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Abstract

Existing methods are especially difficult to detect objects
accurately in videos and images captured by UAV. In the
work, we carefully analyze the characteristics of VisDrone
DET 2021 dataset, and the main reasons for the low detec-
tion performance are tiny objects, wide scale span, long-
tail distribution, confusion of similar classes. To mitigate
the adverse influences caused thereby, we propose a novel
detector named VistrongerDet, which possesses Stronger
Visual Information. Our framework integrates the novel
components of FPN level, ROI level and head level en-
hancements. Benefitted from the overall enhancements,
VistrongerDet significantly improves the detection perfor-
mance. Without bells and whistles, VistrongerDet is plug-
gable which can be used in any FPN-based two-stage detec-
tors. It achieves 1.23 points and 1.15 points higher Average
Precision (AP) than Faster R-CNN and Cascade R-CNN on
VisDrone-DET test-dev set.

1. Introduction
Drones, or general UAVs, equipped with cameras have

been fast deployed to a wide range of applications, in-
cluding agricultural, aerial photography, fast delivery, and
surveillance. Consequently, automatic understanding of vi-
sual data collected from these platforms become highly de-
manding, which brings computer vision to drones more and
more closely [9]. Object detection is the most basic and
important task which crucially restricts the performance of
high level visual tasks such as tracking, activity recognition
and other automatic understanding of visual data, and has
been a research focus in computer vision.

The convolution neural network (CNN) has high been
appreciated in computer vision since its more representable
features than handcrafted features. A number of detec-
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Figure 1. Challenges of object detection in the VisDrone 2021
dataset. Objects of the same category are labeled with the same
color. Several difficulties are marked in the figure.

tors [14, 32, 23, 35, 42] based on CNN have been pre-
sented one after another, and have achieved excellent suc-
cesses on public datasets, e.g., MS COCO [24] and PAS-
CAL VOC [13]. Although object detection methods based
on deep learning have made great progress, there are still
open problems such as small objects, occlusion, and gener-
alization that need to be solved. In particular, it is especially
difficult to detect objects accurately in videos and images
captured by UAV, e.g., VisDrone [44] and UAVDT [11],
which suffers from a large number of tiny objects, wide
scale distribution, serious long-tail distribution and diffi-
culty for distinguishing similar categories caused by aerial
shooting. The object detection on VisDrone DET 2021
dataset is a challenging visual task with such difficulties as
shown in Figure 1. In this paper, we propose several effec-
tive strategies to solve the difficult problems in VisDrone
DET 2021. And we achieved good competition ranking
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Size <2002 2002∼4002 >4002 <322 322∼962 >962

number 487887 2035 42 306262 159999 23703

Table 1. The statistics data of all object bounding boxes in VisDrone2021 train&val set. The first row represents the object size range and
the second row shows the number of objects falling within each range.

in this evaluation task by integrating our strategies into the
high-performance detectors.

In VisDrone DET task, tiny objects which size is less
than 32 pixels and wide scale distribution of objects are two
problems that must be faced. The pyramidal feature net-
work (FPN) [22] proposed by Lin et al. could obtain more
convincing semantic representation and be widely applied
for object detection. However the general detectors based
on FPN have poor detection performance for tiny objects in
VisDrone DET dataset, and FPN features are not sensitive
to tiny objects, even the bottom level. Furthermore, wide
scale distribution of objects in VisDrone dataset leads to the
imbalance of instances in each layer of FPN, and also influ-
ences the model performance. Inspired by [15], we adopt
effective fusion factors to avoid the impact caused by the
imbalance of instances in each layer of FPN. Meanwhile, in
order to make FPN features of objects more expressive, we
introduce mask supervision on each layer during the model
training. We refer to these two strategies as FPN level en-
hancement.

In FPN structure, the feature of each ROI is obtained
by only pooling on the features of one level. However two
ROIs with similar size may be assigned to different levels by
the procedure. Then such pooling algorithm may produce
sub-optimal detections since there is a strong correlation be-
tween levels, especially adjacent levels. Therefore, we pro-
pose an Adjacent ROI Fusion (ARF) module to fuse ROI
features from adjacent levels by parameterizing the proce-
dure of ROI pooling. We refer to this processing as ROI
level enhancement.

The third problem to be solved is the long-tail distribu-
tion in the VisDrone DET dataset. The ideas of many meth-
ods for solving long-tail distribution problem come from
long-tail classification. Buda M et al. balanced the differ-
ences between long-tail categories and head categories with
more samples for tail classes during training [2]. Cui Y
et al. settled this problem by assigning large weights for
tail categories during training [7]. However, these meth-
ods can only solve some problems, and they may lead to
over-fitting, even cause optimization difficulty. We exploit
a Dual Sampler and Head Network (DSHNet) [39] to han-
dle head and tail classes separately. In addition, there exist
similar categories in the VisDrone dataset, such as pedes-
trian and people, which are difficult to distinguish for aerial
shot images. We cleverly add two supervisors to the classi-
fication head: multi-label prediction and grouping softmax,
thereby indirectly avoid modifying the structure of original

detection network. We term these strategies HEAD level
enhancement.

In light of these challenges and the characteris-
tic of VisDrone dataset, we propose a novel detector
named VistrongerDet, which possesses Stronger Visual
Information. Our framework integrates the novel compo-
nents of FPN level, ROI level and head level enhancements.

In summary, the main contributions of this paper are as
follows:

1) We propose a novel detector (VistrongerDet), en-
hanced from FPN level, ROI level, and head level re-
spectively.

2) Our improvement method is pluggable, and can be
used in any FPN-based two-stage detectors such
as [32, 4, 30, 29, 16].

3) We achieve significant improvement compared to the
benchmark provided by the VisDrone Challenge. Fi-
nally, our model is ranked 5th in VisDrone-DET2021
challenge [9].

2. Related Work
In the section, an overview of related work is presented

in response to the proposed research work, which mainly
includes the following three aspects: general object detec-
tion, object detection in UAV images and Long-tail object
detection.
General Object Detection. The current popular object
detection frameworks mainly divided into anchor-free and
anchor-based. Anchor-free approaches focus on detecting
objects by locating and regressing key points. CornerNet
detects an object as a pair of key points—the top-left corner
and bottom-right corner of the bounding box [18]. Where-
after, grouping the corners based on the distances to get the
final detection results. CenterNet represents objects by a
single at their bounding box center, and regresses to the
corresponding size for each object according to the center
point [42]. ExtremeNet detects four extreme points (top-
most, left-most, bottom-most, right-most) of an object [43].
Anchor-based approaches can then be subdivided into one-
stage and two-stage detectors. SSD [26] and YOLO [31] are
commonly used one-stage detectors, the mainly advantage
is fast but without high accuracy. RetinaNet proposes a fo-
cal loss to solve the problem of imbalance between positive
and negative samples and difficult and easy samples [23].
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Compared to one-stage methods, two-stage detectors add
Region Proposal Network (RPN) [32] to predict the rough
position, then perform classification and location correction
predictions on these proposals. Cascade R-CNN uses cas-
cade structure to further refine the previous results to obtain
higher quality detection results [4].
Object Detection In UAV Images. Compared with ground
images, object detection in UAV images is more challeng-
ing. There exists a lot of tiny objects in the images shot
by UAV, such as the size of the object less than 32 pix-
els. Wang et al. propose a Receptive Field Expansion
Block (RFEB) to increase the receptive field size, and a
Spatial-Refinement Module (SRM) to repair the spatial de-
tails of multi-scale objects in images [37]. DPNet [12]
introduces the global context module (GC) [5] and de-
formable convolution (DC) [8] into the backbone network.
DroneEye2020 [10] uses Recurisve Feature Pyramid (RFP)
for neck, and additionally uses Switchable Atrous Con-
volution (SAC) for better performance [30]. Many ap-
proaches [41, 19, 28] generate a set of sub-images based
on cropping methods, which can increase the size of ob-
jects and enlarge the datasets. The above methods only in-
directly avoid the trouble caused by tiny objects, and there
are no specific algorithms or structures proposed.
Long-Tail Object Detection. Another serious challenge
is long-tail distribution problem in UAV datasets. A few
classes in VisDrone such as car, pedestrian and person ac-
count for more than 70%, while other classes have very
few numbers, e.g., tricycle, awning-tricycle and bus. Re-
sampling [2, 3] is a common method, which balances the
differences between the long-tail categories and the head
categories with more samples for the tail categories dur-
ing training. Assigning large weights for the tail categories
is another kind methods of for processing long-tail cate-
gories during training [7]. Although the above methods
can solve some problems, they may also lead to over-fitting,
even cause optimization difficulty. Forest R-CNN clusters
fine-grained classes into coarser parent classes, and con-
structs a tree structure to learn the relationship between sub-
categories through its parent category [38]. According to
the number of each category, Li Y et al. divide the sim-
ilar number of categories into a group and performs cross-
entropy loss supervision separately in the group [20]. These
two methods help to alleviate the extreme imbalance prob-
lem, but will introduce errors in the parent classes or change
the original softmax structure.

3. Methodology
We aim to maximize the detection performance in drone

images by our enhancing strategies on FPN level, ROI level
and HEAD level in order to alleviate the degradation caused
by tiny objects, wide scale span, long-tail distribution, con-
fusion of similar classes. The overall method framework is

based on Cascade R-CNN [4] as shown in Figure 2. The
processing flow is as: (1) The BACKBONE stage performs
to extract the features of the input images, generate feature
maps, and lay the foundation for the subsequent stages. (2)
In FPN stage, the fusion from deep layers to shallow lay-
ers employs three different factors. Furthermore, the mask
head and fusion module on each layer of FPN make feature
extraction paying more attention to object regions, specially
to tiny objects. And these constitute the FPN level enhance-
ment. (3) In ROI stage, we perform ROI pooling procedure
based on feature maps fused in the previous stage. For ROI
pooling, the features of the current ROI layer and its adja-
cent layers are specially integrated, and the internal spatial
attention mechanism of ROI is also utilized. We name such
strategies ROI level enhancement. (4) In HEAD stage, that
is our HEAD level enhancement, we take different branches
to process the head categories and tail categories separately.
Group-Softmax Classification and Multi-Label Classifica-
tion are especially used to solve classification of similar cat-
egories. All components will be detailed in the following
sections.

3.1. FPN level enhancement

We explore two strategies to execute FPN-level enhance-
ment in VisDrone 2021 data set. Firstly, the fusion factor
as [15] is adopted to solve the problem of wide range of
object scale distribution. Secondly, the mask of the object
region is added in the training phase to improve the detec-
tion of tiny objects.

Wide range of object scale distribution is one intractable
issue in the VisDrone dataset. Table 1 is the statistics on
the absolute size of objects in train&val sets of VisDrone
2021, while the size of objects varies from 12 to 4002 pixels
and object sizes are unevenly distributed at different scales.
Such characteristic of object distribution may lead some
layers of FPN to have much fewer training samples than
others. In the original FPN [22], all fusion factors from
deep to shallow layers are the same as 1. In this way, imbal-
ance of instances in each layer of FPN would obstruct the
update efficiency of network parameters when the gradient
back propagates. Inspired by [15], we describe the couple
degree of adjacent layers in FPN with different fusion fac-
tors. We calculate the number of training samples NPi

on
each layer with IOU matching algorithm; then three differ-
ent fusion factors ai+1

i are got as [15]:

ai+1
i =

{
NPi+1/NPi , i <0
(NPi+1 +NPi+2)/NPi , i ≥ 0,

(1)

where i represents the level of pyramid. Therefore, we ob-
tain the fusion factors with the sample distribution of dif-
ferent scales in the training data set, which can adjust the
fusion of different layer features adaptively and optimize
the network parameters more effectively.
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Figure 2. Overall pipeline of VistrongerDet. BACKBONE extracts the feature of input images, it can be ResNet [17], ResNeSt [40], Swing
Transformer [27] and so on. The brief structure of three enhancements including FPN, ROI and HEAD has been illustrated on the figure.

There exists a lot of tiny objects in the images of Vis-
Drone dataset. According to MS COCO’s classification
method, Table 1 also shows the number of object scales
within the three levels of small, medium and large, and
their majority are tiny objects which size is less than 32.
Tiny objects would become smaller after down sampling,
and maybe disappear from the feature maps of FPN easily.
In order to strengthen the sensitivity of feature maps to tiny
objects, we introduce mask supervision on each layer dur-
ing the model training phase.

We generate a heatmap Y ∈ [0, 1]H×W×C as label, in-
dicating the foreground and background with ground-truth
bounding boxes annotations. All pixels in the bounding
boxes of the heatmap Y are set to 1 and the rest pixels are
set to 0. In training phase of mask supervision, for a sample
image and detection box shown in Figure 3, feature maps
are first extracted by FPN network; then we use convolu-
tion operation to gradually reduce the number of channels
to 1 without changing the resolution of feature maps. The
training objective is a pixel-wise MSELoss. The foreground
mask supervision training could make the feature extraction
more attention to object regions.

Further, mask supervision on each layer could strengthen
the sensitivity of feature maps to tiny objects, and the mask
branches {M2,M3,M4,M5,M6} of 5 layers have learned
features different from original FPN {P2, P3, P4, P5, P6}.
The network model would get the features that have both
advantages through fusing Mi and Pi branches, where i ∈
[2, 6]. Therefore, we design a novel module named Spa-
tial Attention Fusion (SAF) to adaptively combine the both
features. The structure of SAF is illustrated in Figure 4
and the features extracted by SAF training fashion would
pay more attention to tiny object instructed by foreground
mask. In practice, to reduce the number of model parame-
ters, the SAF module utilizes the intermediate results of the

heatmaps process as shown in Figure 3.

3.2. ROI level enhancement

In FPN structure, one ground-truth bounding box will
only be arranged for training on a certain level by IOU
matching algorithm. In this way, the feature of each ROI is
obtained by pooling on the features of on one level. How-
ever, empirically, there is a relationship among the different
levels.

PANet utilizes the maximum of ROI adapted by linking
all feature levels of ROI to enhance features [25]. The max
operation just employs the local feature of strong response
and ignores the features of other location. AugFPN [16]
proposes Soft ROI Selection (SRS) to generate the final ROI
features based on the adaptive weights from features at all
the pyramid levels. Both methods utilize correlation among
different layer features to guide the feature expression of the
current layer ROIs.

Actually, two ROIs with similar size may be assigned to
adjacent layers during training. The correlation of between
the top and the bottom layer is not strong with this one-to-
one training strategy. Furthermore, tiny objects can only ap-
pear in the bottom layer of FPN, and the information at the
top is no longer instructive. If the network rigidly learns the
relationship between all layers, it would decrease the gener-
alization performance and convergence speed. On the con-
trary, the correlation of adjacent levels features is the great-
est, which would contain more surrounding and detailed in-
formations. Therefore, we propose an Adjacent ROI Fusion
(ARF) module to fuse ROI features from adjacent levels by
parameterizing the procedure of ROI pooling.

Specifically, we first pool features from adjacent levels
for each ROI. Each ROI feature Rjn will be augmented to
three ROI features {Rin, Rjn, Rkn}, and Rin and Rkn are
taken from the corresponding positions above and below the
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Figure 3. The detailed process of mask supervision on each layer of FPN. The padding and stride of all 3×3 convolutions are 1.
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Figure 4. The detailed process of Spatial Attention Fusion (SAF)
module. The padding and stride of all 3×3 convolutions are 1.
Sig&Rep means Sigmoid and Repeat operation.

current ROI layer if j is index of middle layers of FPN.
Then we balance the three ROI features by simply averaging
as

Rn =
1

3
(Rin +Rjn +Rkn), (2)

where i,j and k represent the level of pyramid and n repre-
sents the id of ROI. The values of index i, j, and k are taken
as: 

i = j, k = j + 1, j = 2

i = j − 1, k = j, j = 6

i = j − 1, k = j + 1, 2 < j < 6

(3)

In order to enhance the feature sensitivity, we utilize the
contextual information of the current ROI and adopt the fol-
lowing function to represent the feature of current ROI:

R
′
n = Norm(Rjn +Drop(MHA(Rn))), (4)

where Norm(·) indicates Layer Normalization (LN) [1],
Drop(·) denotes Dropout [34], and MHA(·) represents
Multi-Head Attention [36]. This module makes full use of
interlayer correlation and spatial self-attention of objects to
enhance feature representation and improve network detec-
tion performance.

3.3. HEAD level enhancement

In VisDrone dataset, imbalanced class distribution is also
a serious problem depressing network performance. A few
classes such as car, pedestrian and person account for more
than 70%, while other classes have very few samples, e.g.,
tricycle, awning-tricycle and bus. Inspired by [39], we ex-
ploit two branches to process head classes and tail classes
separately. The head category branch uses more head cate-
gory samples to train, while vice versa. In inference phase,
the detection results of the two branches are merged to com-
plement each other.

In addition, there exists similar categories in the Vis-
Drone dataset, e.g., pedestrian and people, which are diffi-
cult to distinguish for classifiers since they have many simi-
larities. Just like human perception, our solution first judges
an object is a person rather than a vehicle with the outline
features; then discriminate whether it is pedestrian or people
according to the detailed features, which is more challeng-
ing relatively. Therefore we explore multi-label classifica-
tion and group-softmax classification to achieve our ideas.
Multi-Label Classification. The most straightforward way
to discriminate the fine-grained categories is to predict the
parent categories firstly, and then predict the child cate-
gories based on parent predictions. However such method
will damage the classifying structure of networks, and cause
the loss of correlation between sub-categories, such as
pedestrian and motor as shown in Figure 5(a). Forest R-
CNN [38] clusters fine-grained classes into coarser parent
classes, and constructs a tree structure to learn the rela-
tionship among sub-categories through its parent classes as
shown in Figure 5(b). Although this method can strengthen
the similar relationship, the prediction deviation of parent
classes would affect the prediction of sub-categories. In-
stead, we exploit a different method that adds several par-
ent classes to the classifier, e.g., c1 represents the parent
of pedestrian and people, c2 represents the parent of bicy-
cle and motor and so on as shown in Figure 5(c). During
training phase, we use Binary Cross Entropy (BCE) to su-
pervise multi-label classification. Then we remove the par-
ent classes and just adopt the predicted results of the sub-
categories in inference phase. In this way, we not only
maintain the correlation of subclasses so as to get their com-
mon features, but also avoid increasing the prediction error
from a superclass into its subclasses.
Group-Softmax Classification. Multi-label classification
help classifiers to learn the commonality rather than repul-
sion among similar sub-categories. However a classifier is
often difficult to discriminate similar sub-categories, such
as pedestrian and people. According to the number of each
category, [20] divides the similar number of categories into
a group and performs softmax classification separately in
the group. Inspired by the grouping idea, we propose a
group-softmax classification by cleverly grouping the sim-
ilar sub-categories into a group and separately executing
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softmax classification in each group so as to solve misclas-
sification of similar classes. It is worth noting that the an-
tagonistic categories of a category are all the remaining cat-
egories in dataset, and the classifier does not know which
categories are easy to misclassify if the softmax calculation
is performed on all categories.

Actually, group-softmax classification and multi-label
classification are opposite, which “push” and “pull” the fea-
tures among sub-categories respectively. Therefore, these
two classifications cannot be applied on the same fully con-
nected layer. So we employ two fully connected layers to
get two sets of nodes and severally perform multi-label clas-
sification and group-softmax classification as shown in Fig-
ure 6, which mainly helps to extract better feature represen-
tation of the shared layer for similar classes distinguishing.
The total classification loss is as follows.

Lcls = Lm(p
′
, g) + λ · Lg(p

′′
, g), (5)

where Lm and Lg are objective functions corresponding to
multi-label and group-softmax respectively. Predictions of
two fully connected layers are denoted as p

′
and p

′′
. And g

represents targets, the weight λ is used to balance between
two supervisions. We set λ = 0.1 in all our experiments un-
less specified otherwise. Through the above two head level
enhancement modules, we can classify similar categories in
VisDrone dataset well and improve network model perfor-
mance.
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Figure 5. Several forms of classifiers. (a) is straightforward way to
predict hierarchically. (b) is divided into two branches to predict
the parent classes and sub-categories [38]. (c) is to directly predict
all classes and use multi-label classification.
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Figure 6. The head architecture of VistrongerDet. The figure
shows the branch of the head categories. The branch of the tail
categories is similar to it. GS cls means that discriminates simi-
lar categories with Group-Softmax Classification. ML cls means
that classifies similar categories from other categories with Multi-
Label Classification.

4. Experiments

We demonstrate the effectiveness of our proposed frame-
work (VistrongerDet) on the VisDrone-DET [44] dataset.

4.1. Datasets

VisDrone-DET [44] is an object detection dataset with
drone perspective. In Visdrone-Det, there are 6471 images
in the training set, 548 images in the validation set and 1580
images in the test-challenge set, all labeled with 11 cate-
gories. This dataset is very challenging for object detec-
tion tasks. First, the scale of objects varies with the flying
height and most of the objects are very small (less than 32
pixels). Second, it has different viewpoints, which leads
to large gaps among objects even they belong to the same
category. Third, the dataset is labeled with fine-grained cat-
egory, e.g. the people with standing and walking poses are
labeled as pedestrian and with other poses are labeled as
people.

4.2. Implementation details

Our VistrongerDet is implemented on the MMdetec-
tion [6] toolbox. In pursuit of better Average Precision
(AP), we choose the Faster R-CNN [32] and Cascade R-
CNN [4] with Feature Pyramid Network (FPN) [22] as the
baseline detection networks. If there is no special statement,
we choose the ResNet-50 [17] as the backbone. As the same
as DSHNet [39], pedestrian, people and car are considered
as head classes, while other categories are regraded as tail
classes.
Ignore region. In the VisDrone-DET [44] dataset, there are
11 classes including pedestrian, people, bicycle, car, van,
truck, tricycle, awning-tricycle, bus, motor and others. Our
goal is to predict the top ten categories. Therefore, we ig-
nore both others and ignore region. Specifically, we calcu-
late the IOU between the training sample and ignore region.
Then we avoid training samples with IOU greater than 0.5.
Training phase. In order to save the memory usage and in-
crease the input resolution, we divide original training im-
ages by 2×2 and horizontally flip all patches. The input res-
olution is 1600×1050 and batch size is set to 2 on 8 GPUs.
There are 12 epochs totally and initial learning rate is set
to 0.02, which then decreased by 10 and 100 times at the
9th and the 12th epoch, respectively. Anchor size is set to
4, and aspect ratio is set to (0.5, 1.0, 2.0). To expand the
dataset, we load the pre-training model parameters on MS
COCO [24].
Testing phase. In order to maintain consistency with the
training configuration, the input size is set to 3200×2100
without cropping. The maximum number of objects in an
image is set to 500. In VisDrone-test-challenge, we use also
Test Time Augmentaion (TTA) to perform random modifi-
cations to the test images. In addition, we use weighted
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Method TTA AP AP50 AP75 AR1 AR10 AR100 AR500
CornerNet* [18] - 17.41 34.12 15.78 0.39 3.32 24.37 26.11

Light-RCNN* [21] - 16.53 32.78 15.13 0.35 3.16 23.09 25.07
FPN* [22] - 16.51 32.20 14.91 0.33 3.03 20.72 24.93

Cascade* [4] - 16.09 31.91 15.01 0.28 2.79 21.37 28.43
FAS - 30.72 54.36 30.81 0.39 3.01 32.13 43.72
FAS X 31.64 55.86 32.17 0.39 3.00 32.49 44.9

FAS+Vistronger X 32.87 57.25 33.06 0.36 2.27 7.38 50.29
CAS - 31.68 53.38 32.8 0.41 3.36 32.54 43.76
CAS X 32.70 55.08 33.87 0.41 3.35 34.83 44.88

CAS+Vistronger X 33.85 57.27 34.81 0.39 2.17 8.10 51.12

Table 2. Comparisons with other methods on VisDrone-DET test-dev set. * indicates that the baseline algorithm submitted by the commit-
tee. TTA means using Test Time Augmentaion during testing.

method AP ped person bicycle car van trunk tricycle awn. bus motor
CornerNet* [18] 17.41 20.43 6.55 4.56 40.94 20.23 20.54 14.03 9.25 24.39 12.10

Light-RCNN* [21] 16.53 17.02 4.83 5.73 32.39 22.12 18.39 16.63 11.91 29.02 11.93
FPN* [22] 16.51 15.69 5.02 4.93 38.47 20.82 18.82 15.03 10.84 26.72 12.83

Cascade* [4] 16.09 16.28 6.16 4.18 37.29 20.38 17.11 14.48 12.37 24.31 14.85
FAS 31.64 22.21 13.73 13.28 53.00 35.49 31.00 18.47 16.57 45.00 22.70

FAS+Vistronger 32.87 22.37 14.06 14.33 54.96 38.12 31.43 18.56 17.19 46.96 22.99
CAS 32.7 22.97 13.61 13.20 54.36 35.33 34.10 19.07 17.20 46.61 22.97

CAS+Vistronger 33.85 23.15 14.28 14.35 55.80 38.20 34.23 18.86 18.33 48.60 23.48

Table 3. The results of each class on VisDrone-DET test-dev set. * indicates that the baseline algorithm submitted by the committee.

boxes fusion (WBF) to fuse many results of difficult model
instead of non-maximum suppression (NMS) [33].

4.3. Experimental results

In this section, we evaluate VistrongerDet on VisDrone-
DET test-dev set and compare with other methods. In or-
der to reflect the scalability of Vistronger, we use two rep-
resentative detectors as the baseline, including Faster R-
CNN [32] and Cascade R-CNN [4]. For convenience, FAS
and CAS are used to replace respectively.

Table 2 reports all experimental results. In the training
phase, we use the above training strategies. Surprisingly,
our baseline is much higher than the result submitted by
the committee. While maintaining the same parameter set-
tings, we add method of VistrongerDet to the baseline, and
achieved 1.23% and 1.15% in AP improvements respec-
tively. TTA is also a common method of object detection,
and achieved 0.92% and 1.02% in AP improvements re-
spectively.

Moreover, in almost all the cases, AP of each class is im-
proved compared with baseline as shown in Table 3. This
demonstrates that VistrongerDet plays an important role in
solving tiny objects and long-tail distribution problems. For
example, our VistrongerDet boosts the APs of tiny classes
bicycle and people by about 1.15% and 0.67% respec-
tively. For tail categories, such as awning-tricycle and bus,

VistrongerDet also has a significant improvement, 1.13%
and 2.01% respectively.

4.4. Ablation study

To validate the contributions of FPN, ROI and HEAD
level to the improvement of detection performance respec-
tively, we carry out ablation experiments on VisDrone
dataset with Cascade R-CNN [4].

As shown in Table 4, we gradually add modules at each
level to the baseline to prove that these modules are not con-
flicting. The first row shows the performance of the base-
line. From the second to the last row, AP/AP50 gradually
increased to 33.85/57.27 from 32.70/55.08.
Effect of Mask. In order to verify the effectiveness of mask
supervision and SAF module respectively, we conduct two
experiments as shown in Table 5(a). Firstly, we only use
mask supervision on FPN. The performance is on slightly
better than the baseline (32.89/55.46 vs. 32.70/55.08), in-
dicating that it is slightly helpful to simply perform mask
supervision on features of FPN. So the further idea is nat-
urally whether the fusion of the features of mask and FPN
would have a more improvement. Secondly, we use SAF
to adaptively combine both context features. The perfor-
mance of AP has improved better than baseline (0.33% vs.
0.19%).
Effect of ARF. To show that ARF is better than SRS [16]
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Method Factor Mask ARF DSH GS ML AP/AP50

CAS

- - - - - - 32.7/55.08
X - - - - - 32.9/55.37
X X - - - - 32.89/55.71
X X X - - - 33.16/55.85
X X X X - - 33.31/55.98
X X X X X - 33.47/56.18
X X X X X X 33.85/57.27

Table 4. The detection performance on VisDrone-DET test-dev set. “X” means this method is used. “-” means this method is not used.

Method CAS
(a) (b) (c)

+Mask +Mask&SAF +SRS +ARF +GS +ML +GS&ML
AP/AP50 32.70/55.08 32.89/55.46 33.03/55.65 32.41/54.94 32.81/55.2 32.85/55.21 33.0/55.95 33.4/56.67

Table 5. The ablation study of Mask, ARF and Head on VisDrone-DET test-dev set.

in fusing ROI features, we conduct two experiments as
shown in Table 5(b). The performance of SRS is slightly
lower than the baseline (32.41 vs. 32.70). Our proposed
ARF module fuses ROI features from adjacent levels, and
achieves an AP/AP50 gain of 0.11/0.12. This result ade-
quately shows the correlation of ROI features from adjacent
levels is strong.
Effect of Head. The above describes group-softmax clas-
sification and multi-label classification are opposite. There-
fore, it is necessary to verify the influence between them.
Table 5(c) shows all results. The second and third row
show that both of them can enhance the performance of the
network by 0.15% and 0.30% respectively. The last row
shows that we use the two classifications separately and su-
pervise the respective fully connected layer to ensure that
the shared fully connected layer learns the advantages of
both.

5. Conclusion

In this paper, we analyze some problems that need to
be solved urgently in the VisDrone dataset, e.g., tiny ob-
jects, large scale span, long-tail distribution, confusion of
similar classes. In response to these issues, we propose
a VistrongerDet, which possesses stronger visual informa-
tion. The whole framework is mainly enhanced from three
levels, including FPN, ROI and HEAD. Extensive exper-
iments demonstrate the effectiveness of our method. In
the future, we would conduct experiments on some gen-
eral object detection datasets to verify the scalability of our
method, e.g., MS COCO [24] and PASCAL VOC [13].
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