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Abstract

Object detection on Unmanned Aerial Vehicles (UAVs)
is still a challenging task. The recordings are mostly sparse
and contain only small objects. In this work, we propose a
simple tiling method that improves the detection capability
in the remote sensing case. We identified one core com-
ponent of many tiling approaches and extracted an easy to
implement preprocessing step.

By reducing the background bias and enabling the usage of
higher image resolutions during training, our method can
improve the performance of models substantially. The pro-
cedure was validated on three different data sets and out-
performed similar approaches in performance and speed.

1. Introduction

In the recent years, object detection, which is a funda-
mental part of computer vision, improved significantly. One
of the critical improvements was the usage of deep neural
networks for object detectors [6, 18]. Nowadays, state-of-
the-art models can accurately predict objects in generic ob-
ject data sets like MS COCO [12] or Pascal VOC [5].

In addition, the development of camera technology has
enormously increased the resolution of the recordings. For
example, it is possible to equip small Unmanned Aerial Ve-
hicles (UAVs) with high-resolution cameras.

Currently, there is a large gap between the available res-
olution of the recordings and the resolution, which is used
by the object detectors. The main reason for this is the lim-
itation of the graphics processing unit (GPU) memory and
speed (see section 3.1).

The standard approach is the down-scaling of the in-
put image. The advantage of the down-scaling is the
reduced computation effort, allowing higher frames-per-
seconds (FPS) for the detection [1]. However, down-scaling
also has a significant disadvantage. The size of the small
objects is reduced, and high level details are removed.

Small objects are defined by Lin et al. as the objects with
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Figure 1: Ratio between the annotated pixels and the im-
age pixels for different data sets. In contrast, MS COCO is
much more balanced.

an area (width x height) below 322 pixels [12]. The detec-
tion of these objects is still a challenging task. For object
detection on UAVs, planes, or satellites, detecting small ob-
jects is the common case. This application is called remote
sensing. For this application, down-scaling is problematic.

Further, the objects are often sparse in these recordings,
which leads to an unbalanced ratio between objects and
background. Therefore, there is a bias towards the back-
ground, which affects the prediction capability of the detec-
tors. Our main contributions are the following:

e We give an in-depth analysis of one of the object de-
tection problems on remote sensing images. We show
that sparsity leads to a background bias.

* We utilize a straightforward cropping approach to
solve this problem. Similar techniques are common
practice for other applications. However, they are not
yet widely used for remote sensing data. We aim to
create awareness of background bias and provide a
simple and reliable solution.

* We complete it with a comprehensive evaluation on
three data sets with many one-stage detectors. We also
analyze the influence of the parameters. In addition,
we provide an official implementation.
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2. Related work

In this section, we provide an overview of techniques
that solve or reduce the impact of the stated problems and
are related to our approach.

2.1. Object detection

Object detection is the task of localization and classifi-
cation of objects. We focus on the two-dimensional case,
which uses images as input data. The state-of-the-art ap-
proaches are based on deep neural networks [18, 1, 21].

There is a distinction between two-stage and one-stage
detectors. The two-stage detectors utilize a region proposal
network to predict regions of interest (ROIs). These ROIs
describe the input of a second network. This network clas-
sifies and regresses the ROIs [ 18, 6]. In contrast, one-stage
detectors combine the first stage and the second stage into a
single step. They predict bounding boxes of the objects di-
rectly with the class [1, 21, 4]. The two-stage detectors have
a better performance. In return, the one-stage detectors are
faster. Due to the better performance-speed-ratio, our focus
lies on the later ones.

Further, a distinction between anchor-based and anchor-
free detectors is possible. Anchor-based detectors make use
of precalculated anchors, which are distributed over the in-
put images. These specify all possible bounding boxes and
are the basis for further calculations [1, 21, 18]. Anchor-free
approaches try to eliminate this dependency and use other
ways to define the bounding boxes. Zhou et al. used, for
example, a heat-map to predict the centers of the objects.
Therefore, no anchor-boxes are necessary [31]. We have
conducted experiments with anchor-based and anchor-free
object detectors and showed that our method works in both
cases.

Lin et al. introduced a loss function called Focal loss,
which focuses on the hard examples. Therefore, it can per-
form well even with class imbalance [13] and is commonly
used. We want to tackle the bias between foreground and
background, so their loss is also beneficial in this applica-
tion. Two of our models (CenterNet and EfficientDet) use
the Focal loss by default. So Focal loss does not solve the
imbalance in this case entirely.

2.2. Data augmentation

Our method uses crops of the images as training data.
Data augmentation techniques such as Random Cropping,
Random Image Cropping And Patching (RICAP) [19], or
Cut Mix [29] commonly use a similar approach. Random
Cropping cuts random crops out of the input image. These
crops are used for training. Takahashi et al. introduced
RICAP, which crops four images and combines them into
a new training image [19]. Yun et al. proposed CutMix
[29], which is a combination of Mixup and Cutout. There-
fore, CutMix replaces the cutouts with crops of different

images. In contrast to our method, these approaches focus
on improving the object detector to recognize parts of an
object, reduce the contextual impact, and simulate occlu-
sion. These techniques are perfect for medium- or large-
scale objects occurring in MS COCO or Pascal VOC. Here
they can achieve significant improvements. These augmen-
tation techniques are counterproductive for the detection on
remote sensing recordings, which have mainly small and
sparse objects. In 4.3, there is a deeper analysis of the men-
tioned augmentation techniques.

Our method is deterministic and defines only one rep-
resentation of the training data. No random augmentation
takes place. Thus, a combination of these augmentation
techniques and our approach is still possible and shown in
the experiments.

Besides these augmentation techniques, Hong et al. pro-
posed a patch-level augmentation approach [9]. They ad-
dress class imbalances as a problem of UAV data sets. Af-
ter the training procedure, their proposed method generates
hard samples with misclassified object instances. These
hard samples are used for further training. Similar to their
approach, we solve the class imbalance. We focus on the
foreground to background imbalance. A direct compari-
son with their approach is not possible. They used addi-
tional data for their experiments. Further, the exact hyper-
parameters are not mentioned.

Kisantal et al. proposed a similar approach. Their
method over-samples small objects by augmenting the im-
ages with additional instances of small objects [11]. For
their augmentation, the segmentation masks of the objects
are required, which is a costly requirement for the data-set.
Many data sets do not provide the ground truth segmenta-
tion mask. This applies also to the used data-sets VisDrone
[32], SeaDronesSee [25] and DOTA [3].

Xia et al. recommend the users of their data set DOTA
[27] a cropping technique similar to our approach, but the
reason and the effect are completely different. We use the
new 2nd version of the DOTA data set for our experiments
[3]. Therefore, an analysis of the differences can be found
in section 4.1.

2.3. Architectures with higher resolution

Furthermore, there are methods, which can utilize high-
resolution images. Najibi et al. proposed AutoFocus, a
multi-scale inference approach [15]. On a coarse resolution,
FocusPixels and large objects are predicted. FocusChips,
which contain these FocusPixels, are processed in a further
round with a finer resolution. In the end, the predictions of
the different scales have to be merged. Their multi-stage ap-
proach seems very promising, but has some drawbacks. The
multi-stage analysis of an image cannot be parallelized, so
it is slower than a single forward pass.

Further, their method has to be adapted to other network
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Figure 2: Example images of different data sets with orange ground-truth bounding boxes. The orange-green pie-charts show
the foreground-background-ratio in the training data set. (orange: foreground; green: background)
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Figure 3: On the example ResNetl18 classifier [8], the nec-
essary space in MByte for the weights and the activation for
two input images is shown.

architectures. They showed results for a Faster R-CNN and
claimed compatibility with other models. But it is still nec-
essary to adjust their process to other models. AutoFocus
is helpful for data sets with an extensive range of object
sizes. Here, the detection of large objects can already hap-
pen within a coarse resolution. In the remote sensing use
case, there are primarily small objects. So the multi-stage
approach does not reduce the inference time like for MS-
COCO.

Unel et al. proposed a two-stage method. Similar to our
approach, their method divides the input image into tiles
[24]. They use these tiles and the full-frame for both, the
training and the inference. For the inference, a merging step
is necessary. Our approach is very similar to their method.
The major difference lies in the inference. Our method uti-
lizes only the full-frame. So we skip the merging of the pre-
dictions in the post-processing step and need only a single
forward pass for the whole image. A more detailed compar-
ison can be found in the experiment section 4.3.

Tang et al. proposed a combination of the two previous
mentioned methods [22]. PENet could improve the accu-

racy for two data sets massively. But the technique has two
drawbacks. First, the approach is slow. And second, the
method needs additional annotations, which makes compar-
ison impossible.

2.4. Technical solutions

To tackle the memory limitation during training, the us-
age of GPUs with larger memory is an option. In most
cases, this is not possible. We kept the maximum resolu-
tion of the input images for all configurations fixed for the
experiments in the following. By this, we show that our
method can improve the detector performance by just solv-
ing the background bias.

Like a larger GPU memory, the representation of the
floating-point numbers with half-precision (Float16) could
diminish the memory limitation issue. For our experiments,
we used single-precision (Float32) to be comparable to the
related works. Our method is also compatible with half-
precision.

We present a simple technique, which allows the us-
age of high-resolution images. Furthermore, it reduces the
background bias in the training data. We further contribute
experiments on different data sets and an in-depth analysis
of the impact on the trained detector.

3. Proposed Method

In this section, we describe our method. Starting with
the motivation, we continue with the method and some im-
plementation details.

We offer an official implementation (https://git.
io/JRQNI).

3.1. Motivation

The training process of a neural network is heavily data-
driven. The benchmark, which is often used to measure
state-of-the-art detectors, is still MS COCO [12]. In Fig. 2,
four example images of different data sets are shown. The
pie-charts indicate the ratio of the foreground to the back-
ground pixels in the different training sets. For MS COCO
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Figure 4: The method Cropping Window (CroW). The
graphic shows the difference between the training and the
inference procedure.
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[12], this is almost balanced. This is not given for remote-
sensing data sets (like VisDrone [32], SeaDronesSee-DET
[25], and DOTA-2 [3]). So MS COCO is not a good rep-
resentative for the sparse recordings, common for remote
sensing. Even with Focal-Loss [13], which lightens the im-
pact of unbalanced data sets, this is still a large source of
errors.

Besides the bias-driven motivation, our goal was also
to utilize high-resolution images in the training procedure.
We already mentioned the limiting factor of GPU memory.
Therefore, in many cases, the input images must be scaled
down to fit into the memory. Especially for detecting small
objects, this is counterproductive and can harm the perfor-
mance of a model heavily. Nowadays, it is common to use a
higher resolution for inference than for training [17]. Tou-
vron et al. showed that this discrepancy of the train-test res-
olution is even beneficial for classification tasks [23]. With
our method, it is possible to train on high resolutions and
utilize even higher resolutions during inference. This im-
proves the accuracy on small objects significantly.

The reason for the huge memory consumption during
training can be found in the backpropagation formula. In
Eq. 1 the weight adaption of the weight w;; for one sample
p of the backpropagation algorithm is given [30]. n defines
the learning rate, o, is the activation of the previous layer 4
and d,,; the backpropagated error of the following layer j.

Apwij = N0pidp; (1)

The backpropagation algorithm starts at the end of the
network. It propagates the error back through the network,
so the activation of the previous layer must be kept all the
time. Especially for convolution layers, the size of the in-
termediate results depends highly on the size of the input
data. By sharing the weights through the kernel, the amount
of weights is reduced drastically compared to a fully con-
nected layer [7]. To calculate the adaption of the kernel
weights, it is still necessary to consider all positions of the
kernel on activation of the previous layer. In Fig. 3, the

ratio between parameter space and activation space adds up
over the layers. The necessary activation space is a multi-
ple of the parameter space. Therefore, most memory for the
weight adaptation step is required by the activation. This
also applies to separable convolutions [14], which divide
the spatial and the channel calculation to reduce the num-
ber of parameters. The memory usage becomes even worse
with many layers because the amount of intermediate re-
sults increases.

The memory limitation causes a problem for large input
data. The available memory becomes, therefore, the limita-
tion for the maximal training image sizes. For the inference,
it is not necessary to hold the activation of hidden layers.

With our method, we can use higher resolutions by split-
ting up the computations.

Algorithm 1 Cropping Window (CroW)

Input: Training set S with annotations,
Tile size « (pixels), Tile overlap 3 (0 - 1), Down-scaling
factor v (0 - 1)

Output: Training set Syew
Initialization :

1: Shew 1S an empty list
Tile generation :
for Image with annotations 7 in .S do
Tiles T" = divide_image(i, «, [3)
for tile ¢ in 7" do
if (¢ contains ground truth boxes) then
Append ¢ to Shew
end if
end for

end for

Downscale full frame :

10: for Image with annotations ¢ in S do

11: Image inew = downscale_image(i, v)

12:  Append inew tO Shew

13: end for

14: return Shew

R AR A o

3.2. Method

Fig. 4 shows a sketch of the approach. We focus fully on
an adaptation of the training process, which is also the ma-
jor difference to the method of Unel et al. [24] (see 4.3). We
propose a deterministic way to change the representation of
the training data that addresses the two problems mentioned
above. The method is architecture-independent.

In Alg. 1 the procedure of our method is described. We
split the image into tiles and discard the empty ones. The
parameters « and (8 define the tiles. « specifies the size
of the tiles and (8 the area of relative overlap. In our ex-
periments, we kept the values fixed (o« = 512 pixels and
B = 0.25). Further, we could show (see 5.2 and 5.3), that
these parameters are independent of the data set. The third
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Inference  Inference

Data set VisDrone SeaDronesSee | FPS FPS II;I;I;EZE;Z
(Desktop)  (embedded)
EfficientDet-d0 19.54 £0.64 18.85 + 3.65 46 3 45M
With CroW (our) 25.30 +1.93 31.21 £+ 0.64 46 ’
EfficientDet-d4 19.66 £ 0.60 24.77 +1.24 21 i 17.7M
With CroW (our) 27.61 = 1.09 30.41 £ 0.44 ’
Y910V4 17.74 £2.00 30.75 & 1.64 20 i 63.9M
With CroW (our) 28.65 =540 36.41 +1.40
CenterNet-ResNet18 2420+ 227 2341 +1.52 78 i 14.4M
With CroW (our) 26.88 +0.73 31.49 + 1.54 ’
CenterNet-ResNet50 29.73 £0.50 23.24 +2.99 3 i 30.7M
With CroW (our) 35.25 +0.57 33.07 £ 0.37 ’
CenterNet-ResNet101 26.14 £3.18 20.63 +1.21 2 i 49 7M
With CroW (our) 33.63 = 1.61 33.68 +2.59 ’
CenterNet-Hourglass104 2847 £0.25 264 £+ 0.52
With Random Cropping 29.50 22.43 6 - 200M
With CroW (our) 31.63 + 0.01 27.53 + 0.08
Pelee_T5x3_15x3 [24] 15.34 - - 6 5.4M
Pelee38_T5x3_15x3 [24] 16.61 - - 5
EfficientDet-d0
With CroW (our) 18.33 - 46 8 4.5M
CenterNet-Hourglass104 31.97 )
5th place in VisDrone-19[17] ’ 6 - 200M
With CroW (our) 38.36 -

Table 1: This table shows the mean Average Precision for the averaged IoU thresholds between 0.5 and 0.95
(mAP-5:0:95:0.05) for different configurations. Value per cell: mean =+ standard deviation.

parameter v represents the down-scaling factor, which is
used to down-scale the full-frame in the training set. The
down-scaling is necessary if the processing of the full-frame
does not fit into the GPU memory. So it would be possible
to utilize higher resolution images for the tiles during the
training.

To give a fair comparison with the baseline models, we
down-scaled the data set images to the maximal resolution,
for which even the full-frame fits into the memory. There-
fore, the value v was set to 1 for the most experiments. Both
functions (’divide_image’ and ’downscale_image’) process
both, the image and the annotations.

The representation of the training set, which is generated
this way, is used to train the neural network. With this tech-
nique, it is possible to use high-resolution images as tiles
and reduce background, which decreases the background
bias.

At inference, the full-frame in the maximal resolution is
used. Because of a focus on fast inference, we did not con-
sider test-time augmentation. Nevertheless, it should still
be possible to use this combined with our method and could
even benefit.

3.3. Cropping pattern

To improve the performance, a suitable cropping pattern
for the tiles is required. An overlapping sliding window

approach worked best in our experiments. The idea is that
each object occurs at least once uncut in a tile. We achieved
this by placing four fixed tiles in the corners of the image
(see 1 in Fig. 5). Afterward, we filled the intermediate areas
with equally distributed tiles (see 2 in Fig. 5). The number
of tiles is calculated via the minimal overlap-parameter 3.

4. Experiments

In this section, we describe our experiments. We give an
overview of the training and test configuration. At the end
of this section, we discuss the results (in Tab. 1 and 2).

For all experiments, we used PyTorch in version 1.8.
For the batch experiments, we used computation nodes with
four Geforce GTX 1080 Ti. We did single experiments on
a Geforce RTX 2080 Ti and a computation node with eight
RTX 3090. The inference time is measured on a Geforce
RTX 2080 Ti (Desktop). To compare the speed with Unel
et al. [24], we used a Jetson TX2 (embedded). For the em-
bedded inference, half-point precision was used.

4.1. Data sets

We used three different data sets to evaluate our method.
All three are based on aerial recordings. VisDrone [32] and
SeaDronesSee [25] consist of Micro Air Vehicle (MAV)
recordings. DOTA-2 contains mainly images recorded by
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Data set VisDrone SeaDronesSee  DOTA-2
%ﬁmnﬂ)et 1954+ 0.64 18.85+3.65 19.35+0.79
With Crow 2530 + 1.93 3121+ 0.64  33.97 + 4.04
iﬁcwnﬂ)et 19.66 £ 0.60 2477+ 124 2482+ 0.83
With CroW  27.61 + 1.09  30.41 & 0.44  44.01 + 2.43
Yolov4 1774 £2.00 3075+ 1.64 644 £ 053
with CroW  28.65 + 5.40 36.41 & 1.40  22.04 -+ 0.83
CenterNet

Reals 2420+227 23414152 1518+ 0.56
with Crow  26.88 + 073 3149+ 1.54  19.67 + 0.71
CenterNet

ReaNatS0 2973+ 050 23244299 1585+ 231
with CroW 3525+ 0.57  33.07+037  23.06 + 7.53
CenterNet

o] 2614E318 2063121 1419 £062
with Crow  33.63+ 1.61 33.68 =259  27.05 + 6.72
CenterNet

Hourglass104 45774849 SL41£106 4326086
with Random o, 46.65 50.69
Cropping

with CroW 5551+ 0.23 53774022  52.40 + 0.23

Table 2: This table shows the mean Average Precision with
a IoU threshold of 0.5 (mAP°%) for different configura-
tions. Value per cell: mean + standard deviation.

satellites [3]. For all experiments, we use the common met-
ric mean Average Precision and use the calculation metric
of MS COCO [12]. We only adapted the maximal number
of considered detections per image to fit for each data set.

VisDrone-DET Zhu et al. proposed one of the most
prominent MAV recordings data set [32]. The application
of this data set is traffic surveillance in urban areas. For our
experiments, we used the detection task (VisDrone-DET).
The training set contains 6,471 images with 343,205 anno-
tations. The image resolution ranges from 960x 540 pixels
to 2000 1500 pixels. Unless otherwise mentioned, we re-
duced the maximum side length by down-scaling to 1024
pixels. So the whole image still fits into the GPU memory
as a complete image.

As the test-set is not public for this data set, we used the
validation set for the evaluation. For VisDrone-DET this is
common practice [26, 22, 28]. The validation set contains
548 images.

SeaDronesSee-DET In contrast to VisDrone, SeaD-
ronesSee aims at maritime environments [25]. For the
search and rescue application, the detection of swimmers
and boats is necessary. The training set includes 2,975 im-
ages with 21,272 annotations. The resolutions of the images
range from 3840x2160 pixels to 54563632 pixels. We re-

Figure 5: The overlapping cropping patter.

duced the maximum side length of the images to 1024 pix-
els for this data set, too.

The reported accuracy is evaluated on the test set (with
1,796 images).

DOTA-2 Ding et al. provide high-resolution satellite im-
ages with annotations [3]. The diversity of the image reso-
lutions is much larger (475x547 pixels to 29,200%x27,616
pixels). A script is provided to divide the recordings into
tiles. This approach can be compared with our method.
However, the goal of their method is to divide the image
into smaller tiles. Our method uses an evaluated cropping
pattern and reduces background bias. For the experiments
on DOTA-2, we used their preprocessing technique. So our
approach is compatible with their preprocessing step. Fur-
ther, we used their annotations of task 2. For DOTA-2, the
test-set is not public, further, the evaluation server was not
reachable. Therefore, the validation set (with 2,619 image-
tiles) was used. It is common for the DOTA data set to
state the mean Average Precision with an IoU-threshold 0.5
(mAP*)[3].

4.2. Models

We used three one-stage object detectors for our ex-
periments. To prevent overfitting, we used early-stopping
based on the validation loss for all models. If the validation
loss did not decrease after the minimal epochs (50 epochs)
within ten epochs, we stopped the training.

For each model, the hyper-parameters were optimized
for the baseline experiment.

Besides the three mentioned models, we compared our
results with approaches of Unel et al. [24], Pailla et al. [17]
and similar augmentation techniques such as Random Crop-
ping and Mosaic augmentation [1].

EfficientDet EfficientDet is optimized for efficiency and
can perform well with small backbones [21]. Even there
is an EfficentNetV2 announced, which should be more effi-
cient as backbone [20], there is currently, to the best of our
knowledge, no object detector using this backbone.

For our experiments, we used EfficientDet with two
backbones. The d0-backbone is the smallest and fastest of
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this family. And the d4-backbone represents a good com-
promise between size and performance.

We used three anchor scales (0.6, 0.9, 1.2), which are op-
timized to detect the small objects of the data sets. For the
optimization, we used an Adam optimizer [10] with a learn-
ing rate of 1e~*%. Further, we used a learning rate scheduler,
which reduces the learning rate on plateaus with patience of
3 epochs.

CenterNet Duan et al. proposed CenterNet [4], an
anchor-free object detector. The network uses a heat-map
to predict the center-points of the objects. Based on these
center-points, the bounding boxes are regressed.

Hourglass-104[ 1 6] is a representative for extensive back-
bones, while the ResNet-backbones [8] cover a variety of
different backbone sizes.

The ResNet backbones were trained with Adam and a
learning rate of le~*. Further, we also used the plateau
learning scheduler. For the Hourglass104, we used the
learning schedule proposed by Pailla ez al. [17].

YoloV4 Bochkovskiy et al. published YoloV4[1], which
is the latest member of the Yolo-family providing a scien-
tific publication. Besides a comprehensive architecture and
parameter search, they did an in-depth analysis of augmen-
tation techniques, called ’bag of freebies’, and introduced
the Mosaic data augmentation technique.

YoloV4 is a prominent representative of the object de-
tectors because of impressive results on MS COCO. By de-
fault, YoloV4 scales all input images down to an image size
of 608x608 pixels. For our experiments, we removed this
preprocessing to improve the prediction of smaller objects.
The down-scaling speeds up the inference time massively.
That is the reason why YoloV4 achieves in our experiments
only 20 FPS.

4.3. Results

In Tab. 1 and 2 the mean Average Precision (mAP) for

the different configurations are given. For each configura-
tion, we stated the mean and the standard deviation over
three runs with different seeds.
All models improve for all data sets with 2 to 13 mAP
points compared to the baseline model. No adaption of the
network architecture is necessary. Therefore, the number of
parameters and the inference time are equal to the baseline
model.

Further, we could improve the results of a participant
of the VisDrone challenge 2019 by nearly 20%. Pailla et
al. achieved 5th place in the challenge with a heavily opti-
mized CenterNet-Hourglass104[17]. We achieved the im-
provement by just adding our method to their model. Both
stated values in Tab. 1 are without test-time-augmentation,
but with a larger validation image size (maximal image-side

length of 2048 pixels). With our method, we could also uti-
lize this higher resolution during training. Because of the
memory limitation, they could not train on the same reso-
lution. Therefore, the higher resolution was seen by their
detector the first time at the inference time.

We also tested comparable data augmentation tech-
niques. The Mosaic augmentation [I] is part of the
YoloV4 pipeline. Hence, all experiments of YoloV4 used
this augmentation technique. Since the YoloV4 experi-
ments indicate the same improvement, it is shown that our
method tackles another issue. Further, we showed for the
CenterNet-Hourglass104 that Random Cropping could not
achieve the same results as our method.

The technique proposed by Unel et al. [24] could per-
form well on the VisDrone data set. Their goal was to solve
the small object detection problem with a tiling approach
similar to ours. They missed an in-depth analysis for the
cause of improvement and created an unnecessarily com-
plex pipeline. The networks Pelee and Pelee38 were used
for their experiments [26]. We could observe that the non-
max-suppression (NMS), which they used to merge the pre-
diction of the tiles into a full-frame prediction, is not help-
ful, especially for small objects, and even slows down the
procedure. Their approach further needs multiple forward
passes for a single frame. The superior method uses a net-
work, which is not fixed to one input image size and utilizes
only the full-frame while inference. We were able to outper-
form their results in performance and speed with a similar in
size, EfficientDet-d0. The results must be viewed with cau-
tion. Unel et al. used only two superclasses of the VisDrone
data set (pedestrian and vehicle). Hence, a comparison with
the other results of our experiments is not possible.

Further, we compared two different network architec-
tures. This comparison is not entirely fair, since Efficient-
Det benefits from more recent developments in architecture
search. But it can still show the advantage of using the en-
tire image and remove the merge process.

In summary, we showed the data set independence and
could outperform similar methods, like data augmentation
techniques and tiling approaches.

5. Ablation study

In this section, we analyze the impact of our method on
the trained detectors. We analyze the influence of the pa-
rameters tile size « and tile overlap .

5.1. Impact on detector

By eliminating other causes and comparing trained de-
tectors, we found the reason for the improvement in the re-
duced background bias.

In Fig. 6 a TIDE [2] analysis of a CenterNet-
Hourglass104 trained with and without our method is visi-
ble. Also, a model trained with Random Cropping is shown.
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Figure 6: TIDE analysis of the trained CenterNet-Hourglass104 on VisDrone-DET. Larger values indicate a larger error.
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Figure 7: Impact of the tile size v and tile overlap /3 on the test performance of a CenterNet-Hourglass104.

TIDE is based on the mAP and can break down the cause
for the missed accuracy. There are two essential differences
visible between the baseline and our approach. First, our
method reduced the Missed error and the Classification er-
ror. So the second detector was better in the distinction of
classes and missed fewer objects. Further, the Background
error is increasing minimally for our method and has no real
impact on the overall prediction capability. So even after re-
moving some background, there is enough background left
to learn. In contrast, Random Cropping improves the lo-
calization only slightly and worsens classification. For the
VisDrone data set, the ratio of the classification error is still
enormous for all approaches.

With our technique, many tiles, which are full of
background, are removed. This leads to a much better
foreground-background-ratio, which is visible in Fig. 1.

5.2. Tile size «

In Fig. 7a the test performance for different tile sizes «
is displayed. Tiles with a size of 1024 x 1024 pixels cor-
respond to a single tile for the whole image in our exper-
iments. The influence of the tile size depends on several
factors (sparsity, object distribution, object size). A good
balance between these factors is provided by the tile size
of 512x512 pixels, which was used for our further experi-
ments.

5.3. Tile overlap

The second hyper-parameter 3 defines the minimal over-
lap of the tiles. In Fig. 7b, it is visible that the impact of this

parameter is much smaller. A tile overlap of at least 0.15 be-
tween the tiles produces stable results. To get a better intu-
ition of the parameter [ impact, we didn’t add the full-frame
to the training set of these experiments. This magnified the
influence of the parameter 5.

6. Conclusion

We introduced a simple technique to improve the capa-
bilities of object detectors on sparse recordings by tackling
background bias. Furthermore, the method allows the uti-
lization of higher resolutions during training. This enabled
us to improve the performance of a VisDrone challenge par-
ticipant by nearly 20%.

Besides a validation on three different data sets, we could
justify the improvement with an analysis of the improve-
ment cause.

This method is easy to implement into an existing object
detection pipeline and can improve the performance in ad-
dition to other state-of-the-art approaches. By showing this
low-hanging improvement, we want to increase the aware-
ness for the background bias in remote sensing recordings.
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