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Abstract

Segmentation of point clouds is a necessary pre-
processing technique when object discrimination is needed
for scene understanding. In this paper, we propose a seg-
mentation technique utilizing 2D bounding-box data ob-
tained via the orthographic projection of 3D points onto a
plane at multiple elevation layers. Connected components
is utilized to obtain bounding-box data, and a consistency
metric between bounding-boxes at various elevation layers
helps determine the classification of the bounding-box to
an object of the scene. The merging of point data within
each 2D bounding-box results in an object-segmented point
cloud. Our method conducts segmentation using only the
topological information of the point data within a dataset,
requiring no extra computation of normals, creation of an
octree or k-d tree, nor a dependency on RGB or intensity
data associated with a point. Initial experiments are run on
a set of point cloud datasets obtained via photogrammet-
ric means, as well as some open-source, LIDAR-generated
point clouds, showing the method to be capture agnostic.
Results demonstrate the efficacy of this method in obtaining
a distinct set of objects contained within a point cloud.

1. Introduction
Recent advances in photogrammetry applied to wide-

area motion imagery (WAMI) systems have enabled the
generation of three-dimensional(3D) point clouds that span
vasts areas of major metropolitan cities and natural land-
scapes. These point clouds are usually many millions of
points in size, with a low ground sampling distance (GSD)
contributing to a dense point cloud with high amounts of
detail.

Primary applications for point cloud data include mesh
generation, digital surface/elevation model creation, scene

Figure 1: Example of segmentation performed on an input
point cloud.

understanding, and temporal/structural differencing be-
tween two point clouds of the same scene. Of particu-
lar interest is the ability to segment buildings, vegetation,
and other objects from the scene for classification, mesh-
generation, and/or differencing on a per-object basis. For
instance, one could classify the type of a single tree that has
been segmented from a point cloud (given a low enough
ground sampling distance). For meshes, one could have the
entirety of a mesh persist within a 3D map and only replace
a single object that has changed, thus reducing the need to
load the entirety of a mesh when only certain parts of the
mesh had actually been altered. Furthermore, 3D models
can be applied back to improve WAMI performance and
precision. For example, WAMI systems normally require
the use of pre-mapped terrain models to project imagery
where it belongs. A 3D model generated during a WAMI
mission can eliminate many common modeling errors, such
as differences between the ellipsoid or geoid used in gener-
ating the model and the GPS system in the sensor.

In this paper, we demonstrate a segmentation method
that segments objects from a scene via the extraction of a
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set of 2D bounding-boxes. Note that object in this context
refers to any physical structure that contains color, texture,
geometric, or topological information allowing it to be eas-
ily distinguishable from neighboring structures.

A few of the main motivations to finding a 3D bounding
box for each object within a point cloud are:

1. Plane fitting (via region-growing) to each surface of an
object.

2. Differencing of various point-cloud datasets via ob-
ject-to-object comparisons.

3. Object classification.

4. Object-based geo-registration error calculation.

5. Digital Surface Model (DSM) / Digital Elevation
Model (DEM) generation.

Our method is particularly useful for our WAMI-based
surveillance systems. The segmentation process, as well
as the underlying 3D models, are generated in a matter of
minutes, thus changes can be tracked many times over the
course of a mission. Furthermore, the segmentation tech-
nique is very effective at segmenting the ground level from
“superstructures” that are on top of the ground. The seg-
mented ground elevation (Digital Elevation Model, DEM)
is extremely useful for the creation of 2D WAMI imagery.
Likewise, the 3D model can be cleaned by applying the fol-
lowing segmentation technique to determine spurious struc-
tures that should be removed in the case of generating live
3D views.

2. Related Work
The issue of segmentation applied to 3D point clouds

is a well-studied topic with several methodologies pre-
sented in the literature. Some approaches to segmenta-
tion are meant for planar extraction, while others are meant
for extracting instances of objects from the point cloud
scene. The methodology of choice may be highly depen-
dent upon one’s post-segmentation requirements, available
sensor data, and/or time-sensitivity requirements. A general
review of point cloud segmentation and classification algo-
rithms is outlined in [4]. Edge-based methods find edges in
a point cloud using local surface properties and group points
together using the found edges, while model fitting tech-
niques utilize geometric primitives to segment points that
conform to the mathematical representation of the primitive.
Issues exist with these current methods, however. Edge-
based methods are highly sensitive to both noise and point
density, while model fitting techniques lose valuable infor-
mation when segmenting complex shapes in the point cloud.

In the case of autonomous vehicles and/or unmmaned
ground vehicles (UGV’s), time-of-flight data obtained from

LIDAR scanners would be of particular importance in the
choice of a segmentation method. Discrimination of ob-
jects in the scene based on their distance to the sensor plat-
form is of necessity to meet safety requirements and deter-
mine feedback control. An array of segmentation methods
that are applied to point clouds obtained from 3D LIDAR
scanners are presented and compared in [2]. These methods
are defined based on the density of the point cloud obtained
from each LIDAR scanner, with grid-based approaches be-
ing used for dense data models and interpolation approaches
being used for more sparse data models.

For the previously discussed motivations 1 of our WAMI
system, both object-based segmentation and planar extrac-
tion is necessary. Planar segmentation has been widely
studied, with initial results being applied to our datasets us-
ing the method outlined in [7]. This method uses surface
normals and connectivity constraints to find smoothly con-
nected areas in a point cloud. In most of our experiments,
this method either over-segments or under-segments planar
portions of the scene regardless of the deviation in input pa-
rameters rth (residual threshold) and θth (angle threshold).
In a point cloud dataset with a high amount of noise the
”noise points” would affect the planar extraction of a side
of a building leading to an incorrect geometric interpreta-
tion of the building. As well, because we’re using a global
residual and angle threshold for the entire scene, buildings
with smaller angles between planar surfaces were under-
segmented due to our thresholds accounting for buildings
with high curvature. To assist with planar segmentation,
it would be best to first extract each object from the scene
and then find an appropriate residual and angle threshold for
each object.

Point cloud instance segmentation has also been widely
researched. Machine learning methodologies have been ap-
plied to 3D scenes to extract instances of objects and seman-
tically label them [12] [13] [5]. In [1], Chen et al. extend the
U-Net architecture used traditionally in image segmenta-
tion [9] to a 3D environment in order to segment buildings,
trees, and terrain from several aerial point clouds. Ground
pre-processing and post-processing techniques were used to
better obtain a correct segmentation of the elevation model,
as well as achieve better segmentation results on the re-
mainder of the point cloud model. We have found in our
literature review that obtaining a correct elevation model
before segmentation of the remainder of the point cloud
significantly improved segmentation performance. A re-
cent paper by Lyu et al. [6] demonstrates the efficacy in
projection of a 3D scene to a 2D plane for the purpose
of 3D point cloud segmentation. In the paper the authors
project a clustered set of 3D points to a plane from a cor-
responding graph drawing, and use the U-Net architecture
for segmentation of the resultant image embedding. Results
show significant improvement over the literature for deep
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Figure 2: Flowchart of the segmentation algorithm.

3D point cloud segmentation, demonstrating the feasibility
for instance segmentation from the 2D image space.

An approach to 3D LIDAR point cloud classification us-
ing only the topological information available from the data
is presented in [8]. Richter et al. begin by applying the re-
gion growing approach (method outlined in [7]) to first seg-
ment the point cloud, and then classify the point cloud using
only the topological data (i.e. connectivity, local flatness,
smoothness, and orientation) of each point. Their approach
to classification by using topological information is how we
approach segmentation.

3. Methodology

Conceptually, the implementation of our algorithm con-
sists of four core steps:

1. Projection of 3D points to a plane.

2. Bounding-box extraction via connected-components
labeling.

3. Elevation-layer comparison.

4. Post-processing refinement.

Figure 2 provides a flowchart of the segmentation process.

Figure 3: Visual representation of our method. Bounding-
boxes are found for the object at each elevation layer. L0,
LN´10, and LN´10 are layers of the point cloud, with
the boxes (in red) showing orthographic projections for the
demonstrated building at each layer.

3.1. Orthographic Projection

Finding a 3D bounding-box for each distinct object
within a point cloud begins with the extraction of 2D
bounding-boxes via the orthographic projection of defined
layers of the point cloud. We obtain an orthographic projec-
tion by “binning” each 3D point to its nearest z-axis integer
s.t.

@p P P, tpzu “ maxtm P Z | m ď pzu (1)

where P is the input point cloud, p is a point in the point
cloud s.t. p P ℜ3, and m is the set of all integers less than
the z value associated with point p. Flooring the z-axis data
(as opposed to applying a ceiling operation) was an arbitrary
decision and does not affect the end result.

After we bin the 3D points, we create an N x M projec-
tion image where N is the resolution of the point cloud in
the x axis and M is the resolution of the point cloud in the y
axis. The resultant projection image is simply an occupancy
grid with a 1 pixel pertaining to a 3D point occupying the x
and y coordinates of the projection plane and a 0 pixel indi-
cating free space in the projection plane. Figure 3 provides
a visual representation of this technique for a select set of
elevation layers of a building.

3.2. Pre-Processing for Ground-Level Extraction

We first apply a pre-processing technique to extract the
ground-level elevation data. This step is necessary in pre-
processing as this ensures a ”stop” limit is placed on the
iteration of bounding-box extraction. This ”stop” limit is
found by simply searching for the largest difference in the
number of points between adjacent elevation layers. Extrac-
tion of 2D bounding-boxes is complete once the ”stop” limit
in the iteration is reached, and all 3D points extending be-
low the elevation marker associated with the ”stop” limit are
considered to be ground-level elevation data. This approach
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Figure 4: Three elevation layers of the point cloud with
bounding boxes surrounding distinct objects at each layer.
(Left) Slice of elevation in top-most area of point cloud.
(Middle) Slice of elevation in middle area of point cloud.
(Right) Slice of elevation in the bottom-most area of the
point cloud. Note the dilation of point data of the projection
images.

works in most point-cloud datasets where there exists a de-
fined base upon which the objects of interest lie. However,
this particular ground-level extraction method fails when
there exists an object-dense point cloud model where most
objects in the scene have a collection of points at similar
elevations (e.g. the roof level of a collection of buildings
is the same). In the case of floating artifacts (i.e. objects
are captured in a scene but the platform upon which the
objects are sitting on is not captured) the approach would
also fail. Thus, we assume all input point cloud models will
have a unified ground-level upon which all objects of the
scene are resting. Note: We state ‘unified’ because if the
ground-level is at different elevations (e.g. point cloud cap-
tured of a village on a hill), or the vertical resolution is high
enough to capture millimeter differences in ground-level el-
evation, then this approach would not work. Thus we are
deliberating upon different methods for ground-level detec-
tion. For the most part, many of the point clouds generated
from WAMI systems are of flat terrain areas and so, thus far,
we have had no issues pertaining to ground-level extraction
when applying this methodology.

3.3. 2D Bounding-Box Determination

To obtain 2D bounding-boxes for a set of 3D points pro-
jected on a plane, we must first account for inconsistencies
in the spacing between points in the point cloud. To this
end, we begin by applying morphological transformations
to the projection image. We first apply a dilation opera-
tion to the image, effectively increasing the diameter of the
points such that neighboring points ”touch” one another. An
erosion operation is then performed to fill in any holes be-
tween points in the kernel. This will assist in removing
small ”noise” bounding-boxes that would be found if the
holes were not to be filled. These ”noise” bounding-boxes
prove to be an issue in trying to extract a ”truth” shape of
an object.

Figure 5: Examples of bounding-boxes being found for ele-
vation layers 76 meters (top-left), 35 meters (top-right), 29
meters (bottom-left), and 15 meters (bottom-right), where
the top-most elevation layer is 105 meters and the bottom-
most elevation layer is at 0 meters. Each bounding-box is
associated with an unique RGB value for the purpose of
visualization, where each RGB value denotes the classifi-
cation of each bounding-box of point-data to its associated
object.

The applied operations can be defined mathematically
as:

I 1pi, jq “ rIpi, jq ‘ Hpm,nqs a Hpm,nq (2)

where a is the symmetric difference operator, ‘ is the
group addition operator, I 1pi, jq is the resultant image at a
given index, Ipi, jq is the pixel value of the original image
at a given index, and Hpi, jq is the pixel value of the ker-
nel at a given index. Figure 4 shows a set of objects and
their associated pixels after morphological transformations
are applied.

Note: This is a similar methodology to that of persistent
homology techniques to find topological invariants given a
defined diameter d around a set of 0-simplices. A static
NxN square kernel is preferred in this case because, al-
though the persistent homology techniques proved more
fruitful in obtaining true features for a set of points (if one
were to record the length of the barcode for a changing
diameter d [3]), the trade-off would be computation time.
Thus, we settle for a simple set operation and filter out noise
features via an array of post-processing techniques.

An appropriate kernel size for the dilation and erosion
operations is determined via the resolution of the point
cloud. For our purposes, this was determined via the ground
sampling distance of the WAMI system. If the resolution
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data is not available, we can compute it via the iterative
process of checking point neighborhoods and recording the
smallest distance:

res “ mint
a

pppxr1s ´ pkxr2sq2 ` ppyr1s ´ pkyr2sq2

` ppzr1s ´ pkz r2sq2q | @p, pk P P u
(3)

where P is the input point cloud, p is the current point of
interest in the point cloud, and pk is the nearest point to p.
Note: pk is found via a nearest-neighbor search on the k-d
tree constructed from the point cloud P .

After morphological transformations are performed, we
apply an 8-neighborhood connected-components labeling
technique to obtain a collection of orthographically pro-
jected objects. This method simply checks each of the eight
pixel values surrounding a pixel at a given row and column
index (i,j) and applies a label l to the pixel if the neigh-
boring pixels are labeled with a label l. Note that the term
pixel in this case refers to the orthographic projection of a
3D point at a given elevation layer with the same x and y co-
ordinates. After each pixel in the orthographic projection is
labeled, we sort through the labels and extract a bounding-
box for each label by finding the minimum and maximum
x and y coordinates. A bounding-box is then obtained for
a given label l that captures the area of each object within
the orthographic projection image. We then create an object
struct to hold necessary information such as the objects cen-
troid position in 3D space, the objects width and height (de-
termined via the associated bounding-boxes), average area
of the bounding-boxes found for the object, a vector of all
of the bounding-boxes found at each elevation layer of the
object, a persistence value ϕ (used in post-processing for
noise reduction 3.5.1, 3.5.2), a ”noise” flag (used in post-
processing for noise reduction 3.5.1, 3.5.2), and a UUID
assigned to the object at its creation.

3.4. Elevation-Layer Comparison

After a set of bounding-boxes is obtained for the set
of orthographic projection images IN , we iterate through
the images and ”collapse” each image Ii with its prior
image Ii´1. This ”collapsing” process finds the differ-
ence between the areas ∆α and distance between the cen-
troids δc of each bounding-box Bk of image Ii to each
bounding-box Bj of image Ii´1. We define ∥δc∥ “

dpBj .centroid,Bk.centroidq and ∆α “ |Bj .area ´

Bk.area|. If the difference is less than the input parame-
ters ϵc (centroid threshold) and ϵa (area threshold) then we
”collapse” the point data from each bounding-box into a sin-
gle object. To ensure smaller parts of an object won’t affect
the ”collapsing” process in future iterations, we update an
objects ”area property” with a weighted average of the two
areas of the compared bounding-boxes s.t. objectm.area “

w1˚Bj .area`w2˚Bk.area, where the weights are adjusted

Figure 6: Set of “noise” objects with the red border demar-
cating the set of ”noise points”. (Left) “Noise” object la-
beled with a maroon color. (Right) “Noise” object labeled
with a azure color.

depending upon the magnitude of the difference ∆α, with
a higher weight being applied to the bounding-box with the
larger area. Algorithm 1 gives a glimpse as to how these
variables relate in the iteration process.

If there does not exist a bounding-box Bk within a given
error (ϵc and ϵa) of the image Ii for bounding-box Bj of
image Ii´1 then we can assume the object associated with
the bounding-box Bj to be ”complete”. Once iteration is
complete, we can continue on to post-processing for noise
reduction. Figure 5 shows the result of the ”collapsing” pro-
cess for an arbitrary selection of elevation layers.

3.5. Post-Processing Refinement

Point clouds obtained via photogrammetric means tend
to contain a good deal of noise within the model which af-
fects segmentation results. The noise often leads to shared
layers of point data for objects within a set distance of other
objects in the scene. These shared points will be labeled
to the same object (which we term ”noise objects”) thus
leading to over-segmentation. Figure 6 shows examples
of ”noise objects” being created as a result of extraneous
3D points. To account for this, we can apply a choice of
post-processing techniques to remove noise and/or ”noise
objects” in the model.

3.5.1 Noise Partitioning via the Persistence Metric

To account for the aforementioned issues, we ensure a
k amount of objects are extracted from a ”noise object”,
where k denotes the number of true objects within a ”noise
object”. To do this, we set a ”noise” flag to true in the ini-
tial iteration process when one or more bounding-boxes of
other objects are fully contained within a bounding-box of
a newly found object. We thus label these objects ”poten-
tial noise objects”. We iterate through the set of ”potential
noise objects” and check the persistence value ϕ of each ob-
ject encompassed in the ”potential noise object”. Note: the
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Figure 7: Qualitative Segmentation results. (Top-
Left) Albuquerque, NM point cloud.(Top-Right) Segmen-
tation result. (Bottom-Left) Paso Robles, CA point cloud.
(Bottom-Right) Segmentation result.

persistence value ϕ for an object is defined in the initial iter-
ation process as ϕobject “ c{N where c is the number of or-
thographic projection images that contain bounding-boxes
for the object, and N is the total number of orthographic
projection images. If the combined set of objects has a
high persistence value ϕavg relative to the persistence value
ϕnoise of the ”potential noise object” ( 1k

řk
i“i ϕi ą ϕnoise

where k is the number of true objects contained in the ”noise
object), we consider it a ”true noise object” and segment the
”noise object” into its k constituent parts. We then iterate
through the set of points in the ”noise object” at the current
layer and find the nearest true object to partition each point
to s.t.

@p P ω, plabel “ mint
a

pppxr1s ´ pcxr2sq2`

ppyr1s ´ pcyr2sq2q |, pc P ξu
(4)

where ω is the set of 3D points contained within the cur-
rent elevation layer of the ”noise object”, ξ is the set con-
sisting of the centroids for all true objects contained within
the ”noise object”, and label for a point p in ω is the true
object to which the point belongs.

Note this does not remove any points, it only partitions
the noise data into a set of k true objects. To remove a set
of ”noise points”, one may use the following methodology.

Algorithm 1 Segment objects from a point cloud

1: Inputs: Point cloud = {P}, centroid threshold ϵc,
2: area threshold ϵa
3: Output: Set of Bounding-Box Objects {B}
4: Elevation Projections {E} Ð createProjections (P)
5: Bounding-Boxes {B} Ð H

6: for projection in E do
7: erodepdilatepprojectionqq Ñ projection
8: Current Connected Components {C} Ð H

9: for row, col in projection; index = 0 do
10: label Ð H

11: checkPixelNeighborhoodprow, colq Ñ label
12: if label P C then
13: (row, col) Ñ C(label)
14: else
15: (row, col) Ñ label
16: C = C Y {label}
17: end if
18: end for
19: for cc in C do
20: Current bounding-box b
21: bcentroid “ ((maxx(cc) - minx(cc)) / 2,
22: (maxy(cc) - miny(cc)) / 2)
23: barea “ (maxx(cc) - minx(cc)) *
24: (maxy(cc) - miny(cc))
25: for bb in B do
26: Area Difference ∆α
27: Average Area α
28: Centroid Distance δ
29: ∆α “ |bb.α ´ b.α|

30: ∥δ∥ “ dpbbcentroid,bcentroidq

31: if bbarea ą barea then
32: α “ w1 ˚ bbarea + w2 ˚ barea
33: else
34: α “ w1 ˚ barea + w2 ˚ bbarea
35: end if
36: if p∆α ă ϵaq&pδ ă ϵcq then
37: Index i “ indexofpbb, Bq

38: Bi Ð b; Bi.α “ α
39: else
40: {B} Ð b
41: Index i “ indexofpb, Bq

42: Bi.α “ α
43: end if
44: end for
45: end for
46: end for

3.5.2 Noise Removal via Bounding-Box Persistence

In the case where removal of ”noise points” is preferred,
one may (instead of labeling a point to its nearest centroid),
”persist” the bounding-boxes from the previous elevation
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Dataset Point Cloud Size Time
Albuquerque, NM (PMVS) 6,412,701 21 s
Albuquerque, NM (Shell3D) 25,427,513 164 s
Paso Robles, CA 8,551,275 2 s
Brooklyn, NY 2,506,651 24 s
Phoenix, AZ 5,241,988 27 s

Table 1: Datasets and associated run-time.

layer (before the start of a ”noise object”) and remove points
not within the bounding-box for a given truth object. This
runs the risk of removing potentially important information
related to the point cloud (such as a bridge connecting two
buildings which results in a labeling of sections of two con-
nected buildings as a separate object).

3.6. Floating Artifact Removal

Under the assumption that all objects in the scene will
be subject to the laws of gravity, any object that does not
have a base or a collection of base objects underneath it can
be considered ”noise” and the set of 3D points associated
removed. We determine if an object has a base by checking
if the area and centroid of the smallest elevation bounding-
box for an object is contained within the bounding-box of
the object directly underneath.

4. Results
Figure 7 shows results obtained from running our seg-

mentation method on a set of point clouds.These point
clouds (Albuquerque, NM and Paso Robles, CA) were
obtained using photogrammetric means via our WAMI sys-
tem.

Figure 8 shows results obtained from an open-source
point cloud. The Brooklyn, NY, USA [10] and Phoenix,
AZ, USA [11] datasets are point clouds obtained via LI-
DAR scans.

Table 1 shows the run time of our segmentation algo-
rithm on a collection of point cloud datasets. Note that
the number of points does not affect run time averages, but
rather the complexity of the scene.

4.1. Results of Varying Vertical Projection Resolu-
tions

The vertical projection resolution is the resolution used
for orthographic projection of elevation layers in the scene.
We found that increasing the vertical projection resolution
(by ”binning” points to the set consisting of the set of in-
tegers and the midpoint between neighboring integers) re-
sults in over-segmentation, wherein each ground-truth ob-
ject within the point cloud contains several layers labeled
as belonging to separately labeled objects. This is due to

Figure 8: Qualitative Segmentation results (LIDAR
datasets). (Top-Left) Brooklyn, NY, USA point cloud.
(Top-Right) Segmentation result. (Bottom-Left) Phoenix,
AZ, USA point cloud. (Bottom-Right) Segmentation re-
sults.

Figure 9: Results of changing the area threshold ϵa.
(Left) Ground Truth. (Middle) Segmentation result of de-
creasing the area threshold ϵa. (Right) Segmentation result
of increasing the area threshold ϵa.

inconsistencies in point densities between neighboring ele-
vation layers. Thus, we found that decreasing the vertical
projection resolution by “binning” each 3D point’s z-axis
value to only the set of integers (Z) results in a better seg-
mentation result. This is most likely due to the fact that
more information is available at each layer, assisting in find-
ing the true topology of a given object.
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4.2. Results of Varying Centroid Threshold

Decreasing the centroid threshold ϵc assists in better seg-
mentation for datasets with a lower object density. Increas-
ing ϵc assists in better segmentation for datasets with a
higher object density. Thus, for datasets such as the Brook-
lyn, NY, USA [10] LIDAR point cloud, where the building
density is high, a lower centroid threshold ϵc was necessary,
so as not to result in under-segmentation due to smaller ob-
ject centroid distances.

4.3. Results of Varying Area Threshold

Figure 9 shows results of altering the area threshold ϵa.
The red bounding-boxes detail the change in segmentation
results. Decreasing the area threshold (as shown in the mid-
dle) will provide a more segmented point cloud that classi-
fies the base of the building as a separate object from the
building on top, while increasing the area threshold results
in both the base structure and the building on top being clas-
sified as one object (as shown on the right). The shade struc-
ture (as shown in the smaller red bounding-box) is also clas-
sified as a separate object with a smaller area threshold. The
area threshold ϵa may be changed depending on your seg-
mentation needs, however, currently, its largely chosen via
a qualitative empirical process.

5. Conclusion and Future Work
A segmentation algorithm for dividing a point cloud into

a set of topologically distinct objects has been presented.
The algorithm uses only the topological information pro-
vided from the point data in a dataset. Bounding-boxes are
obtained from a set of distinctly labeled components of an
orthographic projection image, and a ”collapsing” of these
bounding-boxes results in an object-segmented point cloud.
Pre and post-processing techniques are applied to obtain a
better segmentation result. Qualitative results are provided
showing the effectiveness of this method in obtaining dis-
tinct objects from a point cloud.

The designed framework for object segmentation still
has several limitations. First, the choice for the input pa-
rameters ϵa (area threshold) and ϵc (centroid threshold) are
empirically obtained, with some prior knowledge on the ob-
ject density (via either qualitative analysis of the point cloud
or having knowledge of the ground sampling distance) be-
ing required for the centroid threshold, and iteration upon
qualitative empirical analysis being required for the area
threshold. Second, the vertical projection resolution is hard
coded to a projection onto the set of integers (Z). While
this has proven to work thus far, the vertical projection res-
olution should be set via a function of the vertical sampling
distance of the underlying point cloud. Third, we would
like to obtain quantitative results via a comparison of our
segmentation results to hand-labeled, ground-truth datasets.

These are all prospective works that would lead to a more
robust object segmentation result.
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