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Abstract

Semantic segmentation is a challenging problem due to
difficulties in modeling context in complex scenes and class
confusions along boundaries. Most literature either focuses
on context modeling or boundary refinement, which is less
generalizable in open-world scenarios. In this work, we ad-
vocate a unified framework (UN-EPT) to segment objects
by considering both context information and boundary ar-
tifacts. We first adapt a sparse sampling strategy to incor-
porate the transformer-based attention mechanism for ef-
ficient context modeling. In addition, a separate spatial
branch is introduced to capture image details for bound-
ary refinement. The whole model can be trained in an end-
to-end manner. We demonstrate promising performance on
three popular benchmarks for semantic segmentation with
low memory footprint.

1. Introduction
Semantic segmentation is the task of dense per-pixel pre-

dictions of semantic labels. Starting from Fully Convo-
lutional Network (FCN) [42], there has been significant
progress in model development [71, 12, 35, 21, 63, 78].
However, different datasets are in favour of distinctive
methods. Taking Fig. 1 as an example, datasets like
ADE20K [43, 74] with a larger number of classes often
encounter the problem of confusion among similar object
classes, and thus require context modeling and global rea-
soning [57]. On the contrary, datasets like Cityscapes [16]
with a less number of classes but high image resolution
often suffer from boundary ambiguity, demanding careful
handling in object boundaries [65, 77, 34]. Hence, this leads
to two separate lines of work in this area, i.e., context mod-
eling [64, 66, 72, 21, 26, 68, 57] and exploiting boundary
information [4, 8, 46, 47]1. It is thus desirable to have a

*Work done during an internship at Amazon.
1Note that these two lines of research are not exclusive, and can be

complementary most of the time.

Original Image OCRNetGround Truth Difference

Figure 1. Comparisons of the predictions from OCRNet and the
ground truth, and visualizations of their differences. The sample
from ADE20K (top) suffers mainly from class confusion, while
most errors from Cityscapes (bottom) are along the boundary.

single method that can jointly optimize them. In this work,
we introduce such a unified framework with a two-branch
design: context branch and spatial branch. Motivated by the
strong capability in capturing long-range contextual depen-
dencies, we extend transformers [49] to model the per-pixel
classification task as a set prediction problem. That is, trans-
lating a sequence of RGB pixels into a sequence of object
class labels, representing the segmentation mask. Despite
reasonable and promising, it is nontrivial to directly apply
transformers to such a task. Particularly, as a dense predic-
tion task, semantic segmentation requires: (1) large resolu-
tion input image, and (2) the ability of reasoning both local
details and the global scene. However, flattening the raw
RGB image or even a smaller feature map will result in a
much longer sequence than the ordinary linguistic sentence.
Fitting such a long sequence for transformer demands pro-
hibitive GPU memory footprint [73]. Furthermore, in order
to capture local image details, we need to provide input-
adaptive context queries to the transformer decoder.

To address the first issue, we introduce an effi-
cient transformer-based module for semantic segmentation.
Specifically, to reduce the memory footprint, we adapt a
sparse sampling strategy [76] to enforce each element in a
sequence only attending to a small set of elements. The
intuition is that only informative surrounding pixels are
needed to classify a specific pixel. With this memory-
efficient attention module, we can also bring pyramid fea-
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ture maps from different stages of the backbone to enrich
multi-scale information. We term this structure as Efficient
Pyramid Transformer (EPT). To address the second issue,
we introduce a lightweight spatial branch to capture local
image details. Specifically, our spatial branch consists of a
three-layer backbone and two heads. We use features from
the backbone as context queries to enforce the decoder in-
put adaptive. The two heads are optimized to localize the
boundary pixels and eventually used to refine our initial seg-
mentation results from the context branch.

At this point, we present UN-EPT, a UNified Efficient
Pyramid Transformer network, to improve both context
modeling and boundary handling for semantic segmenta-
tion. With UN-EPT, we outperform previous literature
with the same backbone (i.e., ResNet50) on ADE20K by
a large margin. When combined with a stronger backbone
DeiT [48], our method can achieve an mIoU of 50.5. No-
tably, our model requires neither pretraining on large-scale
dataset (e.g., ImageNet22K), nor the huge memory cost
(e.g., our best model only consumes 8.5G memory during
training). This clearly demonstrates the effectiveness of our
approach. Our contributions can be summarized as:

• We adapt an attention module, termed efficient pyra-
mid transformer, to fully exploit context modeling for
semantic segmentation.

• We introduce a spatial branch to provide input-
adaptive information and refine object boundaries for
final segmentation mask prediction.

• We present a unified framework for both context mod-
eling and boundary handling, which achieves promis-
ing results on three benchmark datasets: ADE20K,
Cityscapes and PASCAL-Context.

2. Related work

Context modeling Starting from the seminal work of
FCN [42], there has been significant progress in models
for semantic segmentation. In order to explore context de-
pendencies for improved scene understanding, recent works
have focused on exploiting object context by pyramid pool-
ing [71, 10, 11, 12, 54], global pooling [66, 58, 59, 39] and
attention mechanism [67]. In terms of the attention mecha-
nism, earlier works [66, 58] adopt channel attention similar
to SENet [25] to reweight feature maps as well as learn-
ing spatial attention [64, 72, 68, 57]. Most of them directly
learn the attention on top of the last convolutional features
for context modeling due to GPU memory constraints. In
this paper, we exploit a sparse sampling strategy to alleviate
the computational cost of attention so that we can fit a long
sequence into a transformer. [69, 56] are two closely re-
lated works, also introducing efficient sampling method for

segmentation. However, both of them still conduct the sam-
pling in a single scale layer while we adopt sampling across
multiple pyramid layers for effective context modeling.
Boundary handling Previous works focused on either lo-
calizing semantic boundaries [40, 61, 62, 1, 28] or refining
boundary segmentation results [4, 47, 19, 46]. They are of-
ten designed for images with high resolution, while less use-
ful for modeling contexts, which are prone to error with nu-
merous classes existing. Extensive studies [33, 22, 32, 65]
have proposed refinement mechanism to obtain fine seg-
mentation maps from coarse ones, but most of them de-
pend on particular segmentation models. [65] proposes
a model-agnostic segmentation refinement mechanism that
can be applied to any approaches. However, it still needs re-
training and remains a post-processing method. Inspired by
[65], we propose a dedicated spatial branch to capture more
image details, so that we provide dynamic context queries
for the decoder input and utilize boundary information for
refinement. Importantly, our method is end-to-end train-
able, and can handle the case of a large number of object
categories and high resolution images, simultaneously.
Transformer Transformer is a powerful model for cap-
turing long-range contextual dependencies, which is firstly
introduced in [49] for machine translation. After that, it
has been widely adopted and becomes the de-facto stan-
dard in natural language processing [18, 44, 45, 5]. Re-
cently, researchers start to apply transformer in computer
vision [76, 20, 73, 53, 41, 13, 51]. SETR [73] directly
adopts the ViT [20] model for semantic segmentation. The
recent PVT [51] proposes a versatile transformer back-
bone suitable for several vision tasks. However, the vanilla
transformer is computationally heavy and memory consum-
ing when the sequence length is long, which is not scal-
able for semantic segmentation. The con-current works
SegFormer [53] and Swin Transformer [41] use MLP de-
coders and shifted windows to improve the model effi-
ciency. Different from them, we change the computation
strategy of self- and cross-attention and our model jointly
considers modeling boundary information, which is specif-
ically suitable for segmentation. MaskFormer [13] solves
the semantic- and instance-segmentation in a unified man-
ner by introducing mask predictions. Inspired by the rapid
progress of efficient transformers [3, 31, 14, 76], we pro-
pose a unified efficient pyramid transformer model for se-
mantic segmentation in this work.

3. Method
This section introduces the proposed UN-EPT network

as illustrated in Fig. 2. Particularly, we present an effi-
cient transformer for modeling contexts in Sec. 3.1, includ-
ing an intuitive sparse sampling strategy to compute atten-
tion (Sec. 3.1.1). We then apply pyramid features naturally
to fully explore long-range spatial contexts (Sec. 3.1.2).
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Figure 2. UN-EPT architecture learned in an end-to-end manner. Different backbones can be utilized to extract pyramid visual fea-
tures (e.g., ResNet, transformer). We show DeiT here for illustration. Image features are flattened into a long sequence and fed into
the context branch to obtain the initial segmentation result Ŷ . The spatial branch extracts features for dynamic context queries and the
boundary information to refine Ŷ . The final refined segmentation output is Ŷref .

Finally, a spatial branch for segmentation is proposed in
Sec. 3.2 by using dynamic context queries and boundary
refinement.

3.1. Efficient Transformer for modeling contexts

Revisiting Transformer Transformer takes stacks of self-
attention layers in both encoder and decoder. Positional
encoding and multi-head structure are designed for pro-
viding position information and modeling relations in a
higher dimension. The standard multi-head attention [49]
projects the same input feature sequence into different fea-
ture spaces: key, query, value, denoted as K ∈ Rn×dm ,
Q ∈ Rn×dm , V ∈ Rn×dm , where n represents the se-
quence length and dm is the feature dimension. The at-
tention weights is computed based on key and query,

Am = softmax

(
QWQ

m

(
KWK

m

)T

√
dmodel

)
(1)

where WQ
m ,W

K
m ∈ Rdm×dk and Am ∈ Rn×n denotes the

attention weights for head m = {1, 2, ...,M}. Then we
compute the attention with weights and value, Attnm =
AmVW

V
m . Here, WV

m ∈ Rdm×dv and Attnm ∈ Rn×dv

is the attention value of head m. Finally, we concate-
nate the result of each head to obtain multi-head atten-
tion: MH-Attn = [Attn1, ...,AttnM ]WO. Here WO ∈
RMdv×dm denotes linear projection and [·] denotes the con-
catenation operation. With the help of multi-head self at-
tention, the transformer encodes the input feature sequence

by letting them attend to each other, where the output fea-
ture captures long-range contexts, motivating us to apply it
to dense per-pixel classification task.

3.1.1 Transformer with sparse sampling

To model the pixel-to-pixel correlation, transformer brings
huge cost in memory space and computation resource when
an input sequence is relatively long. In the case of segmen-
tation, several problems make the transformer inefficient
and impractical in real scenarios: (1) Large input size re-
sults in a long pixel feature sequence, making it impossible
to fit in a general GPU. (2) Attending to all pixels is unwise
and may cause confusion. For instance, to segment differ-
ent instances of the same category, each pixel only needs
to attend to the instance region which it belongs to, where
features of unrelated instances are redundant.

To tackle above issues, we adapt a sparse sampling strat-
egy in [76] to semantic segmentation. That is, to force each
query pixel to attend only a small set of informative pixels
for computing attention. Give an input image, we pass it
into a backbone network (e.g., ResNet50 [23] or DeiT [48])
for a feature map I ∈ RH×W×C . Then I is passed by
a 1 × 1 conv to reduce channel dimension and sent into
the transformer. The input is a sequence of flattened pixel
features, denoted as X ∈ RHW×dmodel . We map X to
query Q ∈ RHW×dmodel and value V ∈ RHW×dmodel fea-
tures with two parameterized matrice, respectively. Differ-
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ent from the standard self-attention, we do not need key fea-
tures to compute attention weights here. Instead, our atten-
tion weights are learned from query features by a projection
matrix.

Then, for each query pixel q ∈ Q with value as v, its
attention of head m is computed by

Attnmq = softmax

(
N∑

n=1

wnq

)
v〈cq+∆n〉 (2)

where N is the number of sparse sampling pixels and cq is
the coordinates of q. 〈·〉 and ∆n denote the interpolation
method and sampling offsets. wnq is the attention weights
for q and the n-th sampled key element. For simplicity, we
omit the linear projection matrice in Eq. 1. Then, for each
query element inQ, it attends toN value features for calcu-
lating attention rather than HW features in V , reducing the
computation complexity fromO(n2) toO(kn) (n = HW ).

To further reduce computation cost, the ∆n and atten-
tion weights wnq (n = 1, 2, ..., N) for N value features are
mapped directly from Q, which can be written as

Am = softmax
(
QWQ

mU
wts
m

)
, (3)

Attnm = Am

(
VWV

m

)
〈QWQ

mUpos
m 〉 (4)

where Uwts
m ∈ Rdk×N projects the query feature into atten-

tion weights and Upos
m ∈ Rdk×2N denotes relative positions

of key-query in x-axis and y-axis, as illustrated in [75].
In addition, to inform the model with image spatial in-

formation, we add sine and cosine positional encodings on
the query Q. In practice, the transformer encoder uses the
stack of multi-head self-attention layers and feed forward
layers to encode the input feature map X , and obtains Xenc

of the same size. On the decoder side, we take a feature
C ∈ RHW×dmodel as input, serving as context queries.
It firstly performs self-attention as in Eq. 4 and computes
cross-attention with the encoder output Xenc to produce fi-
nal results Ŷ . The whole process can be written as

Ŷ = Φdec (Φenc (X) , C) (5)

where Ŷ ∈ RHW×dmodel is then up-sampled and computed
cross entropy loss with the ground truth. The computation
manner of cross attention is the same with self-attention,
where the output of decoder self-attention serves as query
and Xenc is the value feature.

3.1.2 Efficient pyramid transformer

Due to the memory constraint, seldom approaches use
multi-scale information for segmentation problem. Here,
our model allows us to incorporate pyramid features natu-
rally. As shown in Fig. 2, 1 × 1 convolutional layers are

adopted separately to obtain pyramid feature maps of the
same channel size from the backbone, denoted as

{
X l
}L
l=1

,
where X l ∈ RHlWl×C . To feed into the transformer en-
coder, they are concatenated in a long sequence Xms ∈
RLms×dmodel . Similarly, we use linear projections to map
Xms to query Q and value V features, respectively. We
add positional encoding and scale encoding on Q, provid-
ing model with more spatial information, as shown in the
context branch of Fig. 2. The scale encoding is a learnt em-
bedding of size L× dmodel. For each query pixel q, similar
with Eq. 2, it attends to a set of pixels on the feature map of
each scale, where the attention is computed as

Attnmq = softmax

(
L∑

l=1

N∑
n=1

wlnq

)
v〈cq+∆ln〉 (6)

where wlnq denotes the attention weight of q and n-th sam-
pled key element on the scale l. ∆ln denotes sampling off-
sets of pixels from each feature scale. Thus, q attends to
N × L pixels, still much less than attending to all HW
pixel features. In practice, we set Uwts

m ∈ Rdk×NL and
Upos
m ∈ Rdk×2NL in Eq. 3 and 4.

The encoder output Xenc ∈ RLms×dmodel is then fed
into the decoder to compute cross attention. We keep the
decoder input (context queries) of size HLWL × dmodel to
recover the image resolution through computing cross atten-
tion with Xenc. Here, context queries reason from pyramid
features and select informative pixels to generate predic-
tions. The output is up-sampled to compute the loss. With
pyramid features, we are able to model stronger spatial con-
texts.

3.2. Dynamic learnable spatial branch

Compared to image classification and object detection,
one major difference of using transformer for semantic seg-
mentation is that we need high frequency image details for
the dense prediction. However, when the transformer is ap-
plied to vision tasks, like DETR [7], input queries for de-
coders are fixed embeddings for all images, which are de-
signed to learn the global information for the dataset. This
specific information may not be suitable for segmentation
problem. To alleviate it, we introduce a spatial branch to
adapt to various input images. We further leverage the spa-
tial branch to capture the boundary information, since its
outputs are in relatively high resolutions and maintain more
image details. We adopt two additional heads to predict
boundary pixels (boundary head) and the corresponding in-
terior pixel for each boundary pixel (direction head). The
offset generated from these two predictions is used to refine
the segmentation result from the context branch.
Context queries The decoder input serves as context
queries, which has different design choices. The naive
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choice [7] is using a random initialized embedding. How-
ever, that embedding will be the same for all input images
at inference time, which cannot provide sufficient contex-
tual information. Thus, we introduce dynamic contexts as
the decoder input to flourish the self- and cross-attention.
As shown in the spatial branch of Fig. 2, our spatial branch
contains three 3×3 convolutional layers, followed by batch
normalization and ReLU, to extract representations from in-
put images. This branch produces output feature map that
is 1/8 of the original image, encoding rich and detailed spa-
tial information due to the large spatial size, which serves as
the decoder input. Empirically, we choose the intermediate
feature from spatial branch to be context queries.
Boundary refinement Inspired by the success of Seg-
Fix [65], we adopt a boundary head and a direction head to
extract boundary information from the output feature map
of the backbone. Similarly, the boundary head contains
1 × 1 Conv → BN → ReLU with 256 output channels. A
linear classifier (1×1 Conv) and up-sampling are further ap-
plied to generate the final boundary map of sizeH×W ×1.
The boundary loss is the binary cross-entropy loss, denoted
as Lbound. For the direction head, we directly discrete di-
rections by dividing the entire direction range to m parti-
tions as the same as the ground truth (m = 8 by default).
The direction head contains 1 × 1 Conv → BN → ReLU
with 256 output channels. A linear classifier (1 × 1 Conv)
and up-sampling are further applied to generate the final di-
rection map of size H × W × m. The direction map is
multiplied by the boundary map to ensure direction loss is
only applied on boundary pixels. The cross-entropy loss is
used to supervise the discrete directions, denoted as direc-
tion loss Ldir. For the refinement process, we convert the
predicted direction map to the offset map of sizeH×W×2.
The mapping scheme follows [65]. Then, we generate the
refined label map through shifting the coarse label map with
the grid-sample scheme [27]. There are multiple mecha-
nisms to generate ground truth for the boundary maps and
the direction maps. In this work, we mainly use the conven-
tional distance transform [29], similar with [65]. The final
loss function is

L = λ1LCE(Y, Ŷ )+λ2LCE(Y, Ŷref )+λ3Lbound+λ4Ldir

(7)
where Ŷref is the refined segmentation result. In practice,
we set λ1 = 1, λ2 = 1.5, λ3 = 3, λ4 = 0.7.

4. Experiments
We first introduce experimental settings including

datasets in Sec. 4.1 and implementation details in Sec. 4.2.
We then analyze our results on three benchmark datasets,
by comparing with state-of-the-art methods in Sec. 4.3.
Following that, we conduct several ablation studies on
ADE20K in Sec. 4.4.

Method Reference Backbone mIoU pixAcc

PSPNet [71] CVPR2017 ResNet50 41.7 80.0
PSANet [72] ECCV2018 ResNet50 42.9 80.9
UperNet [52] ECCV2018 ResNet50 41.2 79.9
EncNet [66] CVPR2018 ResNet50 41.1 79.7
CFNet [68] CVPR2019 ResNet50 42.9 -
CPNet [57] CVPR2020 ResNet50 44.5 81.4

Ours - ResNet-50 46.1 81.7

RefineNet [37] CVPR2017 ResNet101 40.2 -
PSPNet [71] CVPR2017 ResNet101 43.3 81.4
SAC [70] ICCV2017 ResNet101 44.3 81.9
UperNet [52] ECCV2018 ResNet101 42.7 81.0
DSSPN [36] CVPR2018 ResNet101 43.7 81.1
PSANet [72] ECCV2018 ResNet101 43.8 81.5
EncNet [66] CVPR2018 ResNet101 44.7 81.7
ANL [79] ICCV2019 ResNet101 45.2 -
CCNet [26] ICCV2019 ResNet101 45.2 -
CFNet [68] CVPR2019 ResNet101 44.9 -
CPNet [57] CVPR2020 ResNet101 46.3 81.9
OCRNet [63] ECCV2020 ResNet101 45.3 -
Efficient FCN [38] ECCV2020 ResNet101 45.3 -
ResNeSt [67] arXiv2020 ResNeSt200 48.4 -
SETR [73] CVPR2021 T-large 50.2 83.5

Ours - DeiT 50.5 83.6

Table 1. Quantitative evaluations on the ADE20K validation set.

4.1. Datasets

Our proposed UN-EPT is evaluated on three stan-
dard segmentation benchmarks, i.e., ADE20K dataset [74],
PASCAL-Context dataset [43] and Cityscapes dataset [16].
ADE20K dataset [74] is a recent scene parsing benchmark
containing dense labels of 150 object category labels. It is
challenging due to its large number of classes and existence
of multiple small objects in complex scenes. This dataset in-
cludes 20K/2K/3K images for training, validation and test.
We train our model on the training set and evaluate on the
validation set.
PASCAL-Context dataset [43] provides dense annotations
for the whole scene in PASCAL VOC 2010, which con-
tains 4998/5105/9637 images for training, validation and
test. Following previous works [66, 79], we use 60 class
labels (59 object categories plus background) for training
and testing. Our results are reported on the validation set.
Cityscapes dataset [16] is a large urban street dataset par-
ticularly created for scene parsing, including 19 object cat-
egories. It contains 2975/500 fine annotated images for
training and validation. Additionally, it has 20000 coarsely
annotated training images, but we only use fine annotated
training images and report results on the validation set. And
there are 1,525 images for testing. We only use fine anno-
tated training images in our setting and we report the results
on test set which contains 1525 images.

4.2. Implementation details

We implement our experiments with PyTorch [79] and
MMSegmentation [15] open source toolbox.
Network structure For the ResNet50 [23] backbone, we
use ImageNet pre-trained weights as initialization and ap-
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(a) Images (b) Ground Truth (c) CCNet (d) OCRNet (e) Ours

Figure 3. Qualitative results of proposed UN-EPT on ADE20K. We compare our method with CCNet [26] and OCRNet [63]. We visualize
them with models released from MMSegmentation. See black dashed boxes for differences, best zoomed in.

ply the dilation strategy [9, 60] to obtain 1/8 output size
of the input image. The 1 × 1 convolutional layer is used
to reduce the channel dimension of backbone features to
dmodel = 256. We take intermediate features from stage
3 to 5 in the backbone to obtain pyramid features. For the
stronger backbone DeiT [48], we use the base version with
a 12-layer encoder. We set the patch size as 16 × 16 and
adapt the positional encoding with bilinear interpolation.
For pyramid features, we extract pyramid features from out-
puts of the 4th, 8th, 12th layer followed by 1 × 1 convo-
lutional layers. The embedded dimension of the encoder
layer is 768, with the head number as 12. We use the model
weights from [48] as pretrained weights, which are trained
with ImageNet1K. The dimensions of positional encoding
and scale encoding are the same with dmodel and they are
added with pyramid features to serve as transformer encoder
inputs. For EPT, we use 2 encoders and decoders with head
number being M = 8 and dk = dv = 32. The hidden di-
mension of the feed forward layer is 2048. We model the
residual inside transformer layers and layer normalization
is applied. The dropout strategy is applied after the linear
layer in the attention computation and after two linear layers
of the feed forward module. For UN-EPT, we empirically
set N = 16 and L = 3. That is, selecting 16 pixels on the
feature map of each scale for computing attention. On the
encoder side, we map the query feature (image feature) to
offsets for sampling pixels. On the decoder side, we also
map the query feature to offsets of sampling features. The
output predictions are upsampled 8 times by bilinear inter-
polation for cross entropy loss. The whole framework is
trained in an end-to-end manner.
Evaluation metrics We use standard segmentation evalua-

tion metrics of pixel accuracy (pixAcc) and mean Intersec-
tion of Union (mIoU). For the ADE20K dataset, we follow
the standard benchmark [74] to ignore background pixels
for computing mIoU. For Cityscapes, we report our results
by submitting to the test server.
Training For data augmentation, we randomly scale the
image with ratio range from 0.5 to 2.0. Random hori-
zontal flipping, photometric distortion and normalization
are further adopted to avoid overfitting. Images are then
cropped or padded to the same size to feed into the net-
work (480 × 480 for ADE20K and PASCAL-Context and
768× 768 for Cityscapes).

We train 160k iterations for the ADE20K dataset and 80k
iterations for the Cityscapes dataset. The base learning rate
is 1e-4 except that the base learning rate of backbone layers
is 1e-5. The learning rates are dropped at 2/3 iteration with
0.1. We use AdamW optimizer with weight decay being
1e-4, β1 = 0.9 and β2 = 0.999. We set batch size as 16
for all experiments and synchronized batch normalization
is utilized. For all ablation experiments, we run the same
training recipe five times and report the average mIoU and
pixAcc.
Inference At inference time, following [71, 59, 66, 57], we
apply scaling (scale ratio: {0.5, 0.75, 1.0, 1.25, 1.5, 1.75}),
flipping and normalization to augment test inputs and obtain
the average predictions as final outputs.

4.3. Comparison to state-of-the-art

Results on ADE20K dataset. Here, we show both quan-
titative and qualitative results on ADE20K dataset. For
ADE20K, the complexity is mainly due to large class num-
ber and existence of small objects. We first report the results
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Method Backbone mIoU

PSPNet [71] ResNet101 78.5
DeepLabv3 [11] (MS) ResNet101 79.3
PointRend [30] ResNet101 78.3
OCRNet [63] ResNet101 80.6
Multiscale DEQ [2] (MS) MDEQ 80.3
CCNet [26] ResNet101 80.2
GCNet [6] ResNet101 78.1
Axial-DeepLab-XL [50] (MS) Axial-ResNet-XL 81.1
Axial-DeepLab-L [50] (MS) Axial-ResNet-L 81.5
CDGC [24] (MS) ResNet101 81.9
SETR [73] (MS) T-large 82.2

Ours (80k, MS) ResNet50 79.8
Ours (80k, MS) DeiT 82.9

Table 2. Quantitative evaluations on the Cityscapes validation
set (training iterations: 80k, MS: Multi-scale inference).

Method Reference Backbone mIoU

RefineNet [37] CVPR2017 ResNet101 73.6
PSPNet [71] CVPR2017 ResNet101 78.4
SAC [70] ICCV2017 ResNet101 78.1
BiSeNet [58] ECCV2018 ResNet101 78.9
PSANet [72] ECCV2018 ResNet101 80.1
ANL [79] ICCV2019 ResNet101 81.3
CPNet [57] CVPR2020 ResNet101 81.3
OCRNet [63] ECCV2020 ResNet101 81.8
CDGC [24] ECCV2020 ResNet101 82.0
SETR [73] CVPR2021 T-large 81.6

Ours - ResNet50 80.6
Ours - DeiT 82.2

Table 3. Quantitative evaluations on the Cityscapes test set.

trained with a ResNet50 backbone. From Tab. 1, we achieve
46.1 in terms of mIoU, 1.6 higher than previous state-of-
the-art CPNet [57] trained with ResNet50. We also want
to emphasize that ours with ResNet50 obtain competitive
performance compared to previous methods trained with
ResNet101. In addition, we can achieve state-of-the-art per-
formance with a stronger backbone network, i.e. DeiT [48].
Compared to recent transformer-based method SETR [73],
our DeiT-base model pretrained on ImageNet1K even out-
performs its ViT-large model pretrained on ImageNet22K.

Next we show several visualizations in Fig. 3, our
method can model contextual information well under the
circumstance of complex classes, indicating transformer
based attention is applicable to explore spatial correlations.
Compared with recent methods CCNet [26] and OCR-
Net [63], our method can distinguish objects without con-
fusing with other object categories, as in the 1st, 3rd, 4th
rows of Fig. 3. Besides, our method is able to segment
small objects, producing fine-grained results (the 2nd row
in Fig. 3).
Results on Cityscapes dataset. Here, we show quantitative
results on Cityscapes dataset. We adopt the best recipe in
practice. Tables 2 and 3 show the comparative results on
the validation and test set of Cityscapes, respectively. We
achieve 82.2 in terms of mIoU, with a DeiT structure as the
backbone. We can see that our model outperforms most of

Method Reference Backbone mIoU

FCN-8S [42] CVPR2015 VGG16 37.8
BoxSup [17] ICCV2015 VGG16 40.5
RefineNet [37] CVPR2017 ResNet152 47.3
PSPNet [71] CVPR2017 ResNet101 47.8
EncNet [66] CVPR2018 ResNet101 51.7
DANet [21] CVPR2019 ResNet101 52.6
ANL [79] ICCV2019 ResNet101 52.8
CPNet [57] CVPR2020 ResNet101 53.9
OCRNet [63] ECCV2020 ResNet101 54.8
Efficient FCN [38] ECCV2020 ResNet101 55.3
SETR [73] CVPR2021 T-large 55.8

Ours - ResNet50 49.5
Ours - DeiT 55.2

Table 4. Quantitative evaluations on the PASCAL-Context valida-
tion set.

Variants pixAcc mIoU

baseline 80.3 42.3
+ pyramid features 81.1 45.0
+ spatial path 81.7 46.1
+ stronger backbone 83.6 50.5

Table 5. Evaluation of different components on ADE20K valida-
tion set.

Feature scales (L) Sampling points (N) pAcc mIoU

1
4 77.5 37.5

16 80.3 42.5
64 80.5 42.9

3
4 80.6 44.1

16 81.7 46.1
64 80.4 45.6

Table 6. Ablation studies on different sampling points (N ) and
different feature scales (L) on ADE20K dataset with a ResNet50
backbone. Note that, boundary refinement is not applied here.

concurrent works. We only train the model with the fine
annotated images.
Results on PASCAL-Context dataset. Table 4 shows seg-
mentation results on PASCAL-Context. We achieve 55.2 in
terms of mIoU, outperforming DANet [21] and CPNet [57]
in modeling contexts with either attention mechanisms or
contextual priors. This indicates our advantage in modeling
contextual information through an efficient Transformer-
based module. Note that, SETR outperforms us by a small
margin, but with a larger network (ViT-large) and better pre-
training (ImageNet21K).

4.4. Ablation studies

Different components. To examine the effectiveness of
different components, we conduct a series of experiments
by adding one component at a time, e.g. pyramid features,
spatial branch for dynamic context and boundary refine-
ment, a stronger attention backbone. All models are trained
on ADE20K training set and evaluated on the validation set.
As shown in Tab. 5, utilizing pyramid features can improve
the mIoU from 42.3 to 45.0 on ADE20K. By further adopt-
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ing a spatial branch to produce the decoder input and ex-
plore boundary information, the mIoU can improve with a
1.1 margin, indicating the benefits in learning from abun-
dant contexts and boundary information. Besides, we show
that a stronger attention model is able to extract useful fea-
tures for better context modeling, improving the mIoU with
a large margin (4.5).
Different number of sampling points. Next, we study the
effect of using different number of sampling points. Firstly,
we set N = 4, 16, 64 for the single scale setting, respec-
tively. As shown in Tab. 6, sampling more points to com-
pute attention improves the mIoU to a certain extent, but the
number of 16 is sufficient for boosting the mIoU. For pyra-
mid features, we sample 4, 16, 64 points on feature map
of each scale. We find that the number of sampling points
does not have a large impact on mIoU performance and
sampling 16 points on each single scale feature map con-
sistently produces higher performance. Thus, in practice,
we set N = 16 in experiments. Furthermore, incorporat-
ing points from pyramid features is always able to improve
the performance, showing the effectiveness of the proposed
UN-EPT in learning long-range dependencies.

Method #Params. GFLOPs mIoU

PSANet [72] 73M 239.5 43.8
UperNet [52] 86M 226.2 44.9
EncNet [66] 56M 192.2 44.7
CCNet [26] 69M 244.6 45.2

PointRend [30] 48M 526.5 41.6
DNLNet [55] 70M 244.1 45.9
OCRNet [63] 71M 144.8 44.9

SETR [73] 401M - 50.2

Ours 94M 99.1 50.5

Table 7. Comparison of the number of model parameters. We
report numbers from models trained on ADE20K. Models are ob-
tained from MMSegmentation [15] or re-implemented.

Efficient transformer We study the effects of efficient
transformers in the NLP area, to compare with the proposed
UN-EPT. In particular, we adopt Sparse Transformer [14],
Reformer [31] and Longformer [3], respectively. We adopt
their transformer structures in our model. Sparse Trans-
former [14] and Longformer [3] are similar in adopting
strided/dilated sliding window to attend to a set of regions

Method Backbone Mem Cost mIoU

Sparse Transformer [14] ResNet50 18.6G 40.3
Longformer [3] ResNet50 11.3G 39.4
Reformer [31] ResNet50 15.5G 38.2

CCNet [26] ResNet50 9.8G 43.1
ANL [79] ResNet50 2.0G 42.6
SETR [73] T-large 30.0G 50.2

Ours ResNet50 7.0G 46.1
Ours DeiT 8.5G 50.5

Table 8. Ablation studies on the memory efficiency of UN-EPT.
We report results on ADE20K validation set.

Without boundary refinement

With boundary refinement

Figure 4. Visualization of segmentation results with/without
boundary refinement. Examples are taken from ADE20K valida-
tion set.

instead of full attention, saving memory as well as computa-
tion cost. But positions of the attended points are relatively
fixed for a particular pixel, which is not suitable for complex
scenes generally in the segmentation task. Reformer [31]
reduces the complexity by using locality-sensitive hashing
and reversible residual layers. However, it cannot remedy
the lack of context modeling in our case. Thus, the efficient
transformers in NLP area truly reduce the memory cost in
our case, but they fail to boost the performance, compared
with our UN-EPT, as shown in Tab. 8. Our method takes
up even less GPU memory and improves the mIoU met-
ric with a large margin. We also compare our UN-EPT
with efficient structures for segmentation, i.e., CCNet [26],
ANL [79]. The results in Tab. 8 show that our UN-EPT
can continuously show competitive performance. In addi-
tion, we highlight our efficiency in adopting Transformer-
based attention, compared with the recent work SETR [73].
Our method saves the memory cost to a large extent as well
as producing better segmentation results. We also compare
the number of model parameters and GFLOPs in Tab. 7.
Notably, our UN-EPT has the lowest GFLOPs among all
methods, showing its high computational efficiency.
Efficiency of the boundary refinement We verify the ef-
fectiveness of the spatial branch for boundary refinement in
Fig. 4. Predictions after the refinement module (bottom) of-
ten have better boundary estimation than them before the
module (top).

5. Conclusion

To summarise, we present a unified framework to tackle
the problem of semantic segmentation, by both consider-
ing context modeling and boundary refinement. We adapt a
sparse sampling strategy and use pyramid features to better
model contextual information as well as maintaining effi-
ciency. By adding a spatial path, the model captures dy-
namic contexts as well as fine-grained boundary signals.
We hope the proposed UN-EPT method can advocate future
work to jointly optimize the contexts and boundary signals
for semantic segmentation.
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