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Abstract

Shadows, motion parallax, and occlusions pose sig-

nificant challenges to vision tasks in wide area mo-

tion imagery (WAMI) including object identification and

tracking. Although there are many successful shadow

detection approaches that work well in indoor scenes,

close range outdoor scenes, and spaceborne satellite im-

ages, the methods tend to fail in intermediate altitude

aerial WAMI. We propose an automatic shadow mask es-

timation approach using self-supervised learning with-

out manual labeling to provide a large amount of train-

ing data for deep learning-based aerial shadow extrac-

tion. Analytical ground-truth shadow masks are gener-

ated using 3D point clouds combined with known solar

angles. FSDNet, a deep network for shadow detection,

is evaluated on aerial imagery. Preliminary results in-

dicate that training using automated shadow mask self-

supervision improves performance, and opens the door

for developing new deep architectures for shadow detec-

tion and enhancement in WAMI.

1. Introduction

Deep shadows often degrade the performance of

vision-based tracking systems in aerial imagery [33, 37].

As vehicles or pedestrians enter a shadow region where

the sun is occluded by surrounding tall structures like

buildings or trees, objects become difficult to detect

and track. Figure 1 shows examples of complex and

dark shadows in Albuquerque, New Mexico (ABQ)

and Columbia, Missouri (COU) aerial WAMI datasets.

Shadow segmentation can be used to improve ob-

ject tracking by adding resilience to abrupt appearance

changes and occlusions [12]. Shadow mask regions

can be selectively enhanced, in-filled, or combined with

temporal imagery to reduce artifacts and improve visual

quality. The critical step of shadow detection is a chal-

lenging problem for which training machine learning al-

gorithms with supervision at city scale requires labeled

pixel accurate shadow masks for thousands of objects

over different time scales. However, generating such a

large volume of manually ground-truthed shadows is im-

practical, expensive, and error prone. In this paper we

explore automated methods for shadow generation when

prior 3D scene models, like multiview point clouds or

LiDAR data, are available.

Figure 1: Close look of Albuquerque, New Mexico at

7:10 PM UTC (left) and Columbia, Missouri at 8:50 PM

UTC (right) shadow examples. The bottom row shows

analytical automatically labeled shadows in red using

Algorithm 1 for their respective images in the top row.
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A number of successful shadow detection and

shadow removal algorithms have been developed for

close-up [23], indoors [20], surveillance [11], and satel-

lite images [30, 54]. Although these methods can pro-

duce state-of-the-art results for their target domains,

they fail for shadow detection in WAMI image se-

quences due to complexities caused by motion parallax,

camera movement, occlusions, illumination changes,

light filtering, partly transparent objects like vegetation,

the scale of the image, and the small size of the objects

of interest. An example failure case using the recent

Fast Shadow Detection Network (FSDNet) deep learn-

ing method [23], is shown in Figure 2 tested on a subim-

age from the ABQ WAMI dataset. The FSDNet model

was originally trained and performs well on a variety of

natural images, but fails in complex WAMI data.

Figure 2: Example of weak inference using FSDNet

trained on non-WAMI shadow data fails to detect shad-

ows properly applied to a sample subimage from ABQ.

A few studies focus on shadow detection in aerial

imagery and WAMI data, especially traditional meth-

ods [8, 40], while others use shadows for different an-

alytics in aerial imagery without detection as the main

focus [3,4,27,38,42]. Some [2,43,50] specifically con-

sider the shadows to improve detection for vehicle track-

ing. A recent work provides a shadow mask dataset

of aerial imagery [29] that consists of very small low

resolution crops taken from aerial imagery with nadir

views of satellite images. Yet there is no available anno-

tated dataset for shadow detection or shadow removal in

WAMI sequence data at city scale.

Our goal is to investigate the difficulties of shadow

detection specifically in WAMI data compared to ex-

isting non-WAMI datasets and methods. For exam-

ple, extracting a background model that is needed for

some of the traditional methods is impossible in WAMI

data. The natural complexity, scale, parallax, and mov-

ing camera in WAMI make traditional methods too com-

plex for real-time applications such as tracking. Due to

the lack of WAMI shadow data and the inherit difference

between WAMI data and existing shadow datasets, exist-

ing deep convolutional neural networks perform poorly

for shadow detection on WAMI data. To address these

problems and to leverage the power and speed of deep

learning methods, we make the following contributions:

(i) developing an automated shadow mask generation

pipeline using a 3D point cloud, accurate camera ori-

entations, and foundational geospatial data to produce

high volume data for learning-based shadow detection

methods, and (ii) performing a case study to train a deep

learning shadow detection network using the analytic

shadow masks to evaluate the quality of the shadow seg-

mentation. The preliminary results of the shadow mask

generation are promising and show that training with the

analytic shadow masks improves deep neural model per-

formance that is originally trained on non-WAMI data.

2. Related Work

2.1. Deep Learning Methods for Shadow Masks

Deep neural architectures have emerged as a power-

ful learning model and the detection of natural shad-

ows is no exception. Different visual tasks such as

robotic navigation [7], vehicle tracking in WAMI [13,

15, 17, 32, 34], and multiview 3D reconstruction [5] can

use shadow detection to improve performance. Deep

learning-based methods can be accelerated for real-time

low memory footprint applications like robotics and vi-

sual tracking with a tradeoff in performance [21]. Fast

Shadow Detection Network (FSDNet) by Hu et al. [23]

is a state-of-the-art method but does not perform well

on aerial imagery. It is unclear if deep neural networks

perform poorly due to the lack of sufficient city-scale

labeled shadow mask training data, training protocol or

limitations of the architecture.

Semi-supervised approaches can be used with unla-

beled data but usually need a much larger amount of

data [14]. Recent papers contribute a new dataset in ad-

dition to their trained neural network [23,29], which are

also shown to be more accurate than a popular state-of-

the-art algorithm, bidirectional feature pyramid network

with recurrent attention residual modules for shadow de-

tection (BDRAR) [53].

FSDNet [23] was shown to be more accurate and

faster than other state-of-the-art shadow segmentation

methods, and so was chosen to be used in our case study.

FSDNet uses MobileNetV2 trained on ImageNet as a

backbone [36]. After the backbone, a direction-aware

spatial module (DSC) [22, 24] is combined with a detail

enhancement module (DEM). The DEM and DSC find

and concatenate low, mid, and high level features, fol-

lowed by a series of convolution layers operating on the

found features to predict shadow masks. For training,

the only data augmentation used was a horizontal flip.
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The aforementioned deep learning-based shadow de-

tection models are trained with close-up and satellite im-

ages causing the pre-trained weights to fail in detecting

WAMI shadows accurately. These proposed networks

are also designed according to the characteristics of non-

WAMI data and fail to adequately address issues specific

to shadows in urban WAMI data.

Figure 3: Subjective manually labeled area of down-

town ABQ, New Mexico at 7:10 PM UTC. Structures

are complicated and cast many umbra and penumbra

shadows. This crop took about 2 hours to label using

the Computer Vision Annotation Tool (CVAT) [39] and

represents just 1.3% of one image at 6600×4400 pixels.

2.2. Other Shadow Detection Methods

Non-deep learning methods often use photometric

models, background subtraction or change detection.

For background subtraction, pixels can be classified as

background, motion, or shadow [20, 26, 46]. How-

ever, this method does not work when the camera pose

changes every frame unless egomotion is accounted

for. Statistical distributions including Gaussian mix-

ture models (GMM) can be used as well [26]. Mul-

tispectral approaches such as the near-infrared band in

Landsat imagery and channel ratios can be used to pre-

dict shadow locations of clouds [1, 54], but not build-

ings due to resolution. A guided filter, tricolor attenua-

tion model, intensity information, and infilling can pro-

duce good masks [10]. Decision trees can also be used

to achieve impressive results, but the dataset used was

not made publicly available [8]. Additional methods

for shadow detection include histogram thresholding, in-

variant color models, object segmentation, geometrical

methods, and physics-based methods [1, 49].

Due to the unique characteristics of WAMI data,

these methods either fail or perform very poorly in aerial

Table 1: Popular shadow detection datasets.

Dataset # Images Sizes

UCF [52] 245 Various

UIUC [18] 108 Various

SBU [44] 4727 285×177 to 800×600

ISTD [45] 1870 640×480

AISD [29] 514 256×256 to 1688×1688

CUHK [23] 10,500 115×107 to 4800×3872

Our WAMI 137,180 Tiles 660×440

urban scenes. It is difficult to develop a traditional

method that is both fast and accurate for WAMI data

due to its complexity. These other methods may also

have high time complexity or energy use on large im-

agery which is often critical for realtime onboard track-

ing. Therefore, learning-based approaches should be

evaluated for shadow detection in WAMI to have em-

bedded real-time, or near real-time performance.

2.3. Datasets for General Shadow Detection

Training datasets with a variety of images and cor-

responding labeled shadow masks are rare, and have

been a bottleneck in developing deep neural models for

shadow detection. A few, exemplar datasets like the

University of Central Florida (UCF) [52] and University

of Illinois Urbana-Champaign (UIUC) [18] although ex-

tensively used have only a few hundred labeled im-

ages. As interest grew in this field, more publications re-

leased datasets with labeled shadows for larger number

of images: Stony Brook University (SBU) [44], Image

Shadow Triplets (ISTD) [45], Aerial Imagery dataset for

Shadow Detection (AISD) [29], and Chinese University

of Hong Kong (CUHK) [23], summarized in Table 1.

UCF and UIUC have a relatively small number of im-

ages [18, 52], for which SBU created a much larger col-

lection with 4727 images [44]. The images in UCF,

UIUC, and SBU usually focus on a single object plus

shadow and not a scene. AISD was created for shad-

ows on a larger scale, like a city, but the images are

all orthorectified satellite images, offering no oblique

views [29]. CUHK is a very recent dataset that features

many close-up scenes, often complex but are general in

its theme and not guaranteed to be urban [23].

Although the lack of large shadow detection datasets

with ground-truth has been addressed by several groups,

they are often application specific [18,23,29,44,45,52].

This work focuses on aerial WAMI sequence data with

oblique views, and training using these existing datasets

was insufficient to detect shadows in WAMI. Manual

ground-truthing requires too much effort due to compli-

cated structures as shown in Figure 3. As an alternative
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to complex and time-consuming methods for generat-

ing WAMI shadow mask training data, there is a need to

efficiently create labeled shadow segmentations in real

aerial imagery that can be used to train and validate

learning-based shadow detection algorithms.

Synthetic Scene Generation for Labeled Shadow

Maps Synthetic data generation has advantages over

other traditional datasets. Since it offers a fully con-

trolled environment, 3D scene objects and lighting can

be set explicitly, allowing generation of photorealistic

rendering with soft and hard shadows relatively easily.

Several recent methods exist for synthetic data genera-

tion [25, 28, 51], where most of the data generated fea-

ture shadows placed in small scenes and not city-scale.

Recent approaches [9, 31] produce synthetic city-scale

simulations for testing computer vision algorithms.

In this paper we take a hybrid approach combining

real urban 3D point clouds with analytic shadows for

automatic self-supervised (noisy) labels to provide more

realistic training data that can be scaled geospatially.

3. Geometric Shadow Masks for WAMI

3.1. Automatic Shadow Mask Generation

Our analytical geometric shadow mask algorithm uti-

lizes a dense 3D point cloud reconstructed from city-

scale (WAMI) sequences, sun position, and precise cam-

era poses and camera intrinsics to automatically esti-

mate shadows to provide self-supervised training data.

The dense 3D point clouds are estimated using Yao et

al. [48], and the bundle adjusted camera poses for each

view use the BA4S method by Aliakbarpour et al. [6].

The sun location is calculated from metadata ac-

quired during the data collect containing the precise time

and GPS location of the scene.1 Solar position is de-

scribed by two angles: azimuth A as an angle measured

clockwise with respect to North, and elevation α as the

vertical angle between the sun and the horizon as shown

in Figure 4 and given in Eq. (1) and (2):

α = sin−1 [sin δ sinφ+ cos δ cosφ cos(HRA)] (1)

A = cos−1

[

sin δ cosφ− cos δ sinφ cos(HRA)

cosα

]

(2)

where δ is the latitude, φ the declination angle, and HRA
is the hour angle converted from local solar time [35].

Hour angle is based on the Earth’s 15° rotation per hour

away from solar noon and is negative in the morning,

positive in the afternoon, and zero at solar noon.

1https://github.com/CIVA-Lab/solar-position-calculator

Figure 4: Azimuth and elevation angles for measuring

solar position with respect to local north.

Our Projected Geometric Shadow2 algorithm (Algo-

rithm 1) is based on the classical two-pass shadow map

technique from computer graphics [47]. Depth maps en-

code the distance to the nearest visible fragment for a

view into a two-dimensional array initialized to infinity.

The first pass determines per-fragment solar occlusion

by rendering the point cloud orthographically to a depth

buffer (sun map) as shown in Figure 5a whose coordi-

nate system L is aligned to the solar angle. The second

pass renders a depth map for the point cloud from a per-

spective precisely matched to an original view by the

complete camera matrix (current view) in Eq. (3):

C = K [R|t] (3)

where K contains the camera intrinsics including focal

length, principal point, and optional skew, R is the cam-

era orientation, and t the translation of the camera in R
by the convention of [19]. This second pass first tests

if a fragment is visible in the current view C using a

depth map aligned to the original image. If the fragment

is not occluded in that view, its position is found in L
and tested against the sun map to determine whether or

not the visible fragment is in shadow. This final depth

test utilizes a scene dependent bias parameter to reduce

noise resulting from self-shadowing and the limited pre-

cision of the depth buffers in scene units (default 0.005).

The point cloud is rendered as voxels to depth and mask

fragments using the recursive method described in [16].

3.2. Post­processing of Shadow Masks

After shadow masks are generated using the ana-

lytical approach given in Section 3.1, we apply post-

processing steps to improve the quality of the masks.

The quality of the generated shadow masks is directly

affected by the quality of the 3D point cloud. Holes and

noise in the 3D point cloud corresponds to the holes and

2https://github.com/CIVA-Lab/depthshadowmask
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(a) Solar depth map (2K × 2K) from L aligned to the solar vector.

(b) Point cloud rendered from view C matched to frame 775.

(c) Visible depth map for view C used to compute shadow mask.

Figure 5: Two pass projected geometric shadow algo-

rithm. (a) Solar depth map resulting from Pass 1 of Al-

gorithm 1 using a rotated orthographic projection of the

a priori 3D point cloud. (b) ABQ 3D point cloud aligned

with view 775. (c) Non-shadowed depth from Eq. 3 used

in Pass 2 to compute the shadow mask.

Algorithm 1: Projected Geometric Shadows

(PGS) – Depth map-based analytical shadow

mask generation

Input: Array of 3D Points, Camera matrix

C = K[R|t], Depth bias, Orthographic

projection matrix L aligned with solar

vector

Output: Shadow Mask

/* Pass 1: Generate an orthographic

depth map (sun map) of the entire

scene aligned with solar vector */

for each 3D point p in point cloud do
pl ← L · p; // project p to solar view

if pl.z < sun map[pl.xy] then
sun map[pl.xy]← pl.z;

end

end

/* Pass 2: Determine solar occlusion of

all visible points */

for each 3D point p in point cloud do
pv ← C · p // project p to view

pv.xy ← pv.xy/pv.z; // perspective

// if point is visible in C

if pv.z < depth[pv.xy] then
depth[pv.xy]← pv.z // update depth

pl ← L · p // project p into L

if sun map[pl.xy] < pl.z − bias then
mask[pv.xy]← shadow;

end

end

end

noise in the shadow masks. Since the 3D point cloud is

not perfect, the predicted shadow masks also have im-

perfections. Some examples of problems include very

small shadows of small objects, shadows of short trees

and shrubs, holes in buildings that do not have suffi-

ciently dense 3D points, and other errors caused by miss-

ing points in the point cloud.

For filtering and improvement of the generated

masks, two steps of morphological operations on the

generated masks followed by smoothing are performed.

To remove the small, noisy shadows in the masks, we

apply morphology operations on the predicted mask to

remove the small objects. This operation calculates the

size of each connected component in the mask and re-

moves the components that have a smaller size than the

threshold. This threshold is selected empirically as 5.

Following the removal of small components, to fill the

holes in the buildings caused by missing points in the
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Figure 6: Automatic shadow mask estimation example. Left to right: An original image from the ABQ sequence, the

geometry-based automatically generated (synthetic) shadow masks, and after post-processing. First row shows the full

image resolution, and the second row shows a zoomed region of interest (yellow arrows in top row).

3D point cloud, a morphological binary closing is ap-

plied to the processed masks. The closing operator per-

forms dilation followed by erosion to close the gaps in

the masks of the connected components. The structure

element used in the closing operator is a 20 by 20 ker-

nel, which is also determined experimentally. Finally,

processed masks are smoothed by using a median filter

of size 11x11, chosen empirically.

The post-processing steps applied on the generated

shadow masks make them more suitable for training and

evaluation purposes, emphasizing the shadows of taller

structures, like buildings and trees, which are more im-

portant for a model to learn for shadow detection in

WAMI data. Such shadows greatly affect image process-

ing and computer vision tasks for WAMI such as detec-

tion, tracking, and 3D visualization [33,37]. An example

of an image from ABQ and a crop, corresponding gen-

erated shadow masks, and post-processed shadow masks

are given in Figure 6.

4. Case Study Using FSDNet

4.1. Datasets for Aerial Shadow Detection

Two large city-scale aerial image sequences, Al-

buquerque (ABQ) and Columbia (COU), provided by

Transparent Sky [41] were used. Each WAMI frame

is 6600×4400 pixels. The high-resolution images were

captured using a manned aircraft flying a circular path

around the downtown area of each city. Figure 7 shows

∼72% of the image sequence that was used for training

(red dots), ∼9% for validation (yellow dots), and ∼19%

for testing (green dots) the deep learning shadow detec-

tion network. Table 2 shows the total number of images

and cropped tiles used for training, validation, and test-

ing using aerial WAMI. To train FSDNet, overlapping

image tiles were cropped from each image in the train-

ing, validation, and test image sets. In each image, 361

overlapping cropped tiles each of size 660×440 with

the associated synthetically generated analytic shadow

masks were used as labeled ground-truth for training.

This provided a total of 137,180 image tiles.

Table 2: Training, validation, and testing datasets. Cam-

era poses are full circular orbits around the downtown

area of Albuquerque, NM (ABQ), and Columbia, MO

(COU). Image sizes: 6600×4400. Total tiles: 137,180.

Dataset #Images
#Train.

Images

#Valid.

Images

#Test

Images

ABQ 215 155 20 40

COU 165 120 15 30

Tiles 137,180 99,275 12,635 25,270

4.2. Shadow Detection Using FSDNet

We use a recent deep learning network for shadow

detection, FSDNet [23], that we retrained using trans-

fer learning with aerial WAMI images and the self-

supervised shadow masks described in the next section.

First, a FSDNet model was trained using CUHK, which

is a non-WAMI dataset, and was used in the original
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Figure 7: Visualization of the camera flight path for the

ABQ WAMI city-scale dataset. Red dots indicate train-

ing views, yellow dots indicate validation views, and

green dots indicate the testing views.

FSDNet paper [23]. This baseline model was trained

for 50,000 iterations, starting with ImageNet weights

for the MobileNetV2 [36] backbone, and we refer to

it as FSDNet-nonWAMI. Using transfer learning with

FSDNet-nonWAMI weights, we trained an additional

50,000 iterations (about 12 epochs), using the aforemen-

tioned WAMI data and shadow masks. The training is

done on an Nvidia Quadro RTX 8000 GPU with a batch

size of 64. The loss function is L1 (Mean Absolute Er-

ror) with stochastic gradient descent optimization.

Qualitative assessment of the preliminary FSDNet

shadow detection results on aerial imagery is shown in

Figure 8 for sample regions of interest comparing the

performance of FSDNet-nonWAMI to FSDNet-WAMI.

FSDNet-nonWAMI model contains a lot of false posi-

tive shadows in the predicted mask for WAMI images,

due to the differences between non-WAMI and WAMI

data, like scale, angle, and the complexity of the shad-

ows. Significant improvement in accuracy, both area and

shape of the shadow, using the self-supervised FSDNet-

WAMI shadow detection network is clearly evident.

However, shadow detection accuracy using FSDNet-

WAMI still needs further improvement.

Quantitative accuracy of the detected shadows using

FSDNet is compared to the analytic shadows using av-

erage Dice and average mean squared error (AMSE),

Average Dice =
1

N

N−1
∑

i=0

2|Xi ∩ Yi|

|Xi|+ |Yi|
(4)

AMSE =
1

N

N−1
∑

i=0





1

D

D−1
∑

j=0

(Xij − Yij)
2



 (5)

where Xi represents the predicted shadow mask of the

ith test image and Yi represents the analytic ground-

truth shadow mask of the ith test image. In Eq (4), the

intersection over union of all N test images are aver-

aged. In Eq (5), ij represents the jth pixel of the corre-

sponding ith test image. AMSE is calculated as pixel-

wise squared error between the predicted real valued and

analytically generated masks, then averaged over the N
test images. MSE is widely used to evaluate the error in

model predictions across a range of applications, while

the Dice similarity coefficient is commonly used in bi-

nary segmentation and classification evaluation.

The AMSE and average Dice quantitative evaluation

of shadow detection accuracy using the testing data in

Table 3 shows the significant improvement in perfor-

mance of FSDNet with self-supervision. The test set

uses images cropped from the ABQ and COU datasets

(see Table 2). While the AMSE is low, it is dominated

by the background non-shadow pixels and consequently,

the average Dice values are also very low. The perfor-

mance of FSDNet-WAMI can be further improved by in-

creasing the number of training epochs, additional data

augmentation, using WAMI images from different times

of day with shadows of different length, and using im-

proved photorealistic ray tracing and global illumination

for hard and soft shadow mask training data.

Table 3: Test data results for average MSE error and av-

erage Dice similarity coefficient values on the inferences

of the retrained FSDNet-WAMI model on crops of test

images. Total of 137,180 tiles and tile size: 660×440.

Model Avg. MSE ↓ Avg. Dice ↑
FSDNet-nonWAMI 0.29 0.192

FSDNet-WAMI 0.07 0.376

5. Conclusions

We developed the analytic Projected Geometric

Shadows algorithm for self-supervised learning to de-

tect shadows in aerial urban imagery. This avoids the

need for manual labeling of thousands of shadow re-

gions in city-scale WAMI data. The proposed algorithm

requires an accurate 3D point cloud, precise time and

GPS flight metadata to calculate the solar position, bun-

dle adjusted camera poses, and intrinsics to automati-

cally generate the shadow segmentation masks in aerial

imagery that closely match the real image shadows. The

analytic shadows can be noisy but are of sufficient accu-

racy to improve the performance of deep learning mod-

els. The shadow detection accuracy of FSDNet nearly

doubled in terms of the Dice overlap ratio from 19.2% to

37.6%, when trained with self-supervised analytic aerial

shadows from ABQ and COU WAMI datasets. The
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Original image crop Analytic shadow mask FSDNet-nonWAMI FSDNet-WAMI

Figure 8: Performance of FSDNet for shadow detection with self-supervision. Crops from ABQ showing original

image, analytic post-processed shadow mask, inference using FSDNet-nonWAMImodel and FSDNet-WAMI model.

accuracy and generalization capability of FSDNet can

be improved further by: modifying the training proto-

cols, selecting alternate hyperparameters, utilizing data

augmentation, supplementing with aerial imagery from

additional cities, improving the accuracy of 3D point

clouds, applying adversarial networks, using photoreal-

istic synthetic scenes and shadows for greater variation

in the training data, or improving the analytic shadow

algorithm. The results show that current state-of-the-

art shadow detection deep networks trained for different

applications are not sufficiently accurate for shadow de-

tection in aerial imagery, even when trained with WAMI

data. This highlights the need to enhance current deep

architectures (like the FSDNet backbone) or develop

new deep neural models to detect shadows in aerial im-

agery due to its unique characteristics.
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