ViT-YOLO: Transformer-Based YOLO for Object Detection

Zixiao Zhang, Xiaoliang Lu, Guojin Cao, Yuting Yang, Licheng Jiao, Fang Liu
School of Artificial Intelligence, Xidian University
Xi’an, Shaanxi Province, 710071, China
{zhangzx1999,xqlu,20181214133,ytyang,l}@stu.xidian.edu.cn lchjiao@mail.xidian.edu.cn

Abstract

Drone captured images have overwhelming characteristics including dramatic scale variance, complicated background filled with distractors, and flexible viewpoints, which pose enormous challenges for general object detectors based on common convolutional networks. Recently, the design of vision backbone architectures that use self-attention is an exciting topic. In this work, an improved backbone MHSA-Darknet is designed to retain sufficient global context information and extract more differentiated features for object detection via multi-head self-attention. Regarding the path-aggregation neck, we present a simple yet highly effective weighted bi-directional feature pyramid network (BiFPN) for effectively cross-scale feature fusion. In addition, other techniques including time-test augmentation (TTA) and weighted boxes fusion (WBF) help to achieve better accuracy and robustness. Our experiments demonstrate that ViT-YOLO significantly outperforms the state-of-the-art detectors and achieve one of the top results in VisDrone-DET 2021 challenge (39.41 mAP for test-challenge data set and 41 mAP for the test-dev data set).

1. Introduction

The goal of object detection is to predict a set of bounding boxes and category labels for each object of interest. Recently, with the advent of Unmanned Aerial Vehicles (UAV), drones equipped with cameras have been fast deployed to a wide range of applications, which include agriculture, aerial photography, fast delivery, surveillance, etc. Hence, automatic and effective object detection plays an important role in scene parsing on UAV platforms.

However, as shown in Figure 1, drone captured images have overwhelming characteristics including dramatic scale variance, complicated background filled with distractors, and flexible viewpoints, which pose enormous challenges for general object detectors based on common convolutional networks.

Convolutional neural network (CNN) have achieved great breakthrough in various kinds of fields in computer vision. Generally, modern detectors employ pure convolution network to extract features. Classical image classification networks (e.g., VGG [29], ResNet [10]) are used as the backbones for state-of-the-art detectors Faster RCNN [27] and RetinaNet [17], etc.) As for YOLO series detectors [24], they apply a newfangled residual network the Darknet which is much more efficient for performing feature extraction.

Nowadays, transformers [32] have become the dominant model in natural language processing owing to their ability to learn complex dependencies between input sequences via self-attention. We also observe that the recently introduced vision transformers [6] achieve competitive results on benchmark classification tasks by treating an image as a sequence of patches. For drone captured images with large-scale and complex scene, to improve the semantic discriminability and alleviate category confusion, collecting and associating scene information from a large neighborhood can be useful in learning relationships across objects. But for convolutional networks, the locality of the convolution operation limits its capacity for capturing global context information. In contrast, transformers are capable of globally focusing on dependencies between image feature patches and retain sufficient spatial information for object detection via multi-head self-attention.

In addition, to handle the problem of viewpoint changing in aerial images, the object detector should have enhanced domain adaptation capability and dynamic receptive fields. The study in the literature [22] has indicated that vision transformers are much more highly robust to severe occlusions, perturbations and domain shifts, compared to CNNs. Therefore, an intuitive way for enhancing the detection performance is to embed the transformer layer into the purely convolutional backbone to bring more context information and learn more distinguishable feature representations.

On the other hand, objects from the drone captured images vary a lot in sizes while the feature map from a single layer of the convolutional neural network has limited capacity of representation, so it is crucial to effectively represent...
and process multi-scale features. A classical method is to combine low-level and high-level features through a summation or concatenation operation, but simply summing up or concatenating without distinction may cause feature mismatch and performance degradation. Our key insight is to introduce learnable weights to learn the importance of different input features, while repeatedly applying top-down and bottom-up multi-scale feature fusion.

In this paper, we mainly follow the one-stage detector design and propose a hybrid detector called ViT-YOLO. The framework integrates the CSP-Darknet [1] and multi-head self-attention [32] for feature extraction. In addition, the architecture interfaces with BiFPN [31] for effectively combining the features at different scales. Subsequently, the YOLOv3 coupled head [26] is employed for final bounding boxes classification and regression tasks. Furthermore, we implement effective strategies including Test-Time Augmentation (TTA) and Weighted Boxes Fusion (WBF) [30] to improve detection performance. Our experiment demonstrates that the improved network architecture significantly outperforms the existing state-of-the-art detectors on the VisDrone2019 test-challenge dataset with mAP 39.41.

In summary, the main contributions of this paper are:

- We introduce a multi-head self-attention block in the original backbone CSP-Darknet to bring more context information and learn more distinguishable feature representations.
- We present a simple yet highly effective weighted bi-directional feature pyramid network (BiFPN) for effectively cross-scale feature fusion.
- We implement effective strategies including Test-Time Augmentation (TTA) and Weighted Boxes Fusion (WBF) to achieve competitive performance on VisDrone2019 benchmark dataset.

2. Related work

General object detection: With the development of deep learning [14], various object detection algorithms have been proposed. Existing object detectors are mostly categorized by whether they have a region-of-interest proposal step (two-stage [27, 7, 9, 3]) or not (one-stage [25, 24, 17, 28]). Recently, following the one-stage detector design, YOLO series [24, 25, 1, 26] have attracted substantial attention due to their efficiency and simplicity. They extract the most advanced detection technologies available at the time (e.g., the SPP module [11] for YOLOv3 [26], Mish activation [21] for YOLOv4 [1]) and optimize the implementation for best practice. Hence, we selected YOLOv4 as our baseline model.

Vision Transformer: Nowadays, The Transformer [32] model has become the preferred solution for a wide range of natural language processing (NLP) tasks, showing impressive progress in machine translation [15], question answering [5], text classification [23], document summarization [33], and more. Part of this success comes from the Transformer’s ability to learn complex dependencies between input sequences via self-attention. The Vision Transformer (ViT) [6] demonstrated for the first time that a transformer architecture can be directly applied to images as well, by treating an image as a sequence of patches, which performs comparably to state-of-the-art convolutional networks on image recognition tasks. DETR [4] is notable in that it is the first approach to successfully utilize transformers for the object detection task. Specifically, DETR added a transformer encoder and decoder on top of a standard CNN model (e.g., ResNet-50/101), and uses a set-matching loss function.

Multi-scale feature fusion: One of the main difficulties in object detection is to effectively represent and process multi-scale features. Earlier detectors often directly perform predictions based on the pyramidal feature hierarchy extracted from backbone networks [2, 28, 20]. As one of the pioneering works, feature pyramid network (FPN) [16] proposes a top-down pathway to combine multi-scale features. Following this idea, PANet [19] adds an extra bottom-up path aggregation network on top of FPN. The recent detector EfficientDet [31] propose BiFPN to introduce learnable weights to learn the importance of different input features.
Figure 2. The whole network structure. An input image will be input to the backbone (a) MHSA-Darknet, which integrates transformer layer into CSP Darknet, where the MHSA-Dark block and the CSPDark block are described in Figure 3. The feature maps further refine with (b) BiFPN, which aggregates features from different backbone levels for different detector levels. Finally, (c) YOLO detection head is employed to predict boxes at 5 different scales.

3. Proposed Method

The proposed network architecture is a hybrid model ViT-YOLO that uses both convolution and self-attention, which is mainly based on the YOLOv4-P7 [1]. The structure of ViT-YOLO is presented in Figure 2, which is divided into 3 parts. For the first part, we use MHSA-Darknet as the backbone which integrates multi-head self-attention into original CSP-Darknet to extract more differentiated features. The details of MHSA-Darknet is described in Section 3.1. The second processing component BiFPN in substitution for PANet aims to aggregate features from different backbone levels for different detector levels, which is discussed in Section 3.2. For the third part, the general YOLO detection heads are employed for predicting boxes at 5 different scales.

Furthermore, other effective techniques are adopted to achieve better accuracy and robustness, including Test-Time Augmentation (TTA) and Weighted Boxes Fusion (WBF). TTA is an application of data augmentation to the test dataset. And WBF utilizes confidence scores of all proposed bounding boxes to construct the averaged boxes so that it works better when used for model fusion.

3.1. MHSA-Darknet

For drone captured images with large scale and complex scene, to improve the semantic discriminability and alleviate category confusion, collecting and associating scene information from a large neighborhood can be useful in learning relationships across objects. But for convolutional networks, the locality of the convolution operation limits its capacity for capturing global context information. In contrast, transformers are capable of globally focusing on dependencies between image feature patches and retain sufficient spatial information for object detection via multi-head self-attention. On the other hand, viewpoint variation is one of the biggest challenges in images captured from drones, which requests that the detector should have an enhanced domain adaptation capability and dynamic receptive fields. The study in the literature [22] has indicated that vision transformers are much more highly robust to
Table 1. Architecture of MHSA-Darknet: The only difference from the original CSPDarknet is MHSA-Dark block in substitution for the CSPDark block in P7 (Figure 3). For an input resolution of 1024×1024, the MHSA layers of P7 operate on 8×8.

<table>
<thead>
<tr>
<th>Stage</th>
<th>output</th>
<th>CSP Darknet</th>
<th>MHSA Darknet</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>/2</td>
<td>3 × 3, 32</td>
<td>3 × 3, 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 × 3, 64, stride = 2</td>
<td>3 × 3, 64, stride = 2</td>
</tr>
<tr>
<td>P1</td>
<td>/4</td>
<td>[1 × 1, 32] [1 × 1, 32] [1 × 1, 32] × 1</td>
<td>1 × 1, 32 [1 × 1, 32] [1 × 1, 32] × n 1 × 1, 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 × 3, 128, stride = 2</td>
<td>3 × 3, 128, stride = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>concat, 64</td>
<td>concat, 64</td>
</tr>
<tr>
<td>P2</td>
<td>/8</td>
<td>[1 × 1, 64] [1 × 1, 32] [3 × 3, 32] × 3</td>
<td>1 × 1, 64 [1 × 1, 32] [3 × 3, 64] × 3 1 × 1, 64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 × 3, 256, stride = 2</td>
<td>3 × 3, 256, stride = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>concat, 128</td>
<td>concat, 128</td>
</tr>
<tr>
<td>P3</td>
<td>/16</td>
<td>[1 × 1, 128] [1 × 1, 128] [3 × 3, 128] × 15</td>
<td>1 × 1, 128 [1 × 1, 128] [3 × 3, 128] × 3 1 × 1, 128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 × 3, 512, stride = 2</td>
<td>3 × 3, 512, stride = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>concat, 256</td>
<td>concat, 256</td>
</tr>
<tr>
<td>P4</td>
<td>/32</td>
<td>[1 × 1, 256] [1 × 1, 128] [3 × 3, 256] × 15</td>
<td>1 × 1, 256 [1 × 1, 128] [3 × 3, 256] × 15 1 × 1, 256</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 × 3, 1024, stride = 2</td>
<td>3 × 3, 1024, stride = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>concat, 512</td>
<td>concat, 512</td>
</tr>
<tr>
<td>P5</td>
<td>/64</td>
<td>[1 × 1, 512] [1 × 1, 512] [3 × 3, 512] × 7</td>
<td>1 × 1, 512 [1 × 1, 512] [3 × 3, 512] × 7 1 × 1, 512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 × 3, 1024, stride = 2</td>
<td>3 × 3, 1024, stride = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>concat, 1024</td>
<td>concat, 1024</td>
</tr>
<tr>
<td>P6</td>
<td>/128</td>
<td>[1 × 1, 512] [1 × 1, 256] [3 × 3, 512] × 7</td>
<td>1 × 1, 512 [1 × 1, 256] [3 × 3, 512] × 7 1 × 1, 512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 × 3, 1024, stride = 2</td>
<td>3 × 3, 1024, stride = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>concat, 1024</td>
<td>concat, 1024</td>
</tr>
<tr>
<td>P7</td>
<td>/128</td>
<td>[1 × 1, 512] [1 × 1, 256] [3 × 3, 512] × 7 [MHSA, 512] × 7</td>
<td>1 × 1, 512 [1 × 1, 256] [3 × 3, 512] × 7 1 × 1, 512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 × 3, 1024, stride = 2</td>
<td>3 × 3, 1024, stride = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>concat, 1024</td>
<td>concat, 1024</td>
</tr>
</tbody>
</table>

Severe occlusions, perturbations and domain shifts, compared to CNNs. In order to improve the transferability of the learned features and meanwhile to capture long-distance context information, we propose the MHSA-Darknet backbone to extract features for the detector. MHSA-Darknet by design is simple: embed the Multi-Head Self-attention (MHSA) layers into the top CSPDark block to implement global (all2all) self-attention over a 2D feature map. The MHSA-Darknet architecture is described in Table 1 and the MHSA layer is presented in Figure 4. A CSP-Darknet in
YOLOv4-P7 typically has 7 stages (or block groups) commonly referred to as \([P1, P2, P3, P4, P5, P6, P7]\) with strides \([2, 4, 8, 16, 32, 64, 128]\) relative to the input image, respectively. Stacks \([P1, P2, P3, P4, P5, P6, P7]\) consist of multiple CSPDark bottlenecks with Cross Stage Partial (CSP) connections. (i.e. CSP-Darknet in YOLOv4-P7 has \([1, 3, 15, 15, 7, 7, 7]\) CSPDark blocks).

Notably, when the network is relatively shallow and the feature map is relatively larger, the transformer layer is used prematurely to enforce regression boundaries which can lose some meaningful context information. Hence, in the MHSA-Darknet, the transformer layer is only applied on the \(P7\), rather than \(P3,P4,P5\), and \(P6\). Besides, considering that self-attention when performed globally across \(n\) entities requires \(O(n^2d)\) memory and computation[32], we believe that the simplest setting that adheres to the above factors would be to incorporate self-attention at the lowest resolution feature maps in the backbone, i.e., the CSPDark blocks in the \(P7\) stack. The \(P7\) stack in the Darknet backbone typically uses 7 CSP bottleneck blocks with one spatial \(1 \times 1\) convolution and one spatial \(3 \times 3\) convolution in each. Replacing them with MHSA layers forms the basis of the MHSA-Darknet architecture.

To handle 2D images, we flatten the spatial dimensions of the 2D feature map \(x \in \mathbb{R}^{H \times W \times d}\) into a sequence \(x_p \in \mathbb{R}^{(H \times W) \times d}\), where \((H, W)\) is the resolution of the original feature map, \(d\) is the number of channels, and \(H \times W\) serves as the effective input sequence length for the transformer layer. In order to make the attention operation position aware, Transformer based architectures typically make use of a position encoding[32]. We use standard learnable 1D position embeddings with a linear layer to retain positional information. The MHSA layer is presented in Figure 4.

![Figure 4. Multi-Head Self-Attention (MHSA) layer used in the MHSA-DarkNet block. While we use 4 heads, we do not show them on the figure for simplicity. A standard learnable 1D position embeddings with a linear layer are employed to retain positional information. The attention logits are \(qk^T\) where \(q, k\) represent query, key, \(\oplus\) and \(\otimes\) represent element wise sum and matrix multiplication respectively, while \(1 \times 1\) represents a pointwise convolution.](image)

3.2. BiFPN

Objects from the drone captured images vary a lot in sizes while the feature map from a single layer of the convolutional neural network has limited capacity of representation, so it’s crucial to effectively represent and process multi-scale features. Conventional top-down FPN [16] is inherently limited by the one-way information flow. To address this issue, PANet [19] adds an extra bottom-up path aggregation network, as shown in Figure 5(a). Cross-scale connections are further studied in [13, 12, 34]. In this work, the simple yet highly effective weighted bidirectional feature pyramid network (BiFPN), as shown in Figure 5(b), implements two optimizations for cross-scale connections. First, BiFPN adds an extra edge from original input to output node if they are at the same level, in order to fuse more features without adding much cost.

Second, while combining low-level and high-level features, BiFPN introduces learnable weights to learn the importance of different input features instead of simply summing up or concatenating, which may cause feature mismatch and performance degradation. Formally, given a list of multi-scale features \(P^{in} = (P_{1}^{in}, P_{2}^{in}, \ldots)\), where \(P_{l}^{in}\) presents the feature at level \(l\). The list of intermediate feature on the pathway is represented as \(P^{dit} = (P_{l}^{dit}, P_{l}^{dit}, \ldots)\). Our goal is to find a transformation \(f\) that can effectively aggregate different features and output a list of new features: \(P^{out} = f(P^{in})\). Figure 5(a) shows the conven-
tional top-down and bottom-up PANet [19]. It takes level 3 – 7 input features $P_{in}^n = (P_{3}^{in}, ..., P_{7}^{in})$, where P_{3}^{in} represents a feature level with resolution of $1/2^i$ of input images. For instance, if input resolution is 1024 × 1024, then P_{3}^{in} represents feature level 3(1024/2^3 = 128) with resolution 128 × 128, while P_{7}^{in} represents feature level 7 with resolution 8 × 8. The conventional PANet aggregates multi-scale features in a simple summing manner, as layer 6 for example:

$$P_{6}^{td} = \text{Conv}(P_{6}^{in} + \text{Resize}(P_{7}^{td}))$$
$$P_{6}^{out} = \text{Conv}(P_{6}^{td} + \text{Resize}(P_{5}^{out}))$$

where, \(\text{Resize}\) is usually a upsampling or downsampling operation for resolution matching, and \(\text{Conv}\) is usually a convolutional operation for feature processing.

While the BiFPN integrates both the bidirectional cross-scale connections and the fast normalized fusion with learnable weights. As a concrete example, here we describe the two fused features at level 6 for BiFPN shown in Figure 2(b):

$$P_{6}^{td} = \text{Conv}\left(\frac{w_1 \cdot P_{6}^{in} + w_2 \cdot \text{Resize}(P_{7}^{in})}{w_1 + w_2 + \varepsilon}\right)$$
$$P_{6}^{out} = \text{Conv}\left(\frac{w_1' \cdot P_{6}^{in} + w_2' \cdot \text{Resize}(P_{6}^{td}) + w_3' \cdot \text{Resize}(P_{5}^{out})}{w_1 + w_2 + w_3 + \varepsilon}\right)$$

where, \(P_{6}^{td}\) is the intermediate feature at level 6 on the top-down pathway, and \(P_{6}^{out}\) is the output feature at level 6 on the bottom-up pathway. All other features are constructed in a similar manner. Notably, the difference from the original BiFPN proposed in EfficientDet [31] is that SPP additional module is employed in the path-aggregation neck to enhance the intermediate feature and that Cross Stage Partial (CSP) connections are used in place of simple convolution for feature processing.

4. Experiments

4.1. Datasets

VisDrone2019-Det benchmark dataset [35] consists of 10209 static images captured by drone platforms in unconstrained challenging scenes, including 6741 images in the training subset, 548 in the validation subset, 1610 in the test-dev subset, and 1580 in the test-challenge subset. Drone captured images have overwhelming characteristic including dramatic scale variance, complicated background filled with distractors, and flexible viewpoints. Images are manually labeled with bounding boxes and ten predefined classes (i.e., pedestrian, person, car, van, bus, truck, motor, bicycle, awning-tricycle, and tricycle). All models in this paper are trained on training set and evaluated on the test-dev set.

4.2. Evaluations Metrics

Similar to the evaluation protocol in MS COCO benchmark [18], we adopt metrics including \(AP\), \(AP_{50}\), \(AP_{75}\), \(AR_{1}\), \(AR_{10}\), \(AR_{100}\) and \(AR_{500}\) to evaluate detectors by penalizing missing detections and false alarms. Specifically, \(AP\) is the average of all 10 intersection over union (IoU) thresholds in the range \([0.50 : 0.95]\) with uniform step size 0.05 of all categories, which is used as the primary metric for ranking.

4.3. Implementation Details

In VisDrone-DET2021 challenge, we choose MHSA-Darknet backbone, BiFPN path-aggregation neck, and YOLOv3 (anchor based) head as the architecture of ViT-YOLO. Our model uses SGD as optimizer, with a weight decay of 0.0005 and momentum of 0.937 as default. In the initial training of the model, we first perform 3 epoch warm-up training. During the warm-up process, the momentum of the optimizer SGD is set to 0.8, and one-dimensional linear interpolation is used to update the learning rate of each iteration. After warm-up training, the cosine annealing function is used to attenuate the learning rate, where the initial learning rate is 0.02, and the minimum learning rate is 0.2*0.01. Finally, we train the model for 300 epochs.

4.4. Experimental Results

Table 2 shows our results evaluated on the VisDrone2019 test-dev dataset. Among those state-of-the-art methods, all YOLO family algorithms hold obviously outstanding performance. As a modified version of the superior model YOLOv4-P7, our proposed architecture shown in Figure 2 achieves competitive performance with \(mAP\) 38.5 without TTA and multi-model fusion, which is even 3.07 higher than the baseline YOLOv4-P7.
4.5. Ablation Experiments

In this section, we perform a thorough ablation study on the VisDrone2019 test-dev subset to analyze our algorithm, which is shown in Table 4. On the basis of the baseline model YOLOv4-P7, we propose MHSA-Darknet as the backbone which embed multi-head self-attention into original CSP-Darknet, and adopt the simple yet highly effective weighted BiFPN path-aggregation neck in place of PANet. Other tricks including Test Time Augmentation (TTA) and Weighted Boxes Fusion (WBF) also helps to improve the detection performance. Table 4 shows the comparison between the results of ten categories.

4.5.1 MHSA-Darknet

The evaluation of the proposed MHSA-Darknet is shown in Table 4 and Table 3. After integrating multi-head self-attention into the original CSP-Darknet, the total mAP of results is significantly boosted from 35.43 To 37.56. And we see that there is a significant AP boost, particularly for small objects: 24.19 to 26.12 overall for pedestrians, 13.72 to 15.08 overall for persons, 22.78 to 25.23 overall for tricycle and 24.98 to 27.44 overall for motors. These results suggest that self-attention has a big effect in detecting small objects which is considered to be an important and hard problem for deploying object systems in the real world. For CNN-based deep networks, the high-level feature maps are of fairly low spatial resolution, so that lack of the unbroken information to localize the large objects accurately or recognize the small objects. While small objects always show the co-occurrences of certain classes in images, which to some extent explains the reason why the transformer-based model which focuses on global context information is helpful for accurately detecting small objects.

On the other hand, from the comparison between prediction results from the original baseline and our transformer-based model in Figure 6, we observe that our transformer-based model successfully recognize the people on motors while the baseline model wrongly classify them into pedestrians. It suggests that the improved backbone MHSA-Darknet is capable of extracting more differentiated features for object detection via multi-head self-attention and demonstrates a stronger semantic discriminability to alleviate category confusion.

<table>
<thead>
<tr>
<th>Method</th>
<th>pedestrian</th>
<th>person</th>
<th>bicycle</th>
<th>car</th>
<th>van</th>
<th>trunk</th>
<th>tricycle</th>
<th>awning-tricycle</th>
<th>bus</th>
<th>motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>YOLOv4-P7 (Baseline)</td>
<td>24.19</td>
<td>13.72</td>
<td>15.68</td>
<td>56.73</td>
<td>37.66</td>
<td>44.87</td>
<td>22.78</td>
<td>19.74</td>
<td>53.74</td>
<td>24.98</td>
</tr>
<tr>
<td>+ MHSA-Darknet</td>
<td>26.12</td>
<td>15.08</td>
<td>16.79</td>
<td>58.15</td>
<td>39.35</td>
<td>46.41</td>
<td>25.23</td>
<td>22.88</td>
<td>55.22</td>
<td>27.44</td>
</tr>
<tr>
<td>+ BiFPN</td>
<td>26.86</td>
<td>16.01</td>
<td>17.22</td>
<td>58.74</td>
<td>41.11</td>
<td>47.63</td>
<td>26.98</td>
<td>24.21</td>
<td>56.69</td>
<td>28.12</td>
</tr>
<tr>
<td>+ TTA</td>
<td>27.34</td>
<td>16.56</td>
<td>17.96</td>
<td>58.99</td>
<td>42.39</td>
<td>48.78</td>
<td>27.09</td>
<td>24.74</td>
<td>57.97</td>
<td>28.39</td>
</tr>
<tr>
<td>+ Multi-model Fusion</td>
<td>28.43</td>
<td>17.18</td>
<td>18.64</td>
<td>60.93</td>
<td>44.07</td>
<td>51.54</td>
<td>28.87</td>
<td>26.32</td>
<td>59.63</td>
<td>29.95</td>
</tr>
</tbody>
</table>

Table 3. The Comparison between the results of ten categories after subsequent operations on VisDrone2019 test-dev dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>AP</th>
<th>AP50</th>
<th>AP75</th>
</tr>
</thead>
<tbody>
<tr>
<td>YOLOv4-P7 (Baseline)</td>
<td>35.43</td>
<td>58.94</td>
<td>36.43</td>
</tr>
<tr>
<td>+ MHSA-Darknet</td>
<td>37.56 (+2.1)</td>
<td>61.46</td>
<td>38.34</td>
</tr>
<tr>
<td>+ BiFPN</td>
<td>38.5 (+1.3)</td>
<td>63.15</td>
<td>40.48</td>
</tr>
<tr>
<td>+ TTA</td>
<td>39.32 (+0.8)</td>
<td>64.19</td>
<td>42.1</td>
</tr>
<tr>
<td>+ Multi-model Fusion</td>
<td>41 (+1.7)</td>
<td>65.89</td>
<td>43.14</td>
</tr>
</tbody>
</table>

Table 4. The Albation study on the test-dev set.
Figure 6. Visualized detection results of YOLOv4-P7 and YOLOv4-P7(+MHSA) on an arbitrary image from Visdrone dataset. While not very different, YOLOv4-P7(+MHSA) is able to create precise localizations as well as detect small objects better. A notable example is exactly recognizing the people on the motor, instead of wrongly classifying them into pedestrians.

4.5.2 Test-Time Augmentation

In VisDrone-DET2021 challenge, we use Test-time augmentation (TTA) to improve the performance of our method, which is an application of data augmentation to the test dataset. Specifically, we create multiple augmented copies of each image in the test set, having the model make a prediction for each, then returning an ensemble of those predictions. Copies of samples in the test dataset are created with some image manipulation techniques performed, such as zooms, flips, shifts, and more. As shown in Table 3, after TTA operation, the performance of every class improved to a large extent.

4.5.3 Multi-model Fusion

Single detection models only select the boxes and cannot produce averaged localization of predictions combined from various models effectively. Ensembles of models are widely used in applications that do not require real-time inference. Combining predictions from different models generalizes better and usually yields more accurate results compared to a single model.

In VisDrone-DET2021 challenge, we adopt an effective method for combining predictions of object detection models: Weighted Boxes Fusion (WBF). WBF utilizes confidence scores of all proposed bounding boxes to construct the averaged boxes so that it works better when used for the models’ ensemble. We used several models trained on visdrone dataset, including the YOLOv5 models, YOLOv4 models and our ViT-YOLO model to predict boxes. Then, we use the ensemble method WBF to obtain the final predictions. In Table 4, the combined predictions for the test-dev data set yields superior performance with mAP 41.

5. Conclusion

Drone captured images have overwhelming characteristics including dramatic scale variance, complicated background filled with distractors, and flexible viewpoints, which pose enormous challenges for general object detectors based on common convolutional networks. In this work, the improved backbone MHSA-Darknet dramatically enhances the detection performance, especially for small objects, and meanwhile exhibits a stronger semantic discriminability to alleviate category confusion. The ViT encoder’s ability to globally attend to the entire image is a possible explanation for this enhancement. Regarding the path-aggregation neck, we adopt the BifPN to integrate both the bidirectional cross-scale connections and perform the fast normalized fusion with learnable weights, which help the model to achieve a more competitive performance. Furthermore, other techniques including time-test augmentation and multi-model fusion also improve the accuracy and robustness. Based on them, our algorithm significantly outperforms the existing state-of-the-art detectors on the VisDrone test-challenge dataset with mAP 39.41 in the ICCV VisDrone2021 Object Detection Challenge.

References

