks. From top to bottom: original image, ground truth,
CASENet, DFF, LiteSeg with Canny, LiteEdge (trained without class weights) and LiteEdgeSeg.

2.2% in the mean MF score. The model size of the quan-
tized network is around 4X smaller than the full precision
network. In addition, QAT brings weight sparsity, where
2.65% of the parameters are zero after the quantization. The
results for the 6-bit and 4-bit weight quantized models are
also presented in Table 3. Compared with the 8-bit weight
quantized model, the 6-bit weight quantized model shows a
drop of 0.2% in the mean MF score but achieves around 4
times weight sparsity. The 4-bit weight quantized network
shows a larger drop in the mean MF score but has more
than 38% zero parameters. In addition, its model size is
13X smaller than the full precision model.

Model Mean MF Model size
(MB)

Zero
parameters

Full precision 52.9 ± 0.32 12.647 131 (4.1e-05%)
8-bit weights 50.7 ± 0.94 3.078 84K (2.65%)
6-bit weights 50.9 ± 0.99 2.128 323K (10.23%)
4-bit weights 42.7 ± 0.77 0.983 1.2M (38.07%)

Table 3: Model quantization results on LiteEdge. Activa-
tions are quantized to 8-bits for all quantized models.

2663



(a) Full precision model.

(b) 8-bit weight model.

(c) 6-bit weight model.

(d) 4-bit weight model.

Figure 6: Class-wise results of model quantization experiments on LiteEdge. From top to bottom: original image, ground
truth, full precision model, 8-bit weight model, 6-bit weight model and 4-bit weight model.

4.7. Real-time edge performance

The proposed models are further deployed on an Nvidia
Jetson Nano5 to evaluate their runtime performance on an
edge device. This device comes with a 128-core integrated
Nvidia Maxwell GPU and a quad-core 64-bit ARM CPU. It
has 5W and 10W power modes. TensorRT6 7.1.3 is used to
generate optimized FP16 run-time engines for the models.
The 10W power mode is activated before inference. The
results are averaged over 100 runs. Table 4 shows the frame
rates for the full precision models deployed on the Jetson
Nano. Both LiteEdge and LiteEdgeSeg can achieve a frame
rate of 15-18 FPS when using an image resolution of 256×
512. By comparison, the inference frame rate of CASENet
is 10X lower.

5. Conclusion

We present LiteEdge, an end-to-end lightweight seman-
tic edge detection model suitable for edge deployment. It
achieves a mean MF score of 52.9% on the Cityscapes val-
idation set with a reduced input and output size to address
the accuracy versus compute tradeoff. The model gives 22X
and 10X higher frame rate compared to previous models on
a desktop GPU and an edge device respectively. By adding

5https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-nano/

6https://developer.nvidia.com/tensorrt

Model # params Input resolution FPS

CASENet [33] 43.53M
512× 1024
256× 512

0.39
1.5

LiteEdge 3.16M
512× 1024
256× 512

5
18

LiteEdgeSeg 3.35M
512× 1024
256× 512

4
15

Table 4: Prediction frame rate for proposed models on Jet-
son Nano. CASENet results are shown for comparison.

the hierarchical supervision module and a new multi-class
weight label loss, we could increase the mean MF of this
network which has a lower output resolution. By adding
one additional semantic segmentation branch, we extend
LiteEdge to LiteEdgeSeg which outputs both the semantic
edge and semantic segmentation maps. The 6-bit weight
quantized LiteEdge model shows only a small drop of 2%
in mean MF score and has a memory footprint savings of
6X. The added modules to LiteSeg [10] can also be applied
towards other segmentation networks. Preliminary results
show that when they are added to a recent reported segmen-
tation network (FSFNet [21]), the mean MF score of the
edge prediction increases by 1.2% compared to using the
Canny edge detector on segmented maps.

2664



References
[1] David Acuna, Amlan Kar, and Sanja Fidler. Devil is in

the edges: Learning semantic boundaries from noisy annota-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11075–11083,
2019.

[2] Nadeem Atif, Manas Bhuyan, and Shaik Ahamed. A re-
view on semantic segmentation from a modern perspective.
In 2019 International Conference on Electrical, Electronics
and Computer Engineering (UPCON), pages 1–6, 2019.

[3] Jonathan C Balloch, Varun Agrawal, Irfan Essa, and Sonia
Chernova. Unbiasing semantic segmentation for robot per-
ception using synthetic data feature transfer. arXiv preprint
arXiv:1809.03676, 2018.

[4] Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani. High-
for-low and low-for-high: Efficient boundary detection from
deep object features and its applications to high-level vi-
sion. In Proceedings of the IEEE International Conference
on Computer Vision, pages 504–512, 2015.

[5] John Canny. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-8:679 – 698, 12 1986.

[6] Liang-Chieh Chen, Jonathan T Barron, George Papandreou,
Kevin Murphy, and Alan L Yuille. Semantic image segmen-
tation with task-specific edge detection using CNNs and a
discriminatively trained domain transform. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4545–4554, 2016.

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 801–818, 2018.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 06 2016.

[9] Jaap de Ruyter van Steveninck, U. Güçlü, R. V. van Wezel,
and M. V. van Gerven. End-to-end optimization of prosthetic
vision. bioRxiv, 2020.

[10] Taha Emara, Hossam Munim, and Hazem Abbas. Liteseg:
A novel lightweight convnet for semantic segmentation. In
2019 Digital Image Computing: Techniques and Applica-
tions (DICTA), pages 1–7, 12 2019.

[11] Di Feng, Christian Haase-Schuetz, Lars Rosenbaum, Heinz
Hertlein, Claudius Glaeser, Fabian Timm, Werner Wies-
beck, and Klaus Dietmayer. Deep multi-modal object de-
tection and semantic segmentation for autonomous driving:
Datasets, methods, and challenges. IEEE Transactions on
Intelligent Transportation Systems, 2020.

[12] Vittorio Ferrari, Frederic Jurie, and Cordelia Schmid. From
images to shape models for object detection. International
Journal of Computer Vision, 87(3):284–303, 2010.

[13] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik.
Semantic contours from inverse detectors. In 2011 Interna-

tional Conference on Computer Vision, pages 991–998, Nov
2011.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[16] Yuan Hu, Yunpeng Chen, Xiang Li, and Jiashi Feng. Dy-
namic feature fusion for semantic edge detection. arXiv
preprint arXiv:1902.09104, 2019.

[17] Yuan Hu, Yingtian Zou, and Jiashi Feng. Panoptic edge de-
tection. arXiv preprint arXiv:1906.00590, 2019.

[18] Zeyu Hu, Mingmin Zhen, Xuyang Bai, Hongbo Fu, and
Chiew-lan Tai. Jsenet: Joint semantic segmentation and edge
detection network for 3d point clouds. In Proceedings of
the 16th European Conference on Computer Vision (ECCV),
Part XX 16, pages 222–239. Springer, 2020.

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018.

[20] Kevin Karsch, Zicheng Liao, Jason Rock, Jonathan T Bar-
ron, and Derek Hoiem. Boundary cues for 3d object shape re-
covery. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2163–2170, 2013.

[21] Minjong Kim, Byungjae Park, and Suyoung Chi.
Accelerator-aware fast spatial feature network for real-time
semantic segmentation. IEEE Access, 8:226524–226537,
2020.

[22] Wonsuk Kim and Junhee Seok. Indoor semantic segmen-
tation for robot navigating on mobile. In 2018 Tenth In-
ternational Conference on Ubiquitous and Future Networks
(ICUFN), pages 22–25, 2018.

[23] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eu-
genio Culurciello. Enet: A deep neural network architec-
ture for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147, 2016.

[24] Reza Pourreza, Ying Zhuge, Holly Ning, and Robert Miller.
Brain Tumor Segmentation in MRI Scans Using Deeply-
Supervised Neural Networks, pages 320–331. 02 2018.

[25] Mukta Prasad, Andrew Zisserman, Andrew Fitzgibbon, M.
Kumar, and Philip Torr. Learning class-specific edges for ob-
ject detection and segmentation. In Computer Vision, Graph-
ics and Image Processing, volume 4338, pages 94–105, 01
2006.

[26] Srikumar Ramalingam, Sofien Bouaziz, Peter Sturm, and
Matthew Brand. Skyline2gps: Localization in urban canyons
using omni-skylines. In 2010 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 3816–3823,
2010.

2665



[27] Melani Sanchez-Garcia, Ruben Martinez-Cantin, and
Josechu Guerrero. Semantic and structural image segmen-
tation for prosthetic vision. PLOS ONE, 15:e0227677, 01
2020.

[28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 06 2018.

[29] Qi Shan, Brian Curless, Yasutaka Furukawa, Carlos Hernan-
dez, and Steven M. Seitz. Occluding contours for multi-view
stereo. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pages 4002–4009, 2014.

[30] Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, and Zhi-
jiang Zhang. Deepcontour: A deep convolutional feature
learned by positive-sharing loss for contour detection. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3982–3991, 2015.

[31] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
1409.1556, 09 2014.

[32] Saining Xie and Z. Tu. Holistically-nested edge detec-
tion. International Journal of Computer Vision, 125:1–16,
12 2017.

[33] Zhiding Yu, Chen Feng, Ming-Yu Liu, and Srikumar Rama-
lingam. Casenet: Deep category-aware semantic edge detec-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5964–5973, 2017.

2666


