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Abstract

Self-localisation mechanism in an unknown territory has
been an interest area for humans since ages. Image match-
ing is an obvious contender due to advancements in imaging
devices and compute technologies. Deep learning methods
have proven to be state-of-art in recent times but require
large volumes of relevant data. Aerial image matching re-
mains a challenging task due to the quality of images (e.g.
platform disturbances, atmospheric effects), multiple types
of on-board sensors (e.g. visual, thermal), variations in
scales and look angles etc. To address these challenges,
we present a cross-platform path planning dataset com-
posed of images acquired from an aircraft and the Google
Earth Engine (GEE). The proposed dataset contains manu-
ally aligned frames, corresponding match region, and se-
mantic labeling of the images. Multiple galleries repre-
senting historical and instantaneous paths are generated.
Our dataset envisages several realistic scenarios in cross-
platform matching and semantic segmentation. We eval-
uate the performance of state-of-the-art image matching
and segmentation algorithms on the proposed dataset. We
will make our dataset freely available at https://www.
iith.ac.in/˜lfovia/downloads.html. Further,
a case study on utilizing an existing open-source dataset for
cross-platform path planning is also presented.

1. Introduction
Sensors used in aircraft navigation systems are typical

of two categories, namely self-contained sensors and ex-
ternal support sensors. Conventional self-contained sen-
sors include Inertial Navigation System (INS), Altitude and
Heading Reference System (AHRS), attitude sensors and so
on. These systems compute aircraft position, velocity, and
altitude by a Dead Reckoning (DR) mechanism concern-
ing the initial reference but suffers with drift issue. On the
other hand, external support sensors use the Global Naviga-
tion Satellite System (GNSS), Global Positioning System
(GPS), etc. in the feedback/correction mechanism.

These sensor inaccuracies (angular drift or linear mo-

tion), frequent GPS unlock, electromagnetic interference,
remote locations or other unforeseen factors are a mat-
ter of concern while traveling for a long duration or at
high speeds, or both. This demands for alternate naviga-
tion systems which are self contained and passive in na-
ture. With the recent advancements in imaging devices
(in size, resolution, multi-spectrum, etc.) and comput-
ing resources, image-guided NAV systems are ideal can-
didates.Such image-based NAV systems typically work in
a human-in-the-loop model where critical inputs and deci-
sions are provided by an operator at control station. How-
ever, a difficulty with the human-in-the-loop approach is the
potential unavailability of reliable communication channels
due to the same factors that can lead to GPS outages as men-
tioned in addition to transmission delays. Therefore, au-
tomatic image/vision-based aerial NAV systems, built over
robust and real-time matching algorithms become essential.

As a first step to address this problem, we construct a
cross-platform dataset composed of images (video frames)
taken from an aerial vehicle as well as a satellite. Our
dataset envisages various realistic matching scenarios and is
annotated with appropriate semantic labels to aid the match-
ing task. While there is extensive and excellent literature
on cross-domain image matching and segmentation, neither
methods offer a solution that can be directly applied to the
problem at hand (discussed in section 4). Therefore, we
propose a cross-platform dataset to bridge the gap of deep
networks for cross-domain application. To the best of our
knowledge, such a cross-platform path-planning dataset is
not available in the literature. The rest of the paper is orga-
nized as follows: related work is presented in section 2, and
the proposed dataset is described in section 3. The proposed
dataset is analyzed with recent state-of-arts in section 4 with
discussions, followed by concluding remarks in section 5.

2. Related Work
We briefly review aerial image datasets followed by a

review of traditional and deep learning-based image match-
ing/segmentation approaches. Aerial image datasets ded-
icated to scene detection and recognition are far fewer in
number compared to standard image datasets (e.g. Ima-
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geNet [1]). Some of the publicly available aerial datasets
include DOTA [2], HRSC2016 [3], VHR-10 [4], SSDD [5]
etc. These datasets are mainly geared for object detection
and are built using the Google Earth Engine (GEE) [6]. The
DOTA [2] dataset has objects for detection in aerial images
with oriented bounding box annotations. It contains 2806
large-size images. There are fifteen categories including
baseball, basketball, tennis court, helicopter etc. The in-
stances vary greatly in scale, orientation, and aspect ratio.
The HRSC2016 [3] dataset is a benchmark for ship detec-
tion in GEE images. It contains 1061 images and has more
than twenty categories of ships in various appearances. Im-
ages are resized to 512× 800. The VHR-10 dataset [4] has
two spectral bands with varying ground resolutions. It has
images with visual resolution ranging from 0.5 m to 2 m,
and color infrared spatial resolution of 0.08 m.

As mentioned earlier, these datasets are derived using
GEE images and are annotated to solve the object detec-
tion problem in aerial imagery. However, these dataset con-
tain images from another aerial vehicle such as an aircraft
or images taken from other sensor types that are important
for solving the cross-platform aerial image matching prob-
lem. Other than object detection datasets, two popular pub-
licly available satellite image datasets for segmentation are
the INRIA [7] and EuroSAT [8]. The INRIA dataset [7]
has satellite images of a few North American and Euro-
pean cities with building and non-building labels. The Eu-
roSAT [8] is a publicly available dataset that is composed of
27,000 patches spread over 13 spectral satellite bands. The
size of each patch is 64 × 64, and the patches are divided
into ten classes some of which are annual crop, river, high-
way, residential/industrial building, etc.. Apart from these
satellite datasets, Muller et al. [9] proposed an UAV dataset
where images are taken from a low altitude Micro-Aerial
Vehicle (MAC) platform. It has 123 video sequences for
target tracking performance evaluation with over 110,000
frames along with bounding box annotation. Aerial drone
dataset [10] has 20 semantic class labels with high resolu-
tion imagery acquired from an altitude 5-30 meters.

In recent times, there has been an active interest in find-
ing geo-location for street view images. It involves warp-
ing satellite images (orthographic view) and aerial images
(oblique bird eye view) over streets. To automate this pro-
cess and facilitate deep learning algorithms, several datasets
have been proposed in the literature [11, 12, 13, 14, 15, 16].
The Zurich city [11] and Toronto city [12] datasets are
two recent datasets covering the urban environment. The
Zurich city [11] dataset has acquired high resolution aerial
images from low altitude MAV (5-15m) for 2 sq. km re-
gion with time-synchronized aerial ground-level street view
images. The Toronto city [12] dataset acquired images
over a large area from airplanes, drones, and cars driving
around the city. This dataset consists of various overhead

perspectives images captured for four different years. In-
stead of manually aligning aerial images, the authors have
used digital elevation maps captured by airborne LIDAR
and an on-board high-precision navigation system. Tian et
al. [13] present a dataset that has four street view images
and four bird’s eye view images taken at each GPS loca-
tion. The street view images (at 0, 90, 180, and 270 de-
grees with respect to true north) are from Google and the
overhead 45 degree bird’s eye view images are from Bing.
Image matching geo-localization is carried out by multiple
nearest neighbors matching. Buildings in the query and ref-
erence (search) are detected using Faster RCNN [17] region
proposals with known geo-locations. A Siamese network is
employed for paired and unpaired buildings based on the
contrastive loss function. A graph is built using global and
local matches and the final output is the mean of matched
buildings.

Kyrkou et al. [18] proposed the aerial image database
for emergency response (AIDER). Four disaster events in-
cluding flood, fire/smoke, collapsed buildings/rubble, and
traffic accident are annotated and studied in this work.
Khurshid et al. [14] proposed the CrossviewRet dataset
which consists of six distinct classes (namely freeway,
mountain, palace, river, ship and stadium) with 700 im-
ages per class. Deepsat [15] proposed patches of size
28 × 28 pixels, covering six land-cover-classes - barren
land, trees, grassland, roads, buildings and water bod-
ies. Chiu et al. [16] proposed an agriculture-vision dataset
for pattern analysis covering nine relevant classes. We
would like to note that these datasets are either composed
of satellite or aerial imagery with the limited cross-band or
cross-domain or cross-platform association. Further, they
do not take into account variability due to environmen-
tal/developmental changes, spatial/temporal mismatches,
etc. We address this lacuna in our work by constructing
the proposed cross-platform aerial image dataset.

We now briefly review traditional and modern ap-
proaches to image matching and semantic segmentation.
In traditional approaches, sparse key-points and dense flow
techniques are popular for image matching. Deep learning
(DL) approaches on the other hand are relatively recent and
learn task-specific features automatically but require data
apriori. DL methods have shown significant performance
improvement not just in image matching but in myriad com-
puter vision tasks.

Sarlin et al. [19] proposed feature matching called Su-
perGlue. SuperGlue [19] has two major components - an
attentional graph neural network and an optimal matching
layer. Key-point descriptor along with the position is en-
coded into a single vector, and then uses alternating self
and cross attention layers to create a more powerful rep-
resentation. The optimal matching layer creates a scoring
matrix, which finds the optimal partial assignment using

3937



the Sinkhorn algorithm. Radiation-invariant feature trans-
form (RIFT) [20] uses phase congruency (PC) instead of
image intensity for feature point detection. RIFT prepares
a maximum index map (MIM) for feature description from
the log-Gabor convolution sequence. Experimental results
show that RIFT is much more superior to SIFT and SAR-
SIFT. DeepMatching (DM) [21] is inspired by deep CNN
architectures and computes dense correspondences between
images. It relies on a hierarchical, multi-layer correlation
architecture.

SimNet [22] is a neural network-based approach that ex-
ploits the learning of non-metric similarity functions for in-
stance search. The authors proposed an end-to-end trainable
approach for image retrieval. Feature extraction is done by a
pre-trained network in a feed-forward manner followed by a
visual similarity network for content-based image retrieval.
The output of the max-pooling layer is L2 normalized and
flattened to formulate the input for the visual similarity net-
work. Yang et al. [23] proposed matching of aerial images
by extracting robust features using a CNN. Authors [23]
proposed a modification of the VGG16 network (e.g., the
grid structure of size 8 × 8), and features are pooled from
the second, third, and fourth layers. A Gaussian mixture
model (GMM) is used for dynamic inlier selection. How-
ever, the experimented database is not available publicly.
The authors have compared with four variants of the SIFT
methodology and reported results in terms of precision.

A fully convolutional network (FCN [24]) based image
classifier has been trained on the INRIA dataset. The gener-
alization capability of the FCN classifier was demonstrated
by testing over images from North American and European
cities which were not a part of their train dataset. How-
ever, generalization performance over entirely different ur-
ban regions say in Asia or Africa not presented. SegNet
[25] is a deep encoder-decoder architecture for multi-class
pixel-wise segmentation with VGG16 model. It has been
designed and trained for urban road scene segmentation. It
consists of 12 classes including roads, trees etc. DeepLab
[26] is a state-of-art deep learning model for semantic image
segmentation, where the goal is to assign semantic labels to
every pixel in the input image. DeepLabv3+ [27] employs
the encoder-decoder structure where DeepLabv3 is used to
encode the rich contextual information. It uses ResNet18
model trained over the Camvid dataset [28]. We describe
next the proposed dataset that addresses the lacunae in ex-
isting datasets, and evaluate the same with state-of-the-art
image matching algorithms.

3. Proposed cross-platform Dataset
We now describe the proposed cross-platform aerial im-

age dataset in detail. We elaborate the data collection exper-
iment, the procedure to generate cross-platform data, fol-
lowed by an analysis of the dataset. We then present a sum-

mary of the proposed dataset.

3.1. Data Collection

We have collected airborne data (video and flight param-
eters) using a manned aircraft in a designated urban area
from an height of around 5000’ with speed of 50-60 me-
ters per second. An HD camera with a spatial resolution of
1920 × 1080 pixels and temporal resolution of 60 frames
per second (fps) is mounted on the aircraft’s belly in a
forward-looking direction with tilt (60◦ down from horizon)
due to mounting constraints. Intrinsic parameters (field of
view and look angle of the camera) and extrinsic parameters
(GPS and navigation sensors) are jointly termed as meta-
data and saved during the flight. Instantaneous trajectory
information is transmitted via a radio frequency (RF) link
and stored at the base station(e.g. ground control station).
Trajectory parameters include location, speed, look angle,
altitude and attitude of the aircraft. Video data is stored
on-board (the aircraft) and trajectory parameters are stored
in the ground station. We denote this airborne video data
as DTV. Due to logistical/resource constraints, there was no
synchronization between the DTV video and telemetry data.
Telemetry parameters are noisy due to sensor inaccuracies
and RF link loss (e.g. line of sight/platform/environmental
disturbances). These parameters are filtered and passed
through appropriate aircraft profile constraints concerning
each parameter. Given the computational load of process-
ing full HD images (1080p), all DTV frames (of UAV) are
re-sized to a resolution of 640 × 480 pixels before further
processing, while retaining the temporal resolution of 60
fps.

3.2. Generation of Cross-platform Data

To envisage a realistic scenario where the target image is
from a different sensor or platform, we rely on the Google
Earth Engine (GEE) [6]. GEE provides us the flexibility to
fetch an image from a given latitude/longitude, look angle,
the field of the video, etc. We simulate the aircraft flight
trajectory in GEE and record a video for this flight trajec-
tory using GEE. We denote this video as SAT. To further
associate navigational sensors issues like translation or ro-
tational drift, altitude/speed mismatch, etc., we modify the
intrinsic and extrinsic parameters of trajectory data and gen-
erate further test data. This data simulates possible trajec-
tory deviations in terms of aircraft altitude/heading, camera
zoom/look angle, time of the day, date of image acquisi-
tion, and so on. We generate these videos at a spatial reso-
lution of 640 × 480 pixels at 60 fps for 12 years. Sample
frames from the proposed dataset are shown in Fig. 1. We
have named a few DTV frames that contain clearly iden-
tifiable regions, e.g., a frame containing a clearly visible
blue roof as DTVblue and similarly, a clearly visible red
roof as DTVRed. A typical city scene with roads and build-
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ings is denoted as DTVCity. Fig. 1 represent samples for
a location from the first flight path gallery (e.g. DTVA)
of the dataset. Left-top image is UAV image (e.g. DTV-
Reference) whereas right-top is the corresponding SAT im-
age from manually aligned best-match gallery (e.g. SAT-
BM). The next two images are retrieved from SAT-Year-
wise galleries for the same location for two years. His-
torical and atmospheric effects can be noticed from second
row SAT images (e.g. left and right images) respectively.
SAT-Year09 image has more greenery and non-existence
of white building (next to blue roof top). Whereas, SAT-
Year12 image has mild clouds. SAT-Year-wise images are
aligned manually for initial locations. These SAT-year-wise
variability lead to an added challenge in designing image
matching algorithms in this cross-platform setting. Simi-
larly, UAV images of the same location in the second and
third flight paths are shown in Fig. 2.

We generate Target-bin-profile curve for query images
manually(e.g. DTV frames). For each query image, first
find out Target-bin(e.g. start index to end index) visually
in each SAT gallery. Target-bin is set of frames containing
at least 50% scene common with query image. For each
query image, we find overlap using manual marking of cor-
responding points. This overlap score for a query image
against each SAT image in Target-bin region of SAT gallery
formulate Target-bin-profile. It helps to find best match in-
dex(e.g., position) for a query image in SAT gallery. Fig.3
illustrate our manual point correspondences pictorially. The
first row displays input images (e.g. DTVRed) and SAT im-
age (from SAT-Year12 gallery) shown in Figs. 3a and 3b
respectively. We mark corresponding points manually and
estimate homography. Using this homegraphy matrix find
overlap. The second row shows the corresponding overlap
area (concerning image size) in Figs. 3c and 3d respectively.
Images with higher overlap are indicative of a better match.

3.3. Semantic-segments Label Transfer

Unlike other aerial image datasets such as the INRIA
dataset [7] which have two labeled regions (Building/non-
building), we provide twenty labels that allow for the design
of fine-grained segmentation algorithms. The labels include
Avenue, Building, Building Side, Construction Shed, Dry
Field, Double Road, Mud Road, Pedestrian-path, Promi-
nent Building, Runway, Runway Strips, Shed, Sheet, Sky,
Street, Trees, Train, Vehicle, Vegetation Misc, Void, Wa-
ter. The semi-automatic region labeling methodology is de-
scribed next. We first label images manually at regular inter-
vals, with the interval depending on scene activity (content
variation over the video). Labels for in-between frames are
predicted (transferred) automatically, thus making our ap-
proach semi-automatic. Specifically, we propose a two-pass
approach for label transfer that includes a forward pass and
a backward pass. The labels transferred (predicted) using

Figure 1: Representative image from the 1st flight path
DTVA (top-left) and corresponding manually matched
satellite images. Top-right is the best matching satellite
image, bottom-left and bottom-right are satellite image
matches over different years (best viewed in color).

Figure 2: Representative images from 2nd and 3rd flight
paths.

the forward and backward passes are merged appropriately
to create a single semantic label for the in-between video
frames. A few sample images and their corresponding la-
bels are shown in Fig. 4.

3.4. Cross-platform Dataset from Open-source Data

We also construct a cross-platform dataset using the pub-
licly available KAUST airborne dataset [9]. We select a
building complex and designate it as the reference template.
This reference template resembles our DTV (live camera of
UAV) template. We manually search for this building com-
plex using GEE for potential matching regions. While it
was a difficult manual exercise due to urban development
and drastic mismatch in resolution, we were able to find
matching regions from GEE. We observed that SAT images
are of very poor quality (perhaps be due to access restriction
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(a) DTV image [DTVRed] (b) SAT-Year12 [6]

(c) DTV overlap image (d) SAT overlap image

Figure 3: Corresponding points illustration

of regulatory authorities). To simulate a fly-by scenario,
we set up forward and backward way-points. These way-
points formulate virtual paths of an aircraft, and thereby
its trajectory. We collect SAT images for the forward and
backward paths and designate them as KAUSTComplexFor-
ward and KAUSTComplexBackward galleries respectively.
A sample reference template (e.g. BuildingComplex) from
the KAUST dataset [9] and the manually retrieved SAT im-
age from GEE can be visualized in Fig. 5.

3.5. Summary of the Proposed Dataset

The proposed dataset is composed of three reference
DTV paths (viz., DTVA, DTVB and DTVC galleries) and
corresponding SAT image galleries. Each gallery serves a
different purpose as summarized in Table 1. We have iden-
tified ’best match’ manually and provided it as part of the
dataset. The efficacy of manual interventions (SAT-BM)
can be visualized from Table 2. This table shows the av-
erage of the 2D correlation coefficient of corresponding
SAT galleries with a DTVA-Reference gallery. SAT-Year-
wise provides historical data over the period of time for
DTVA. DTV-Test and SAT-Test contain few query images
with target bin profile over SAT-Year-wise galleries. DTV-
BC contains images from path B and C, along-with SAT-
BC with equivalent SAT images. SAT-BM-seg consists of
segmented maps. Additionally, we have provided manually
marked corresponding frames for query images (of DTV-
Test gallery) forming target-bin region.

4. Performance Analysis
We analyze the complexity of the proposed dataset using

state-of-arts relating to image matching and semantic seg-
mentation. We motivate the proposed cross-platform aerial

dataset for image retrieval. To do so, we applied a variety
of image matching methods over our dataset gallery for one
query image (e.g. reference image from DTV-Test gallery).
These methods include traditional matching methods like
SSIM index [29], 2D correlation coefficient and contem-
porary deep methods [23, 30, 31]. The matching results
are presented in Fig. 6. It is evident from the figure that
all these methods have multiple local maxima and minima,
making it difficult to indicate the best match image/region.
This provides coarse evidence that the proposed dataset can
potentially be used to improve the performance of aerial im-
age matching algorithms.

4.1. Image Matching

Image retrieval and dense correspondences are the two
parts of image matching. Image retrieval is applicable for
a query image in full SAT gallery while dense correspon-
dence in a specific Target-bin region. Content based im-
age retrieval(CBIR) is a methodology of retrieving similar
images for a query image. We have followed the same ap-
proach and experimented with BoG Spatial [32], pretrained
VGG16 [30], pretrained ResNet50 [31], SimNet [22] and
CNN-registration [23] for feature extraction. These ex-
tracted features are matched for DTV query and SAT im-
age galleries. Lowest euclidean distance is considered best
match. Searching over full gallery is considered a valid
match over Target-bin-region. Top@N and mean Precision
(mAP) for the state-of-art methods are summarized in Table
3 for all DTV-Test images over all SAT-Year-wise galleries
and visually represented for (e.g. a single query image in
SAT Year-wise galleries) in Fig. 7.

Performance of matching or outlier removal algorithms
can be evaluated quantitatively using this points correspon-
dence in Target-bin-region in terms of Percentage of Cor-
rect Keypoints (PCK), Mean Error (ME) and ratio-metric
(r). PCK5 implies mismatch within euclidean distance of
5 pixels. PCK and ME for a query image over a SAT
gallery (in Target-bin-region) are shown graphically in Fig.
8a and 8b respectively. As evident from Fig. 8a, ME val-
ues are low near best match index and increase either sides
for all state-of-arts methods. Additionally, PCK curve in
Fig. 8b verifies ME values of respective state-of-arts of Fig.
8a. To further validate quantitatively, we tested DTV test
folder gallery images over SAT-Year-wise galleries and tab-
ulated performance of standard evaluation metrices in Table
4. This quantitative and qualitative analysis have consistent
findings for state-of-art methods.

To generalise the findings for any scene or target (e.g.
BuildingComplex), we have used the open-source KAUST
database [9] and generated two satellite galleries.We apply
state-of-the-art matching methods to match the query image
of Fig. 5a over the SAT gallery (e.g. KAUSTComplexFor-
ward) and evaluate with standard metrices (eg. PCK, ME,
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Figure 4: Samples from semantically labeled image gallery. Top row shows DTV images and bottom row shows correspond-
ing semantic labels.

Table 1: A summary of the various galleries in the proposed dataset.

Name Resolution # Images/Galleries Description
DTV-Reference 640× 480 2500 Resized Reference DTV images of first path (DTVA)

SAT-BM 640× 480 2500 Best manual match GEE imagery for DTVA
SAT-Year-wise 640× 480 2500 per year Aligned matching GEE satellite images from 2009–2020

SAT-Drift 640× 480 2000 (per case) Simulating flight path drift (left and right) in GEE
DTV-Test 640× 480 9× 2 Real DTV test images with target-profile curve
SAT-Test 640× 480 5× 2 Five SAT sub-galleries with various perturbations
DTV-BC 640× 480 2500× 2 DTV images of second (DTVB) and third (DTVC) paths
SAT-BC 640× 480 2500× 2 per year Matching GEE images (2009–2020) for DTVB and DTVC

SAT-BM-Seg 640× 480 2500 Semi-automatically generated semantic segments
SAT-Test-Seg 640× 480 100 Manually labeled semantic segments for test

KAUST-cross-platform [9] 640× 480 450× 2 Forward and backward SAT sequence for KAUST

(a) DTV image [9] (b) SAT image [6]

Figure 5: KAUST DTV [9] and SAT sample [6] images.

Ratio-metric). Results are tabulated in Table 4 alongwith
previous findings over SAT-Year-wise galleries.

4.2. Semantic labeling

We now evaluate semantic labeling part of dataset with
standard/state-of-art methods. As described in section 3.3,
we manually labeled frames at periodic intervals and used

label transfer for generating labels for intermediate frames
calling semi-automatic labels. To counter the argument
that generated semiautomatic labels performance can be
achieved with augmentation, we train the state-of-art mod-
els (e.g. FCN [24], SegNet [25] and DeeplabV3+ [27])
with manual labels and the generated semiautomatic labels.
These trained models are tested with images and labels of
SAT-Test-Seg gallery. The efficacy of semi-automatic labels
is clear from mean Intersection of Union(mIoU) in Table 5.

In order to further evaluate proposed semantic dataset
with contemporary aerial dataset [7]. The INRIA
dataset [7] has two labels viz., building, non-building. The
authors claimed generalisation by training FCN network
over few cities and testing over other cities. Since we
could not find the trained model, we trained the FCN over
a few cities of INRIA dataset [7] images and tested over
other cities. The same trained model (due to generalisation
claim), we applied over our proposed dataset images. Per-
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Table 2: Correlation of DTV-Reference with SAT-year-wise data

Metric SAT-Year09 SAT-Year12 SAT-Year16 SAT-Year20 SAT-BM Remarks
Corr2 (gray) 0.100 0.139 0.145 0.083 0.192 Grey scale images
Corr2 (color) 0.103 0.134 0.149 0.088 0.196 Sum of correlation of channels

Figure 6: The performance of contemporary image match-
ing methods on a DTV query image over a SAT gallery.
The dashed box represents the expected target-bin region.
The challenge with off-the-shelf methods is that all of them
have multiple minima/maxima (Best viewed with zoom and
color).

Table 3: Match performance on the entire gallery

No. Method Top@1 Top@5 Top@10 mAP
1. BoG Spatial

[32]
22.2 38.8 41.6 23.9

2. CNN-
registration [23]

7 50 50 15

3. SimNet [22] 27.5 38.4 49.5 14.4
4. Pretrained

VGG16 [30]
27.7 36.1 41.6 23.1

5. Pretrained
ResNet50 [31]

16.6 19.4 22.2 18

Table 4: Matching performance over “Target-bin-region”
for Proposed/KAUST [9]. Except last column higher value
indicate better performance.

Method
(Our/KAUST)

PCK5
(%)

PCK10
(%)

rPCK≥50% Mean
Error

SuperGlue
[19]

2.17/
3.5

8.03/
11.2

3.39/ 0.38 159.7/
99

RIFT [20] 1.1/
0.2

3.52/
0.48

1.24/ 0.2 146.8/
201

Deep Match-
ing [21]

18.8/
22.9

35.9/
49.2

18.42/
22.5

79.3/
57

formance can be visualised in Fig. 9 for inria [7] test city
and proposed dataset image. As evident from Fig. 9, gen-

DTVCity Year2009 Year2012 Year2016 Year2020
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Figure 7: Top@1 searches in dataset for DTVCity query
(round 2 or DTVB path). Rows are in the same order as
table 3.

(a) Mean error curve (b) PCK curves

Figure 8: ME and PCK curves for a query DTV image in a
SAT gallery. Best viewed with zoom and color display.

Table 5: Performance of semi-automatic semantic labels

No. Label type FCN
[24]

SegNet
[25]

DeepLab
V3+ [27]

1. Manual 0.13 0.22 0.26
2. Semiautomatic 0.17 0.26 0.38

eralisation is reasonable for INRIA [7] test image but poor
for proposed dataset test image from SAT-Test-Seg gallery.
From Fig. 9 it is clear that there is a need of relevant datasets
applicable to other parts of the world.
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Table 6: Dataset comparison

Dataset Images Resolution Platform Video Classes Application Altitude Seg. Maps
DOTA [2] 2086 4K × 4K GEE No 15 Detection NA No
HRSC [3] 436 512× 800 GEE No 20 Classification NA No
VHR [4] 800 600× 600 GEE No 10 Classification NA No
KAUST [9] 123 videos 1920× 1080 MAV Yes NA Tracking 5-25 m No
INRIA [7] 360 20K ×20 K GEE No 2 Segmentation NA Yes
EuroSat [8] 27K 64× 64 Sinetal-2 No 10 Classification NA No
Drone [10] 400 4K × 6K Aerial No 20 Segmentation 5-30 m Yes
AIDER [18] 8545 Multiple Web No 6 Emergency NA No
Proposed 25028 640× 480 GEE, Aerial Yes 20 Recognition 5000’ Yes

Figure 9: Predicted semantic labels (FCN fine-tuned over
INRIA [7]) train images. Tested over images from other city
of inria [7] and SAT-Test-Seg gallery of proposed dataset.

We now present a brief discussion of our contributions
in this work. To the best of our knowledge, the proposed
aerial cross-platform path planning dataset is the first of
its kind. Our proposed dataset is compared with contem-
porary datasets in Table 6. As points of comparison, we
have considered the number of images, resolution, acquisi-
tion platform, disturbances, applications, etc. We find that
contemporary datasets acquire images or videos (sequen-
tial frames) either from GEE or aircraft primarily for object
detection, tracking, semantic segmentation. The proposed
dataset is cross-platform containing carefully curated data
acquired from GEE. The proposed dataset covers historical
variation (i.e., urbanization over time), attitude distortions
(e.g. altitude, zoom, look-angle etc.) and realistic environ-
mental distortions (for e.g., small clouds). We qualitatively
compare the proposed dataset with a few other datasets in
Fig. 10 using representative image samples. As can be seen,
the proposed dataset adds to the variety of aerial content
thereby providing more data points for improving matching

(a) INRIA [7] sample image (b) KAUST [9] sample image

(c) Aerial drone [10] image
(d) Proposed dataset image

Figure 10: A comparison with related datasets shows that
our dataset adds to the variety of content

and segmentation algorithm performance.

5. Conclusions
The proposed dataset is useful for the development of

aerial cross-platform path planning and evaluation of image
matching/segmentation algorithms. It is aimed to bridge the
gap between aerial navigation and deep methods. Addition-
ally, we have demonstrated with a case study of using a
query image from open source dataset and developing cor-
responding cross-platform galleries. We compared various
aerial datasets from the literature and showed the utility of
our dataset. We have evaluated several matching and seg-
mentation algorithms over the proposed dataset. We have
qualitatively and quantitatively demonstrated the usefulness
of our dataset for CBIR, outlier rejection and semantic seg-
mentation algorithms. We believe that this is a timely con-
tribution given the increased use of unmanned aerial vehi-
cles for a variety of applications ranging from emergency
response to commercial to military.
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