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Abstract

Wide Area Motion Imagery (WAMI) data acquired by an
airborne sensor for ground observation offers great poten-
tial for various applications ranging from the protection of
borders and critical infrastructure to city monitoring and
surveillance. Persistent multiple object tracking, which is
a prerequisite for these applications, is generally based on
moving object detection, as the characteristics of existing
WAMI datasets, e.g. weak appearance of objects, impede
the usage of appearance based features. Complex and com-
putationally expensive strategies such as exploiting multiple
trackers in parallel or classifier-based local search are typ-
ically utilized to detect slow and stopping vehicles that are
missed by moving object detection. In this paper, we pro-
pose a novel and much simpler tracking-by-detection ap-
proach for persistent tracking in WAMI data, which avoids
such strategies. To overcome limitations caused by image
quality of existing WAMI datasets, our proposed tracker
was developed on self-acquired WAMI data recorded with
a state-of-the-art industrial camera. The improved image
quality enables appearance based object detection by Con-
volutional Neural Networks (CNNs) in WAMI, which we
fuse with motion detection to compensate for missed detec-
tions in image regions with partial occlusion or shadows.
Our proposed tracker is an extension of Deep SORT with
modified track management and data association, which is
able to yield high recall even in such difficult image re-
gions as well as for slow or stopping vehicles, outperform-
ing state-of-the-art on our self-acquired dataset.

1. Introduction

Wide Area Motion Imagery (WAMI) data is typically ac-
quired by an airborne sensor for ground observation. The

goal is to achieve a large ground coverage of several square
kilometers at a detail level that enables the detection and
tracking of all relevant objects on the ground such as ve-
hicles or even pedestrians. Potential applications that can
be supported with this kind of data range from the protec-
tion of borders and critical infrastructure to city monitoring
and surveillance and even to enabling smart city capabilities
such as adaptations to traffic flow in real-time. A WAMI
sensor is usually mounted on a blimp in order to be quasi-
stationary.

Persistent multiple object tracking [47] is generally
based on moving object detection due to specific charac-
teristics of WAMI data: the weak appearance of objects in
existing WAMI datasets such as WPAFB [65] or CLIF [64]
primarily hinders the usage of appearance based object de-
tection methods [26, 30, 66]. Though recently proposed
spatio-temporal Convolutional Neural Networks (CNNs)
clearly outperform conventional moving object detection
methods such as frame differencing or background subtrac-
tion [25, 30], trackers solely relying on motion detections
become unreliable when objects slow down or stop [14, 47].
To achieve persistent tracking, different strategies have been
proposed in the literature, e.g. the usage of an additional
regression tracker in parallel [4, 47] or the classifier-based
search in a small local context by utilizing hand-crafted ap-
pearance features [25, 62, 70].

In this paper, we propose a novel tracking-by-detection
approach for persistent tracking in WAMI data, which
avoids expensive additional trackers and the usage of hand-
crafted appearance features for local search. Leveraging the
impressive results of CNNs for object detection in images
[35, 37, 50, 52], tracking-by-detection [7, 10, 68, 69] has
become a popular state-of-the-art approach for visual track-
ing [5, 20] and has demonstrated its potential on various
tracking benchmarks [38, 39], including drone-based video
[19, 74]. This motivates us to investigate whether these
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promising results can be transferred to WAMI.
To benefit from recent advances in imaging technolo-

gies that are able to overcome limitations of existing WAMI
datasets, in particular the weak appearance of objects due to
noisy gray-value images, our proposed tracker is developed
on self-acquired WAMI data recorded with an industrial
state-of-the-art aerial camera. We demonstrate that the im-
proved image quality facilitates appearance based object de-
tection by CNNs for persistent tracking in WAMI. To com-
pensate for missed detections in image regions with partial
occlusion or shadows, we fuse appearance based detection
with motion based detection, yielding high recall in such
difficult regions as well as for slow or stopping vehicles.

We extend the popular multiple object tracker Simple
Online and Realtime Tracking with a deep association met-
ric (Deep SORT) [69] to show that motion and appearance
based object detections can be successfully combined by
a much simpler data association than multiple hypothesis
tracking [25, 27, 62] or by leveraging multiple trackers in
parallel [4, 14, 47]. The visual descriptor needed for data as-
sociation is directly pooled from features already computed
by the CNN-based detector. We further perform adaptions
to account for the characteristics of WAMI data, e.g. the low
frame rate.

In quantitative experiments, we demonstrate that our
proposed tracker achieves favourable tracking results for
all of the evaluated image sequences and outperforms the
state-of-the-art WAMI tracker proposed in [25]. These re-
sults also demonstrate the excellent transferability of CNN-
based motion detection, which was originally trained on the
WPAFB dataset.

The main contributions of our work can be summarized
as:

• We propose a novel combination of appearance based
and motion based detections for persistent tracking in
WAMI.

• We extend the popular tracker Deep SORT in order to
account for the characteristics of WAMI and integrate
the combined detections.

• Our proposed tracker outperforms state-of-the-art on
our self-acquired dataset.

• We demonstrate the excellent transferability of CNN-
based motion detection trained on the WPAFB dataset
to visually very different WAMI data.

The remainder of this paper is organized as follows.
In Section 2, we first give an overview about appearance
based object detection and motion based object detection
in WAMI. Then, existing approaches for multiple object
tracking in WAMI are summarized. Our proposed track-
ing pipeline is presented in Section 3. In Section 4, we

first introduce the self-acquired WAMI dataset followed by
a quantitative and qualitative evaluation of our proposed ap-
proach. Finally, we conclude in Section 5.

2. Related Work
2.1. Appearance based object detection

Deep learning based detection methods that solely rely
on spatial and appearance information achieve state-of-the-
art results in numerous fields of application. The most
prominent of these methods are Faster R-CNN [52], SSD
[37], YOLO [49] and their variants, which exploit multi-
ple feature maps [11, 21, 35, 36, 50]. While these methods
are typically not applied on WAMI so far due to poor im-
age quality or inappropriate annotations [30], deep learning
based detection methods have been widely adopted for ob-
ject detection in single aerial imagery [1, 17, 18, 23, 48,
53, 54, 58, 59, 57, 60, 67]. Several adaptations, e.g. ap-
propriate feature map resolutions and anchor box scales,
have been proposed in order to account for the characteris-
tics of aerial imagery, in particular the small object dimen-
sions [1, 53, 54, 58, 60]. To further improve aerial object
detection, common procedure is the exploitation of multi-
ple feature maps [17, 18, 23, 48, 59, 67]. A more detailed
overview about deep learning based detection methods for
aerial imagery is given in [32].

2.2. Motion based object detection in WAMI

Conventional methods for moving object detection in
WAMI are based on either frame differencing [27, 45, 55,
63, 70] or background subtraction [28, 34, 40, 45, 51, 56].
A comprehensive survey on these conventional methods is
provided in [61]. Recently, LaLonde et al. [30] demon-
strated the potential of spatio-temporal CNNs for moving
object detection, outperforming conventional methods by a
large margin on the WPAFB dataset [65]. The proposed
FoveaNet, which comprises a sequence of convolutional
layers, takes multiple adjacent frames as input and outputs a
heatmap for predicted object locations. To reduce the search
area and thus, the computational effort, a region proposal
network termed ClusterNet is applied prior to FoveaNet. In
[44], the authors adopted FoveaNet for moving object de-
tection in satellite videos. By integrating sublayers with
different kernel sizes, Heo et al. [26] modify FoveaNet for
moving object detection in oblique images, yielding im-
proved detection results. Similar to FoveaNet, Hartung et
al. [25] employs a spatio-temporal CNN, which takes five
consecutive frames as input to detect moving objects in
WAMI. Canepa et al. [12] propose a spatio-temporal net-
work for real-time detection of small moving objects. For
this, three consecutive frames are passed pairwise through
two separate CNNs rather than using all frames as input. In-
stead of using multiple frames as input, Vella et al. [66] gen-
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erate a background context frame, which is passed together
with the current frame through a sequence of convolutional
layers to predict vehicle locations. An alternative approach
is the usage of conventional background subtraction to gen-
erate region proposals, which are classified by applying a
small CNN to suppress false alarms caused by parallax or
registration artifacts [73]. Li et al. [33] combine conven-
tional moving object detection and appearance based detec-
tion by using the resulting maps from two-frame differenc-
ing and the original RGB image as input for Faster R-CNN
to detect weak moving objects in remote sensing videos. In
[2], the authors apply flux tensor spatio-temporal filtering
to detect vehicles in aerial videos. To reduce the number of
false detections, appearance based detections that are gener-
ated using a deep learning based detection method are fused
with the motion based detections.

2.3. Multiple object tracking in WAMI

In the literature, there exist multiple approaches for
multiple object tracking in WAMI. Perera et al. [43] use
nearest neighbor association to form short tracklets, which
are linked to tracks by applying the Hungarian algorithm.
Reilly et al. [51] adopt the Hungarian algorithm for associ-
ation of detections as well. Saleemi and Shah [55] propose
an alternative tracking approach based on an object-centric
association method, which allows the sharing of detections
among tracks. Keck et al. [27] propose the combination
of three-frame differencing and multiple hypothesis track-
ing for WAMI. Chen and Medioni [13] propose a tracker
based on motion propagation detection association by iter-
atively propagating motion information and optimizing an
objective function at each frame. In [66], the authors apply
a Kalman filter to generate tracks from detections obtained
by a CNN for moving object detection. Pelapur et al. [41]
introduce a track-before-detect approach based on fusing
multiple sources of information about the target and its envi-
ronment. In [42], the authors propose an approach to update
the target appearance model within a tracking scheme com-
prised of a rich feature set and a motion model. Al-Shakarji
et al. [3] propose a two-step data association scheme for
robust multiple object tracking in WAMI. Spatial informa-
tion is used to generate reliable short-term tracklets, which
are linked globally using discriminative features and track-
lets history. Zhou and Maskell [73] propose the usage of a
Gaussian Mixture Probabilistic Hypothesis filter for track-
ing and a regression CNN to predict the positions of moving
objects. However, the reliance solely on moving object de-
tection impedes the handling of slow or stopping vehicles.
Xiao et al. [70] attempt to track stopping vehicles by us-
ing appearance and shape templates. To improve the asso-
ciation, road and spatial constraints are considered, which
is costly in the applied Hungarian algorithm. Prokaj and
Medioni [47] propose to run two trackers in parallel: a de-

tection based tracker for initialization and reacquisition and
a regression tracker based on target appearance templates
to overcome missed detections. Basharat et al. [4] propose
the combination of a data association based tracker and an
appearance based tracker, which is applied when the data
association tracker fails or a track becomes very slow. In
[14], the authors combine a detection based tracker with a
local context tracker to handle missing motion detections.
To avoid the additional complexity of two parallel track-
ers, Spraul et al. [62] applies a classifier based detector
to recover missing motion detections within a multiple hy-
pothesis tracker. Hartung et al. [25] improves the multiple
hypothesis tracker proposed in [62] by replacing the back-
ground subtraction based moving object detection with a
spatio-temporal CNN.

3. Methodology
In the following section, we will describe our proposed

pipeline for persistent tracking in WAMI, which is schemat-
ically given in Figure 1. First, we introduce the applied
appearance based detector and the moving object detector.
Then, we discuss the functional principle of Deep SORT,
which is used as base tracker, and the performed adaptions
to account for the characteristics of WAMI.

3.1. Appearance based object detection

We employ Faster R-CNN [52] with Feature Pyramid
Network (FPN) [35] as appearance based object detector.
Faster R-CNN is comprised of two stages: an initial stage
referred to as Region Proposal Network (RPN) generates
a set of region candidates, which are classified in the sec-
ond stage. Both stages share the convolutional layers of the
base network and use the output of the last convolutional
layer as feature map. The RPN predicts for each feature
map location confidence scores about the presence of an
object, which are often termed objectness scores, and cor-
responding coordinates via bounding box regression. For
this, a set of pre-defined anchor boxes is used as bounding
box reference. Then, a fixed number of region candidates
with the highest objectness scores are passed to the classifi-
cation stage. For each region candidate, corresponding fea-
tures are extracted via Region of Interest (RoI) pooling and
passed through a sequence of fully connected layers, which
outputs confidence scores for each object category and re-
fined coordinates. We attach an FPN to the base network,
which yields semantically rich features due to the additional
top-down pathway. Instead of using a single feature map,
multiple pyramid levels are exploited as feature maps.

To train our appearance based object detector, we use
the xView dataset [31], which comprises images from
WorldView-3 satellites with a Ground Sampling Distance
(GSD) of 0.3 meters per pixel. Hence, the xView dataset ex-
hibits characteristics similar to WAMI. The xView dataset
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Figure 1. Schematic illustration of our proposed tracking pipeline. Multiple consecutive frames are used as input into a spatio-temporal
CNN to detect moving objects. In addition, Faster R-CNN with FPN is applied to further detect slow and stopping vehicles based on
appearance features. The moving object and appearance based detections are combined and a descriptor is extracted for each detection by
using the features of the lowest pyramid level. The detections are used as input for an extended Deep SORT, which follows the popular
tracking-by-detection paradigm.

comprises 60 classes, which can be summarized into 8
meta classes, i.e. fixed-wing aircraft, passenger vehicle,
truck, railway vehicle, maritime vessel, engineering vehi-
cle, building and others. While our appearance based detec-
tor is trained on all 8 meta classes, only the classes passen-
ger vehicle and truck are considered during inference.

In general, detections of small objects such as vehicles
in WAMI are provided by the lowest pyramid level [37, 72].
Hence, we exploit the features of the lowest pyramid level
to compute the appearance descriptor used for data associ-
ation in tracking as shown in Figure 1. For this purpose,
each detection is projected onto the lowest pyramid level
and the corresponding features are extracted via ROI pool-
ing. The output width and height of the ROI pooling is set
to 1, yielding a vector with a fixed-length of 256.

3.2. Motion based object detection

We use the CNN-based approach from Hartung et al.
[25] to detect moving objects in WAMI. Motion based ob-
ject detection processes a stack of five consecutive aligned
images and outputs a heatmap, in which detected objects are
represented by Gaussian peaks. Non-maximum suppres-
sion in a 3 × 3 neighborhood and thresholding is sufficient
to localize the detected objects at peak centers. The cor-
responding heatmap intensity is used as a detection score.
The detector was trained with annotated sequences from the
WPAFB dataset [65].

To compute the visual appearance descriptors needed
for data association in tracking, we use fixed-sized square
bounding boxes centered on each detected peak. Motion

based object detection is executed before appearance based
object detection, which receives the fixed-sized bounding
boxes as additional input and generates descriptors in the
same way as described in the last section. The fixed-sized
bounding boxes are also used in the multiple object tracker
introduced in the next section.

3.3. Multiple object tracking

We follow the popular tracking-by-detection paradigm
and extend Deep SORT [69] for multiple object tracking in
WAMI. Deep SORT uses frame-by-frame data association
between object detections and existing tracks. Each object
detection has to provide a bounding box with confidence
score and a visual appearance descriptor that is employed
to guide data association. New tracks are initialized from
detections, for which there are no associations to existing
tracks in the current frame.

Deep SORT uses a Kalman filter with constant velocity
motion model to estimate center, size, and aspect ratio of
target bounding boxes.

Data association is cast as a linear assignment problem
that can be solved by the Hungarian algorithm [29]. Deep
SORT introduces assignment costs based on motion as well
as on appearance information.

The motion based term uses Mahalanobis distance dM
between predicted bounding box measurements b̃i for track
Ti and bounding box measurements bj for detection Dj :

d2M (i, j) = (bj − b̃i)
TS−1

i (bj − b̃i). (1)

Covariance Si considers estimation uncertainty and is
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provided by the Kalman filter. Gating threshold tM is used
to prevent association of detections that are too far from the
predicted box by requiring dM (i, j) < tM .

The appearance based term uses Cosine distances be-
tween visual appearance descriptors. To this end, an ap-
pearance descriptor aj with ‖aj‖ = 1 is required for each
detection Dj and every track Ti stores a history Hi =
{ai,1, . . . ,ai,N(i)} of appearance descriptors for the (at
most) last N(i) associated detections. Then, the appear-
ance based distance between detection Dj and track Ti is
given by the minimum distance between the appearance de-
scriptor for Dj and the descriptors stored in the history of
track Ti:

dA(i, j) = min{1− aT
j ai,k | ai,k ∈ Hi}. (2)

Gating threshold tA is used to select admissible associations
by requiring dA(i, j) < tA.

Like [69], we combine both distance terms by a weighted
sum to get the final cost for admissible associations between
detections and tracks:

c(i, j) = λdA(i, j)/tA + (1− λ)dM (i, j)/tM . (3)

For this, the weighting coefficient λ ∈ [0, 1] is introduced.
In order to use Deep SORT for WAMI, we propose to

modify track management and to fuse tracking by appear-
ance based detections with tracking by motion based detec-
tions. The idea is to initialize tracks only from motion based
detections and to use appearance based detections only for
persistent tracking.

Track management. Deep SORT distinguishes tracking
modes tentative and confirmed. New tracks start in mode
tentative and need successful detection associations in each
of the first three frames to survive and to switch to mode
confirmed. For tentative tracks data association is done by
intersection-over-union (IoU) between tracking and detec-
tion bounding boxes. While IoU is suitable for high frame
rate video (e.g. 25 Hz), object motion in low frame rate
WAMI (e.g. 1 - 2 Hz) is generally to large to have overlap-
ping bounding boxes between adjacent image frames, thus
preventing track initialization by IoU. Therefore, we use as-
sociation costs from Eq. 3 also for track initialization.

When using both appearance based and motion based de-
tections, we initialize new tracks from unassociated motion
based detections only and require, that the first two associ-
ations must be with motion based detections.

In a final post-processing step, we remove the most re-
cently appended object positions in a track, until the last
true detection assignment is found.

Fusing detections by preprocessing. We propose to
fuse appearance and motion based detections by running a
non-maximum suppression for all detection bounding boxes
giving priority to motion based detections. Thereby, ap-

Figure 2. Image example from our self-acquired WAMI data with
evaluation region E01.

pearance based detections having sufficiently large IoU with
motion based detections are suppressed.

Fusing appearance- and motion based tracking. Dur-
ing tracking, we wish to utilize appearance based detections
only for slow or temporarily stationary objects, i.e. for per-
sistent tracking. Therefore, we adjust association costs be-
tween tracks and appearance based detections:

• Association of appearance based detections is only al-
lowed for slow tracks with maximum velocity vmax.

• To decrease the risk of incorrect persistent tracking as-
sociations in dense traffic, a reduced gating area is used
for appearance based detections. We require that the
Euclidean distance between admissible bounding box
centers must be no greater than position threshold tpos.

In our experiments, we used vmax = 20 pixel/frame and
distance threshold tpos = 10 pixel.

4. Experimental Results
In this section, we first introduce the self-acquired

WAMI dataset, which facilitates the usage of appearance
based object detection. Then, we describe the experimen-
tal setup and present evaluation results in quantitative and
qualitative manner.

4.1. Data

For our experiments, we use a self-acquired WAMI
dataset. Therefore, we took an industrial, off-the-shelf cam-
era that is stabilized and already certified for airborne mis-
sions. This camera is able to acquire images at a resolution
of 150 megapixels at a frame rate of 2 Hz and with three
color channels (Bayer RGB). Each image then has a spa-
tial resolution of 14, 204× 10, 652 pixels. This camera was
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mounted on a helicopter. After reaching the desired altitude
of about 2,200 meters above ground, the helicopter hov-
ered at the same position for about ten minutes to create
one image sequence. Multiple sequences were recorded at
different times of the day and with different terrain proper-
ties such as urban, rural, or mixed scenarios. The GSD is
0.256 meters per pixel and the Common Operational Picture
(COP), i.e. the ground coverage, is 9.88 km2. An example
image of the self-acquired dataset is given in Figure 2.

There are multiple differences compared to already ex-
isting WAMI datasets such as WPAFB [65] or CLIF [64]:
we use RGB color images instead of gray-value images. In
this way, we can utilize color information for image pro-
cessing. As we use a rather new imaging device, we can see
an improved image quality in terms of a reduced noise level
or an increased detail visibility even though we have nearly
the same GSD compared to the WPAFB dataset. We use
only one high-resolution camera instead of multiple cam-
eras arranged in a camera array or matrix. In this way, im-
age mosaicking as it was mandatory in the past [46] is not
needed anymore. This not only speeds up processing as we
can omit this step in the processing pipeline, but also we can
avoid mosaic seam artifacts that affected WAMI data pro-
cessing in the past [27]. One drawback of this approach is
the reduced ground coverage of only about 10 square kilo-
meters, but at the same time the sensor hardware setup is
optimized in size and weight with less than 20 kg. Such a
sensor system can be carried as payload not only by a blimp
but even by larger drones.

4.2. Evaluation

To evaluate the proposed tracking methods, we selected
three regions of interest and performed image alignment via
homography estimation [24] to compensate for camera mo-
tion. After warping with the estimated homographies we
obtained well aligned image sequences, each consisting of
120 frames with dimensions 1536 × 1024 pixels. Simi-
lar to the evaluation procedure commonly used with the
WPAFB dataset [25, 47, 62] we annotated a persistent track-
ing ground truth, that contains all vehicles that move at least
once. An annotated track starts in the frame a vehicle begins
to move and remains alive for the rest of the sequence or un-
til the vehicle leaves the region of interest. Therefore, tracks
may include e.g. vehicles stopping at intersections or park-
ing vehicles, provided that the vehicles had been in motion
before. Annotated tracks contain vehicle position (center of
object), vehicle identifier, and frame number.

Using existing terrain map data [8, 22] or utilizing se-
mantic segmentation in order to segment road regions [71]
are common procedures to identify regions of interest such
as streets, roads, or highways. In the following, we use im-
age masks derived from OpenStreetMap [16] to focus the
evaluation on traffic areas and to avoid annotation ambigui-

Figure 3. From top to bottom, example frames from evaluation re-
gions E01 to E03 with motion based (green) and appearance based
(yellow) object detections after non-maximum suppression giving
priority to motion based detections. Masks (red overlay) derived
from OpenStreetMap [16] are used to focus evaluation on traffic
areas and to avoid annotation ambiguities, e.g. at forested parking
areas.

ties, e.g. at forested parking areas.
Our annotated evaluation sequences are shown in Fig-

ure 3. Region E01 contains many slow, stopping or starting
vehicles posing substantial challenges for persistent track-
ing. Thus, moving object detection alone is clearly not suf-
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ficient to handle Region E01. In Region E02 we have fewer
vehicles needing persistent tracking, but areas in which it is
quite difficult to detect all vehicles due to shadows or oc-
clusions. Region E03 shows a highway situation with fast
vehicles, no need for persistent tracking, but many overtak-
ing maneuvers.

We use the same evaluation metrics as in [25], i.e. preci-
sion, recall, F-score, ID/GT (identity switches per number
of ground truth tracks), and MOTA (multiple object tracking
accuracy [6]). Since the GSD of our evaluation sequences
is very similar to WPAFB data, we use the same distance
threshold of 20 pixels as in the literature [25, 30, 61, 62, 73]
to decide, whether associations between vehicle positions
in ground truth and tracking output yield true or false posi-
tives.

Tracking output from methods using only appearance
based object detections will contain tracks for moving and
for stationary vehicles. In order to evaluate w.r.t persistent
tracking ground truth, we need an additional PT-filtering
(persistent tracking filtering). To describe PT-filtering, we
represent a track with length L as a list of pixel positions
((x, y)1, ..., (x, y)L). In a first filtering step, we strip all
positions from the beginning of a track until sufficient mo-
tion is encountered, i.e. until |(x, y)i+1 − (x, y)i| > t0.
The second step suppresses stationary tracks, i.e. tracks for
which all positions (x, y)i lie inside of an enclosing box
with diagonal d < d0 + d1L. In our experiments, we use
t0 = 3, d0 = 20, and d1 = 0.2. We apply the same PT-
filtering to the output of all evaluated tracking methods as
well as to the ground truth.

We evaluate three variants of our tracking method de-
scribed in Section 3. The first two variants, DSORT-APP
and DSORT-MOT, use appearance based object detections
only. The difference between these two variants is, that
DSORT-APP uses only appearance based association costs
(λ = 1 in Eq. 3) while DSORT-MOT uses only motion
based association costs (λ = 0). The third variant, DSORT-
PT, is our proposed persistent tracking method, which im-
plements the combination of appearance based and motion
based object detections described in Section 3. For data
association, we rely on the visual appearance descriptor
(λ = 1 in Eq. 3).

The evaluation results are shown in Table 1. We see, that
the proposed DSORT-PT achieves the best detection perfor-
mance (F-Score) as well as the best tracking performance
(MOTA, ID/GT) among the three DSORT-variants.

When comparing DSORT-MOT and DSORT-APP, the
weak results for MOTA and ID/GT in Region E03 clearly
show, that a purely motion based association cost (DSORT-
MOT) is not sufficient for low frame rate WAMI. In Re-
gion E03, a combination of low frame rate and large vehicle
speed leads to inter-frame displacements for vehicles that
are comparable to intra-frame vehicle distances and thus,

Figure 4. Examples for motion based (green) and appearance
based (yellow) object detection from region E02. Appearance
based detector is needed to facilitate persistent tracking for ve-
hicles waiting e.g. at intersections (left column). We need motion
based detector to find moving vehicles in challenging situations
like shadows or occlusion by treetops (middle and right column).

do not facilitate proper track initialization in dense traffic.
This is in contrast to multiple object tracking in high frame
rate video, where simple bounding box overlap may provide
good results [9].

On Region E02, DSORT-PT outperforms both DSORT-
MOT and DSORT-APP by a large margin. The reason is
low recall of appearance based object detection for vehi-
cles in shadows and vehicles partly occluded by treetops
(cf. Figure 4). Thus, we conclude, that currently, even with
state-of-the-art detectors, relying on appearance cues only
is no solution for multiple object tracking in WAMI and
motion based cues are still needed. Combining both cues,
proposed tracker DSORT-PT provides favourable results. In
this context, we would like to emphasize the excellent trans-
ferability of CNN-based motion detection that was trained
on the visually very different WPAFB dataset.

We show results for [25] to compare with state-of-the-art
for persistent multiple object tracking in WAMI. Hartung et
al. [25] combined multiple hypothesis tracking with motion
detection and a classifier-based detector. They also inte-
grated vehicle-collision tests, clutter handling, and an ap-
pearance based similarity measure based on Local Binary
Patterns and local variance [15].

Using a much simpler data association, DSORT-PT is
able to achieve superior results for F-Score and MOTA on
all three evaluation regions. We attribute this performance
gain to the advanced appearance based object detector and
a more suitable visual descriptor. The strength of tracking
multiple hypotheses during data association in [25] is the
very low proportion of identity switches on Region E03. On
the other hand, results for E03 and E02 are already quite
good for DSORT-PT, which is much better on the more
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Region Method Precision Recall F-Score ID/GT ↓ MOTA

E01

DSORT-MOT 0.928 0.933 0.930 0.982 0.842
DSORT-APP 0.949 0.931 0.940 0.419 0.873
DSORT-PT 0.949 0.931 0.940 0.389 0.874
Hartung et al. [25] 0.925 0.874 0.899 0.509 0.793

E02

DSORT-MOT 0.858 0.782 0.818 0.690 0.638
DSORT-APP 0.884 0.776 0.827 0.762 0.658
DSORT-PT 0.965 0.988 0.976 0.167 0.949
Hartung et al. [25] 0.948 0.991 0.969 0.143 0.933

E03

DSORT-MOT 0.928 0.976 0.951 2.320 0.792
DSORT-APP 0.976 0.986 0.981 0.150 0.954
DSORT-PT 0.974 0.989 0.981 0.095 0.958
Hartung et al. [25] 0.982 0.974 0.978 0.015 0.956

Table 1. Evaluation results for proposed DSORT-PT (combination of appearance based and motion based object detections), variants
DSORT-APP and DSORT-MOT using appearance based object detections only, and persistent multiple object tracking from [25]. Smaller
values are better for ID/GT (identity switches per number of ground truth tracks).

challenging Region E01.

5. Conclusion
In this paper, we proposed a novel tracking-by-detection

approach DSORT-PT for persistent tracking in WAMI data,
which avoids expensive additional trackers and the usage
of hand-crafted appearance features for local search. To
overcome limitations caused by low image quality of ex-
isting WAMI datasets, our proposed tracker was developed
on self-acquired WAMI data recorded with an industrial
state-of-the-art aerial camera. We demonstrated that the im-
proved image quality facilitates appearance based object de-
tection by CNNs for persistent tracking in WAMI. We also
showed, that a combination of appearance based detection
with motion detection is needed to compensate for missed
detections in image regions with partial occlusion or shad-
ows. Our multiple object tracker is an extension of Deep
SORT with modified track management and data associa-
tion and was able to yield high recall even in such difficult
regions as well as for slow or stopping vehicles. In quantita-
tive experiments, we demonstrated that our tracker achieves
favourable results and outperforms state-of-the-art on our
self-acquired dataset. We also demonstrated the excellent
transferability of CNN-based motion detection, which was
trained on the WPAFB dataset. Regarding future work,
we plan to investigate visual appearance descriptors learned
from re-identification tasks.
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