
An Algorithmic Approach to Quantifying GPS Trajectory Error

1st Matthew Plaudis
Department of Computer Science

University of Victoria

matthewplaudis@uvic.ca

2nd Muhammad Azam
Department of Computer Science

University of Victoria

mwrazam@uvic.ca

3rd Derek Jacoby
Department of Computer Science

University of Victoria

derekja@gmail.com

4th Marc-Antoine Drouin
Digital Technologies

National Research Council of Canada

Marc-Antoine.Drouin@nrc-cnrc.gc.ca

5th Yvonne Coady
Department of Computer Science

University of Victoria

ycoady@gmail.com

Abstract

The alignment of aerial and satellite imagery with ground sensor
data is an ongoing research challenge. In dense urban environ-
ments, part of this challenge is induced by the positioning error
of Global Positioning System (GPS). Despite the potential for er-
ror, many studies use GPS in order to infer road networks because
GPS data is inexpensive and can be acquired quickly. Major tran-
sit organizations are freely providing data on the real-time posi-
tion of their buses as well as ground truth route trajectories. This
work exploits geospatial open data to construct a database of his-
torical GPS from bus roads. Using this database, the GPS error
map along main arteries of major cities can be reconstructed. The
extraction of error maps is highly relevant for the planning and
the joint exploitation of airborne and ground-based imagery. In
this work, we use bus routes in downtown Victoria, BC, Canada
and Adelaide, Australia to demonstrate the extraction GPS error
maps.

1. Introduction

The increasing applications and more widespread use
of Global Positioning Systems (GPS) have provided re-
searchers with the opportunity to analyze travel patterns
and observe real-time status updates of moving vehicles [9].
GPS receivers have been largely integrated into commonly
used items such as cars and mobile phones, and can record a
large amount of trajectory data [3]. Using the General Tran-
sit Feed Specification (GTFS), major transit organizations
are freely providing GPS data from which we can infer ve-
hicle trajectories [1]. Intuitively we can define a trajectory
as a sequence of connected spatial points sampled from a
continuously moving object, where each point has an asso-
ciated time stamp and position [3].

GTFS data provides a ground truth transit route against
which we can compare trajectories constructed from
recorded GPS points. Since buses repeat the same route
thousands of times every year, we can freely accumulate a
large amount of data in order to detect and quantify route
deviations. Further, open-source geospatial data allows the
production of GPS error maps that can be used in multi-
ple applications including the fusion of airborne imagery
with ground-based sensors. As a case study, we fuse GTFS
data for buses in Victoria, BC, Canada, as well as Adelaide,
Australia, with high resolution satellite imagery in order to
investigate trends in GPS errors.
Our proposed work shares research interests with literature
that investigates algorithmic approaches to map inference
using error prone GPS data and satellite imagery. The main
challenge with automatic map inference stems from the in-
consistencies in the data used by methods that attempt to
generate a road network. Due to the low precision of GPS
devices, recorded points are usually sampled inaccurately
[3]. GPS errors mainly consist of two types:

• Measurement Error: In a GPS, the location of a de-
vice is calculated by its relative distance to multiple
satellites. As the number and the stability of satel-
lite connections oscillate from time to time, the sam-
pled trajectory point usually lands to an arbitrary place
nearby the actual location [3]. This can be observed in
area B of Figure 1.

• Sampling Error: Although an object is moving con-
tinuously, its position can only be sampled periodically
by the GPS device. Hence, the frequency of GPS po-
sition sampling, which is called the sampling rate, is
an influential factor to the accuracy of GPS trajectory
representation [3]. This can be observed in area A of
Figure 1.
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Figure 1. An illustration of instances of potential GPS trajectories (red) and their corresponding ground truth routes (green) of vehicles in
downtown Victoria, BC, Canada. Area A: Shows an example of sampling error. Due to the combination of roadway speeds of ≥ 50km/h
and turns at corners, the trajectories created using sequential GPS points go through buildings and over corners. Area B: An example of
measurement error. The vehicle in this area is travelling on a road with taller buildings compared to the surrounding areas. As a result, the
calculated distance and location of a vehicle may be skewed due to occlusion. Area C: An example of a GPS recording with little to no
sampling or measurement error. There is less potential for both occlusion (travelling in a more suburban area with shorter buildings) and
sampling errors (the trajectory direction does not change and road speeds are slower, meaning more closely sampled GPS points).

Given the potential for inaccurately sampled points, it is
nontrivial to decide whether two points are sampled from
the same or nearby road segments [5]. There is also evi-
dence to suggest that one cannot infer a road network start-
ing with a low-accuracy initial graph and noisy GPS data
[4]. Given the complex nature of the road network infer-
ence problem, current approaches employ heuristic meth-
ods that, when applied to more broad examples, the quality
of the resulting road network is no longer guaranteed [4].

In this paper we compare the advantages and disadvantages
of current methods for automating map inference. We also
explore the feasibility of quantifying the error of a GPS
recording relative to it’s ground truth position and what im-
plications that has in areas such as UAV flight planning: we
can optimize the flight path of UAV’s based on the charac-
terization of ground-level targets. Rather than treating GPS
signals as merely a noisy dataset, we propose to charac-
terize the systematic nature of the errors in that data as a
spatially-based reliability map of GPS signals over ground
positions within a region. This two dimensional reliabil-
ity map pushes our concept of route similarity into a purely
area-based conception of curve similarity and we will com-
pare that with other measures of route similarity.

2. Related Approaches

Current approaches attempt to implement algorithms or
learning based methods that rely on a ground truth road net-
work. Cao and Krumm [5] create an attraction mechanism
in order to group GPS points with other nearby trajectories,
shown in Figure 2 [5]. This mechanism employs certain
heuristics in order to consider road direction and multi-lane
roads. By finding the direction orthogonal to the candidate
segment, an attractive force pulls that segment towards oth-
ers with the same directional movement and repels it from
those travelling the opposite way. This works to remove
outlying points that are the result of common GPS noise.
Although this method is able to differentiate opposing di-
rections of traffic, it does not perform well in intersections
when vehicles from several directions overlap [5]. The
method was also confined to a street network around Mi-
crosoft Campus in Redmond, WA, USA, and has not been
tested on larger roadways with over/underpasses.

Bastani et al. [6] uses a Convolutional Neural Network
(CNN) called RoadTracer to infer a road network using
aerial imagery and a partially constructed graph of the un-
derlying road network. The image and the partial road net-
work G are used as inputs by the CNN, which in turn out-

3910



Figure 2. Figure based on the work proposed by Cao and Krumm
[5] which demonstrates the attention mechanism the authors devel-
oped. Cao and Krumm demonstrate a potential solution for deal-
ing with GPS points (red vertices) in a candidate trajectory that
deviate from the most common trajectory (green vertices), due to
measurement or sampling error. The original position of the point
(faint blue vertex) is corrected to a position (darker blue vertex)
nearer to the most common trajectory. This process is repeated for
each of the GPS points in the candidate trajectory.

puts a movement decision in G. The learner compares the
output against a completed road network G∗ in order to ad-
just it’s prediction. A notable finding was that RoadTracer
performs much better with respect to occlusion by build-
ings and shadows in the Chicago and Boston regions in
comparison to traditional methods that process each pixel
in an image as either being ’road’ or ’non-road’. Despite
it’s improved output when compared to previous methods,
because of occlusion by tall buildings, shadows, and over-
passes, accurately inferring roads from aerial imagery alone
in dense urban areas and complex intersections is challeng-
ing [7].

Building on this, S. He et al. [7] proposed an alternative
method of road network inference that uses both aerial im-
agery and GPS data. The algorithm first infers partial map
correctly and then merges the constructed map portion to
another map inferred by other high recall methods. The
method starts from an initial map node and grows until cov-
ering the entire map region. It can also infer complex re-
gions as it fully utilises the long-term travel information
from the trajectories. The method proposed in this paper
infers less travelled road networks with a high degree of ac-
curacy that has not been previously seen. However, as the
authors noted the two-step approach of RoadRunner can be
computationally expensive and depending on the applica-
tion this can be a hindrance.

With respect to methods that have used transit GPS data,
Raymond and Imamichi [8] employ a map-matching algo-
rithm to predict which GPS trajectories belong to which pre-
defined route (shown in Figure 3). This is accomplished by
creating sequential segments using coinciding GPS points
and comparing these segments with bus routes using a co-
sine similarity function. Although this method showed ac-

curate results, it is computationally expensive and relies on
an accurate base map in order to map-match [9].
In May 2021 Lyu et al. [9] also investigated bus route
identification. Using Fréchet distance, which captures the
largest mismatched distance between two curves, a route
Ri is matched with a candidate path Qj that has the min-
imum maximum Fréchet distance (i.e. dissimilarity). One
drawback to the solution proposed in this paper is a data
preprocessing step, that may be impractical in a real time,
automatic inference setting.

Figure 3. Figure based on the work proposed by Raymond and
Imamichi [8] demonstrating the results of their map matching al-
gorithm. The figure on the left shows the original GPS trajecto-
ries (blue) created using sequential GPS points (red), overlaid on
a road network (black). Both the GPS points and their trajecto-
ries are not following a road network. On the right is the vehicle
path (green) that is the result of the authors applying their map
matching solution.

Common among all of the current methods is the recog-
nition that both aerial imagery and GPS data is inherently
noisy. Each method that was proposed attempts to imple-
ment heuristics in order to infer a road network or a vehi-
cle’s trajectory despite the fact that the data is imperfect.
Although there is extensive research into how we can infer
an accurate road map based on inaccurate data, currently
there is a lack of research on how GPS quality affects per-
formance [3].

3. Current Work & Area of Interest
Our current research focuses on a method to quantify the
degree of inaccuracy between a recorded GPS point and it’s
ground truth. Using data collected from the GTFS for buses
in Victoria, British Columbia, and Adelaide, Australia, we
can compare the GPS trajectory from individual trips with
ground truth routes provided by BC Transit.

Explicitly, a trajectory Tr is a sequence of spatial points
Tr : p1 → p2 → ... → pn sampled from a continuously
moving object [3]. Each point pi is chronologically ordered
and consists of a position < xi, yi >∈ R2 at a timestamp ti.
if Tr consists of n points, we can say that Tr has n− 1 seg-
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Figure 4. An example ∈ R2 of the iterative projection construction implemented in Algorithm 1. The algorithm takes as input the vertex
and edge set of both the GPS path (red) as well as the reference path (green). The algorithm processes each GPS vertex from right to left
and adds ĵ (blue) according to the outlined heuristics. ĵ expresses a similar relationship between the two paths compared to the Fréchet
distance described in Lyu et al [9]

ments, where s1 = p1 → p2, for example. We can also de-
fine sets Q = {q1, q2, ..., qn} and R = {r1, r2, ..., rm} as a
collection of recorded trips along specified bus routes and a
collection of possible bus routes, respectively. Each ri ∈ R
and qj ∈ Q are trajectories by the definition given above.
In order to quantify error, we employ a heuristic-based al-
gorithm (given below in the form of a naive optimization as
Algorithm 1) that calculates the vertical component of the
projection of a GPS point pi onto the most nearby segment
si of route ri ∈ R, denoted ĵprojsipi

.

As described in Related Approaches, Lyu et al. [9] uses the
concept of Fréchet distance to measure the similarity be-
tween GPS trajectories and predefined bus routes in order
to implement a map matching algorithm. Map matching is
the process of comparing each route ri ∈ R with a can-
didate GPS trajectory made up of several segments. If the
segments of a route and a GPS trajectory within the same
spatiotemporal window are similar, their Fréchet distance
will be small, meaning there is a spatial similarity between
them.

Comparatively, we find ĵprojsipi
in Algorithm 1 in order to

segment individual polygons between ri and qj . The con-
text in which our research finds a similar measure to Fréchet
distance differs from that of Lyu et al, as we do not use the
magnitude of ĵprojsiqi in order to characterize the similar-
ity between a GPS trajectory and a ground truth trajectory.
Further, we are focused on quantifying the spatial severity
of GPS errors associated with certain regions as opposed to
finding the most similar route in comparison to a candidate
trip as Lyu et al. have done.

Figure 4 shows the results of applying Algorithm 1 to ri
(green) and qj (red) in a closed system ∈ R2. By finding
ĵprojsipi

for each recorded point pi ∈ qj , we can iden-
tify simple polygonal structures that are formed between

Algorithm 1: Iterative Projection Construction
input : vertex set, edge set of the graphical interpretation

of a recorded bus trip qj = {p1, ..., pn} ∈ Q of
n− 1 segments and bus route
ri = {p1, ..., pm} ∈ R of m− 1 segments.

output: Simple polygonal segmentation of the area
between ri and qj

for each sequential GPS vertex pi ∈ qj do
for Each segment si ∈ ri do

if (s0 and p0) or (sm−1 and pn) then
draw ĵ between the first sequential points of

the first segments or the last sequential
points of the last segments

end
if |projsipi| < 0 then

Check if the projection intersects with
another segment

if intersecting with other segment then
move onto next sequential segment in ri

end
else

Connect pi to endpoint of si with ĵ
end

end
if ∃ valid projsipi then

Draw ĵ from pi onto si
end
if |projsipi| > |si| then

Move to next sequential segment in ri
end

end
end

the given trip qj and it’s proposed route ri. The area of
these polygons can be calculated using basic triangulation
techniques and can express the error between qj and ri.
Larger areas correspond to lower accuracy GPS recordings
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Figure 5. Left: GTFS transit data (pink) of route 14 in Victoria, BC, Canada, overlaid on 50cm resolution SkySat imagery from Planet Labs.
Points travelling north to south are on a wider roadway and have less immediate occlusions. As a result there is little to no measurement
error and all points are confined to the correct lane. Comparatively points travelling from west to east are on a narrow roadway. There
are more immediate occlusions which result in higher measurement errors (more severe spread of points across the width of the roadway).
Right: GTFS transit data (green) of route 157 in Adelaide, Australia, overlaid on 0.5m resolution Pleiades-1A imagery from Satellite
Imaging Corporation. There are natural obstructions lining the sides and the median of the roadway that can contribute to measurement
errors in GPS recordings.

and may be correlated with higher levels of occlusion.

More specifically, we are interesting in comparing the de-
gree of error from occlusion in city centres with large build-
ings (Area B in figure 1) to the error observed in surround-
ing suburban neighborhoods (Area C in Figure 1). By gen-
erating a sort of ‘heat map’ of areas with high rates of error,
Unmanned Aerial Vehicles (UAVs) can plan a flight path
that that accounts for the identified occlusions in order to
more accurately track ground-based targets.

In order to demonstrate the potential GPS error due to oc-
clusions, we plotted several thousand recorded GPS points
along commonly travelled bus routes in both Victoria and
Adelaide using high resolution satellite imagery (50cm res-
olution SkySat imagery from Planet Labs and 0.5m resolu-
tion Pleiades-1A imagery from Satellite Imaging Corpora-
tion, respectively) shown in Figure 5.

In the data-fused image of Victoria on the left of Figure 5,
recorded points that are travelling from north to south are on
a large, 4-lane road in the downtown core of the city. These
points are confined to the two lanes travelling in the same
direction and do not appear to be suffering from measure-
ment error. However, points that are travelling from west to
east are doing so along a more narrow roadway with more
immediate occlusions. As a result, there is a more severe
spread of data across the width of the roadway. Recorded
points are not adhering to a specific lane and appear to be lo-
cated on sidewalks and at the edges of buildings. Although
we have not yet statistically quantified the severity of the
spread of data on an occluded roadway, by plotting GTFS

transit data we can see that measurement error is present.
In the data-fused image of Adelaide on the right of Figure
5, other obstructions are potentially the cause of GPS error:
heavy tree coverage is lining the sides of the road as well
as the median. Points span the width of the road and cross
over the median in certain locations. As Bastani et al. [6]
noted, with regards to inferring road networks from satellite
imagery alone, occlusions such as tall buildings, trees, and
shadows can make such a task very difficult. The use of
GPS trajectories can be useful in areas where roads are not
visible from aerial imagery, however this may not be the
case when the GPS data is error prone as well.

3.1. Experimental Results

We applied linear regression techniques in order to quan-
tify the observed GPS error in Figure 5 and compared these
results to straight (no turns or deviations in bearing), non-
occluded segments of the same bus routes. For each ob-
served GPS recording, an equirectangular projection was
made using the latidunial and longitudinal values for both
the noisy and clean segments in each city. Since the areas
of investigation are relatively small, we are not concerned
with any distortion related to the method of projection [11].
In Table 1 we report calculations of error observed when
linear regression was applied, and show the regression line
fit to each respective segment in Figure 6. The values in Ta-
ble 1 are given as arbitrary units that are consistent among
themselves. We do not report the results as a measure of
real world distance because we are comparing the residual
of each GPS point from it’s respective regression line, and
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not an actual road.

The Mean Absolute Error can be interpreted as the average
of the absolute residual distance, where the residual is the
vertical distance between the data point and the regression
line. Since each segment is a straight road segment, each
GPS point is expected to stay near the line of best fit. In the
noisy segments from both Victoria and Adelaide it is clear
that there are several data points with a large residual value.
The Root Mean Square Error (RMSE) is the standard de-
viation of the residuals. The standard deviation calculates
how much the data points are spread around the regression
line. Again, noisy road segments have approximately a fac-
tor of 10 greater spread than their respective clean segments
in comparison, as noted in Table 1.

3.2. Relevance to Algorithm & Impact of Research

Our statistical analysis used the concept of residuals in or-
der to quantify both the average distance of GPS points from
the regression line as well as the spread of points around
the regression line. The idea was to demonstrate the fact
that points recorded in occluded areas, on average, have
a greater deviation from the line of best fit on which they
should be recorded. Using Algorithm 1 given at the begin-
ning of this section, we can treat the regression line as the
road itself since we have chosen straight road segments. We
could further assume that the ground truth bus route would
not deviate from the road itself, meaning any points form-
ing the ground truth trajectory would appear directly on the
regression line. From this we can perform Iterative Projec-
tion Construction (Figure 4) and quantify the area between
the observed GPS trajectory and the ground truth trajectory.
This will give a more accurate indication as to where devia-
tions within a segment occur and can be applied to an entire
curved trajectory.

4. Discussion & Future Work
As mentioned previously, we are currently investigating the
effect of certain metropolitan areas on the severity of sam-
pling and measurement errors in GPS data. It should be
noted that buildings in Victoria and Adelaide are not tall
when compared with other city centres such as Vancouver,
Toronto, or New York City. We believe that the level of error
will increase as the average height of buildings that border
a roadway also increase, but more research is required.
We have collected real-time data on the vehicle positions of
BC Transit buses on routes around Victoria, BC, Canada,
and Adelaide, Australia. Using high resolution satellite im-
agery of downtown Victoria and Adelaide, we can plot GPS
data that aligns temporally with the moment the satellite
image is captured. In doing so we can observe the visual
location of buses within the image and compare that with
their recorded GPS location. We believe that this will con-

firm our hypothesis that areas in Victoria with taller build-
ings and faster roads will create a larger disparity between
a vehicle and it’s GPS location when compared to suburban
areas. The ability to generate error maps of expected GPS
data will inform a larger project to develop mission plan-
ning tools to perform aerial data acquisition.

We are also exploring the effect of more specific inputs on
predicting error-prone regions. Depending on the severity
of obstructions in a given location, a GPS receiver may be
communicating with fewer satellites when compared to op-
timal conditions. We would like to be able to collect data on
the number of satellites visible by a vehicle at recorded lo-
cations in order to better express the likelihood of error for
certain geographical regions in a city. This work will sup-
port our overall goal of expressing GPS error in the form of
a spatially-based reliability map using open source data.
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Victoria, BC Adelaide, SA
Noisy (n = 491) Clean (n = 239) Noisy (n = 156) Clean (n = 142)

Mean Absolute Error 2.124× 10−5 7.410× 10−6 1.120× 10−5 2.958× 10−6

Root Mean Squared Error 2.999× 10−5 9.134× 10−6 1.773× 10−5 3.926× 10−6

Table 1. Results of applying linear regression to noisy (identified occlusions) and clean (non-occluded) straight road segments (no change
in bearing) on bus routes in Victoria, BC, and Adelaide, SA. Truncated to the nearest thousandth.

Figure 6. Regression Lines fit to segments of the 14 bus route in Victoria, BC (a) and b)), and the 157 bus route in Adelaide, SA (c) and
d)). a) Regression of the data points observed in Figure 5 Left moving west to east. There is a greater MAE, RMSE when compared to
b), a straight road segment with no visible occlusions on the same bus route. Similarly, c) is the regression of the data points observed in
Figure 5 Right. This road segment has natural obstructions that create visible errors in GPS when compared to a non-occluded segment d).
Again the noisy segment was found to have a greater MAE and RMSE.
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