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Abstract

In this paper, we present JanusNet, an efficient CNN
model that can perform online background subtraction and
robustly detect moving targets using resource-constrained
computational hardware on-board unmanned aerial vehi-
cles (UAVs). Most of the existing work on background sub-
traction either assume that the camera is stationary or make
limiting assumptions about the motion of the camera, the
structure of the scene under observation, or the apparent
motion of the background in video. JanusNet does not have
these limitations and therefore, is applicable to a variety of
UAV applications. JanusNet learns to extract and combine
motion and appearance features to separate background
and foreground to generate accurate pixel-wise masks of
the moving objects. The network is trained using a simu-
lated video dataset (generated using Unreal Engine 4) with
ground-truth labels. Results on UCF Aerial and Kaggle
Drone videos datasets show that the learned model trans-
fers well to real UAV videos and can robustly detect moving
targets in a wide variety of scenarios. Moreover, experi-
ments on CDNet dataset demonstrate that even without ex-
plicitly assuming that the camera is stationary, the perfor-
mance of JanusNet is comparable to traditional background
subtraction methods.

Keywords: Background subtraction, foreground seg-
mentation, moving objects detection, optical flow, UAV,
neural network, CNN, video surveillance, tracking.

1. Introduction
The first step in many video processing pipelines is sep-

aration of foreground objects from the background. This is
typically done through background subtraction algorithms
that attempt to identify the most relevant parts of the video
stream by online learning and modeling the characteristics
of the background and finding pixels that do not conform to
the learned model. As one of the most critical components
of automated visual surveillance systems, background sep-
aration problem has been extensively studied in computer
vision literature [14]. Many approaches have been pre-

Figure 1. Example on UCF Aerial Action Dataset [2]. The person
in the video is walking while the car is stationary.

sented to solve its technical challenges, such as illumination
changes, dynamic backgrounds (e.g., fluttering leaves, wav-
ing flags, water fountains, etc.), camera jitters, and shadows,
etc. [6, 40, 42, 50, 51, 4].

A large portion of video data generated these days is cap-
tured by mobile sensors, e.g., handheld smart phones, wear-
able devices, and sensors mounted on small UAVs. How-
ever, most of the existing work in background subtraction
has focused on the videos from static and PTZ cameras
used in video surveillance. While some approaches have
also been proposed to specifically handle this use case (See
Section 2 for a brief overview and [7] for detailed review of
the literature in this area), detection of moving objects from
moving platforms, especially UAVs, remains a challenging
problem. Here, we propose JanusNet, a novel deep network
that is capable of efficiently detecting small moving targets
from UAVs. JanusNet learns to extract and combine dense
optical flow and generate a coarse foreground attention map
using high-pass filters. Then JanusNet combines optical
flow, foreground attention maps and appearance features to
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separate foreground motion from background motion and to
generate accurate pixel-wise masks of the moving objects
in the scene. We demonstrate the performance of our model
using quantitative and qualitative results on both real-world
and synthetic datasets. The organization of the paper is as
follows. In Section 2, we present a brief survey of the re-
lated work and compare the key aspects of proposed model
with the state-of-the-art. In Section 3, we detail the Janus-
Net architecture, its components, and training processes. In
Section 4, we present quantitative and qualitative results to
validate our claims. A brief discussion of different aspects
of the model and results is provided in Section 5 and the
paper is concluded in Section 6.

2. Related Work
A large number of background subtraction methods have

been proposed in the literature [7, 14]. Earlier methods at-
tempted to distinguish background and foreground pixels
by using simple statistical measures, such as the paramet-
ric Gaussian Mixture Models [40, 8], nonparametric ker-
nel density models [39], and local binary patterns models
[18]. In the last decade, low rank subspace learning models
[16, 49, 34, 17] have also gain popularity. By assuming that
the backgrounds have a low-rank structure and that the fore-
grounds are sparse, these methods exploit the mathemati-
cal framework of matrix completion for highly efficient and
effective background subtraction in a variety of situations.
More recently, deep learning based methods have been
shown to outperform the traditional approaches on a vari-
ety of benchmark datasets, such as CDNet14 [44]. These
methods [5, 3, 23] use supervised learning approaches and
exploit labeled training datasets to learn to produce fore-
ground segmentation masks for each video frame.

Most of the above approaches assume that the camera
is static. Even the approaches that attempt to tackle sen-
sor motion either impose restrictions on the sensor mo-
tion types, e.g., jitter, panning cameras, or the extent of
the camera motion, e.g., a handheld camera mostly view-
ing a small area of a 3D scene while moving freely. This
holds true even for some of the most recent algorithms
that employ subspace learning [47, 28, 13] or modern deep
learning techniques for background subtraction [24, 26].
Therefore, these algorithms cannot be directly applied to
videos from sensors on-board mobile platforms, such as
UAVs, which cover large scene regions with rapidly chang-
ing background. In addition to handling sensor motion,
background subtraction for UAVs face two additional chal-
lenges. First, foreground objects in UAV videos, such as
pedestrians, are typically very small (less than 10× 10 pix-
els) compared to the size of video frame and must be dis-
ambiguated from clutter. Second, many UAVs and mobile
platforms must operate within size, weight, and power bud-
gets, and therefore have limited onboard computational re-

sources.
The methods that do attempt to solve the background

subtraction problem for mobile sensors with rapidly chang-
ing background often borrow the basic methodology from
algorithms for static cameras [36, 19]. These methods first
create new representations that cancel the effect of platform
motion, e.g., background mosaics (generated by stitching
imagery from subsequent frames) [46, 43] or explicit 3D
models [31]. The background subtraction techniques bor-
rowed from static camera domain are then applied to these
new representations. These approaches are not only time
complex but are also error prone as minor errors in align-
ment are propagated and compounded over time. Some re-
cent approaches in this class of algorithms attempt to tackle
this complexity by limiting the background model size close
to the image size, e.g., by using only the recent few images
to create the model [27, 48]. All of these techniques still
make additional assumptions about the sensor motion or the
scene structure, such as, high altitude sensors, largely pla-
nar scenes (for mosaicking, plane-parallax models, etc.) to
create these representations that may not necessarily hold in
general scenarios.

Almost all the approaches discussed above mainly use
image features to discriminate foreground pixels from back-
ground. Another class of algorithms exploit motion fea-
tures, such as key point trajectories and optical flow to
make this determination [21, 38, 45, 29, 30]. These ap-
proaches use a variety of constraints (geometric, low-rank
background motion, etc.) to separate the motion vectors of
independently moving objects from those generated by the
scene background. The advantage of these approaches is
that they do not need to create explicit background mod-
els and in many cases do not make limiting assumptions
about the scene structure or the motion of the camera. How-
ever, without appearance and context features, these meth-
ods struggle to determine object boundaries and reject back-
ground motions such as waving trees and shadows. In addi-
tion, these approaches suffer from the difficulties of reliably
detecting features and generating long-term feature trajec-
tories or robust extraction of dense optical flow from videos
in real time.

The proposed JanusNet model addresses the above-
mentioned limitations of the state-of-the-art while also
maintaining some of their most advantageous attributes. As
opposed to many existing methods, the network does not
make limiting assumptions about the sensor motion or the
structure of the scene and is capable of operating in a va-
riety of scenarios. It also does not require creation and
maintenance of explicit background models, a memory and
time-complex step. It leverages recent advances in deep
learning techniques for robust estimation of dense optical
flow from videos. This enables JanusNet to exploit both
motion (dense optical flow) and image attributes (deep fea-
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tures) to identify independently moving objects from mov-
ing camera videos. The joint modeling of motion and ap-
pearance features for foreground segmentation has also re-
cently been suggested in [9, 20, 33], etc. However, most of
these methods simply concatenate raw optical flow features
and image features and pass them to convolutional layers
that generate foreground segmentation. Our experiments
have shown that while such models perform well on large
and known objects, they do not perform well on previously
unseen scenes/objects or disambiguating small objects as in
the case of UAV videos. JanusNet tackles these challenges
by using high-pass filters to generate multi-scale foreground
attention maps and using a context layer that learns to com-
bine these attention maps with raw optical flow, deep ap-
pearance features to improve results.

3. Approach
Figure 2 summarizes the JanusNet architecture. Given

two adjacent frames of a video, a sub-network first roughly
estimates a global parametric motion between the two
frames and produces roughly aligned frames. The two
roughly aligned frames are used by the optical flow sub-
network (that includes feature pyramid, warping, correla-
tion, and flow estimation) similar to PWC-Net [41] to gen-
erate dense optical flow from low to high resolutions. The
resulting estimated optical flow is then passed through mul-
tiple high-pass filters to highlight pixels with motions dif-
ferent from their surroundings. Finally, the context layer
combines these highlighted pixels with image features, op-
tical flow, as well as foreground priors (up-sampled fore-
ground estimation from lower resolution, at the lowest res-
olution, no foreground priors are not used) to fine tune the
results based on semantic and contextual information. The
network is trained end-to-end using two training goals, one
for optical flow generation, and another for foreground es-
timation. The remaining part of this section explains the
designs and ideas behind each of these sub-networks, and
details the training procedures.

3.1. Rough Global Motion Estimation

When the sensor is moving, the two adjacent video
frames are not aligned with each other. Though the un-
aligned frames can be used directly for optical flow estima-
tion and subsequent foreground separation, the large global
motion between the frames may sometimes lead to poor op-
tical flow performance, which in turn affects the quality of
foreground. Therefore, we use a global motion estimator
to roughly align the two frames to reduce global motion.
Our global motion estimator follows a similar design as the
deep homography model [10] except that our model ingests
higher resolution inputs and uses fewer layers and channels
for the computational efficiency. In particular, the network
uses 10 layers of convolutional layers with stride of 2 in ev-

Method Resolution Time/frame
SIFT + RANSAC 480x480 37.4ms
ORB + RANSAC 480x480 23.2ms
Original DeepH resize to 128x128 7.5ms
Ours, small DeepH resize to 320x320 5.2ms

Table 1. Homography Transform Speed Comparison. SIFT and
ORB are tested on CPU. Original DeepH and our customized
DeepH are tested on GTX1070, image resize time included.

ery other layer. The first 4 layers have 32, 64, 96, and 128
channels respectively whereas the remaining 6 layers each
have 128 channels. Finally the network uses a linear layer to
output the movement of 4 predefined corners of the image
pairs to compute homography.

Compared with SIFT [25] + RANSAC, ORB [35] +
RANSAC, a deep homography estimator is much faster but
not as accurate (Table 1). However, in contrast to many ex-
isting approaches that assume a specific motion model and
then use it as the basis of motion compensation and model
generation, the type of motion model used (affine, homog-
raphy, etc.) or the accuracy of estimation is not important
here. Since the goal of this global motion estimation and
alignment step is simply to reduce the effect of global mo-
tion on optical flow quality rather than completely eliminate
the ego-motion from imagery, a rough alignment is suffi-
cient for the model to produce accurate foreground segmen-
tation (See Section 4).

3.2. Optical Flow Sub-Network

The Optical Flow Sub-Network in JanusNet consists of
feature pyramid extraction, warping, correlation, and flow
estimation layers. JanusNet follows a similar design as
PWC-Net [41] but trades accuracy for speed as discussed
below:

3.2.1 Feature Pyramid Extraction Layer
For feature pyramid extraction, the network uses L-level
pyramids consisting of convolutional layers (with input im-
ages at 0th level and the the deepest layer at the Lth level)
to extract image features at different resolutions. To extract
features from input image It at level l: Cl

t , the network uses
ResNet-style convolutional layers to down-sample Cl−1

t by
2. In our experiments, we used L = 4 levels with channels
16, 32, 64, and 96 respectively.

3.2.2 Feature Warping Layer
For each level, the network warps features of Image It−1

towards Image It using the up-sampled optical flow from
(l + 1)th level Ol+1:

Cl
w(x) = Cl

t−1(x+ up(Ol+1)(x)) (1)

where x is the pixel position, up(Ol+1)(x) is the upsampled
optical flow from the (l + 1)th level at position x.
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Figure 2. Network Structure

3.2.3 Feature Correlation Layer
Given the features of the warped image at the lth level:
Cl

w, the network calculates correlation scores for each of
its pixel with its corresponding neighboring pixels in Cl

t .
We define the correlation score as:

corrl(x1, x2) =
1

N l
(Cl

t(x1))
T (Cl

w(x2)) (2)

where x1, x2 are pixel positions, T is the transpose operator,
N l is the number of channels for lth-level feature pyramid.
Calculating correlation between all possible combinations
of pixel pairs x1, x2 is computationally very expensive. As
a trade-off, for each pixel x1 in image features Cl

w, the net-
work only computes correlations of pixel pairs within a d×d
square region centered at x1. The time complexity of this
module is O(d2 × H × W × N), where H,W are the di-
mensions of Cl. At low levels, where H and W are large,
the correlation can still be a bottleneck depending on the
available computational power on-board the platform. In
our implementation, the network only implements correla-
tion layers for levels l ≥ 2 and uses the search region of
d = 5. Because of these optimizations, JanusNet relies
on the rough global motion estimation and initial warping
(Section 3.1) to tackle large global motions and to improve
optical flow performance in resource constrained environ-
ments.

3.2.4 Flow Estimation Layer
The Flow Estimation Layer at level l consists of ResNet-
style convolutional layers that take concatenated correla-

tion corrl, features of image Cl
t , and up-sampled optical

flow up(Ol+1) as inputs to output estimated optical flow
Ol. Compared to PWC-Net, JanusNet uses a reduced num-
ber of layers (4 layers with channels 64, 32, 32, 2), where
the 2 channels of the final layer correspond to horizontal
and vertical pixel movements.

3.3. Foreground Attention Maps using High-pass
Filter Bank

As mentioned earlier, JanusNet exploits the optical flow
of the scene from the flow estimation layer to separate fore-
ground and background motions. As opposed to existing
methods discussed in Section 2 that use explicit motion fac-
torization or subspace modeling for this task, JanusNet uses
a convolutional model (learned in a supervised fashion) to
identify independently moving objects. As we will show
in Section 4, learning such a model directly from raw op-
tical flow is extremely challenging given the large number
of variables (scene structure, viewing geometry, etc.) that
the output depends upon. Therefore, to guide this learn-
ing, JanusNet employs a bank of high-pass filters that act as
a focus-of-attention mechanism and highlight the regions
that are more likely to contain independently moving ob-
jects, i.e., objects that exhibit different motion from their
surroundings:

ml
k = Ol −Avg(Ol, slk) (3)

where ml
k is the filtered optical flow at level l from high-

pass filter k, and Avg(Ol, slk) is an average filter, with ker-
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Figure 3. Output of two high-pass filters with different values sk

nel size slk at level l. Different values of slk provide attention
to objects at different scale (Figure 3). In our experiments,
we have found that k = 2 with with sl1 = 2l+1 + 1 and
sl2 = 2l+3 + 1 provide sufficient coverage and accuracy for
both large and small objects, though additional filters can
easily be added without any significant loss of performance.

The network uses the output of each filters, ml
k to gener-

ate attention maps (at different scales) as follows:

f l
k(x) = min(1.0,

||ml
k(x)||22
v

) (4)

||ml
k(x)||22 is the magnitude of the filtered optical flow ml

k,
f l
k is the foreground attention map of filter k at level l, v

is the minimum motion of a pixel x to consider it as a
moving pixel. If ||ml

k(x)||22 ≥ v, then f l
k(x) = 1.0, else

f l
k(x) < 1.0. In our experiments, we used v = 0.5, i.e.,

the motion vectors smaller than 0.5 pixels at pyramid level
1 (corresponds to 1 pixel at image resolution) between 2
frames. For all practical purposes, motions smaller than 1
pixels between two frames can be discarded without affect-
ing the performance of the model.

3.4. Context Layer

The Context Layer produces the pixel-wise foreground
mask by combining information from different sources that
include: i) image features from video frames, ii) raw optical
flow, iii) foreground attention maps of different scales from
high-pass filter bank, and iv) foreground priors in the form
of output from lower resolution:

fgl = convs(Cl
t, corr

l, Ol, F1, F2, . . . , Fk) (5)

Fk = tanh(up(fgl+1)× f l
k) (6)

where fgl is the foreground segmentation at lth level,
convs(.) represents convolutional layers. In Eq 6, we multi-
ply up(fgl+1) with foreground attention map f l to exclude

motionless pixels. tanh is used to normalize the input of
the CNN to range between -1 to 1.

Using supervised training, the context layer learns to
combine and exploit semantics from images, motion cues
from optical flow, attention maps, and priors from lower
resolutions to determine object boundaries, remove shad-
ows and spurious background objects, and identify pixels in
the image belonging to independently moving objects.

3.5. Loss Function

The model is trained using two training goals: optical
flow and foreground segmentation. Optical flow is trained
with mean squared loss for each level with weights αl; fore-
ground segmentation is trained with binary cross entropy
loss with the same weights αl. In our experiments, we set
α to be (1.6, 0.4, 0.2, 0.1) from level l = 1 to l = 4 respec-
tively.

Lflow =
∑
l

(αl ×MSE(Ol, Ol
gt)) (7)

Lfg =
∑
l

(αl ×BCE(sigmoid(fgl), fglgt)) (8)

3.6. Janus Synthetic Video Dataset

Due to lack of annotated datasets for background sub-
traction from moving camera, to train and validate the pro-
posed model, we created Janus Dataset, a dataset of syn-
thetic videos created in Unreal4 game engine. The dataset
includes city, forest, beach, and castle scenes. We used var-
ious 3D models with animations and applied simple AIs to
let them move randomly and intermittently. We set the cam-
era above the ground and let it move and rotate randomly
between frames. For each environment, we captured 10 to
20 videos, each with 200 frames, and each having differ-
ent lighting effects, object positions, etc. We then used the
Airsim package [37] to generate the ground truth segmen-
tation. We made JanusDataset publicly available on Kaggle
to support researches on UAV background subtraction.

3.7. Training

Since optical flow itself does not rely on the foreground
segmentation, to provide a good initialization to our model,
we first train the optical flow sub-network on the Flying
Chairs [11] dataset until the loss converges. Then we train
one batch on optical flow using Flying Chairs dataset and
then the second batch on foreground segmentation using
Janus Dataset and so on. Janus Dataset is splited into train-
ing and validation videos where the training videos include
city, forest, and beach scenes, and the validation videos in-
clude the castle scene.

We used various data augmentation techniques: adding
Gaussian noise, random rotation, random resize, random
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Figure 4. Examples of Janus Dataset with associated groundtruth.

shift, random flip, artificial motion blurs, so that the trained
model does not overfit on the relatively small Unreal4 train-
ing videos. To train the model, we used Adam optimizer
with starting learning rate of 1e-4 and gradually decreased
the learning rate. The training was continued until the learn-
ing rate reached 1e-8.

4. Results and Analysis
4.1. Quantitative Results on Janus Dataset

As mentioned earlier, due to the lack of annotated
datasets for background subtraction from moving camera
or UAVs, quantitative results on state-of-the-art models are
not available or properly bench-marked. DAVIS [32] and
Seg-track v2 [22] datasets are not appropriate for evalu-
ation because i) include stationary foreground objects, ii)
exclude moving object if they are not the main targets) is
an object segmentation dataset. Most of the literature in
this area, therefore, relies on qualitative results to demon-
strate the proposed approach. A secondary contribution of
this paper is Janus Dataset (Section 3.6), a synthetic video
dataset with moving cameras that we hope would support
such bench-marking and comparative evaluation efforts in
the future. We quantitatively evaluated the performance of
our approach on this dataset. As mentioned in the previous
section, we used city, forest, and beach scenes in the dataset
for training the model, and we use castle scenes to evalu-
ate the model. Table 2 shows the pixel-level precision and
recall of our approach on Janus dataset. Note that the cam-
era is continuously moving in all videos. Moreover, most
of the moving targets in the videos are significantly small
as compared to other background subtraction datasets in the
literature. Given these challenges, the model performs re-
markably well and gives precision and recall of 0.767 and
0.687 respectively.

We also used this dataset to evaluate the contribution of
different sub-networks and components. Comparing Janus-
Net with and without attention maps from high-pass filters,
our results demonstrate that the use of attention maps sig-
nificantly improve precision while also mildly improving
recall (See Table 2 and Fig 5). For example in the 1st col-
umn in Fig 5, with attention maps, JanusNet is the only
method that does not produce false positives on the sta-

Method Precision Recall Speed
JanusNet 0.767 0.687 40.8ms(GPU)
w/o Attention 0.704 0.643 40.0ms(GPU)
NoHomography 0.663 0.661 35.2ms(GPU)

Table 2. Performance of JanusNet on Unreal4 videos. Precision
and Recall are measured pixel-wise against ground truth. The eval-
uation is performed on 640x640 images on IntelI7@2.7GHZ CPU
with a GTX1070 GPU

tionary car. We also compared JanusNet with and without
rough global motion compensation. Our results show that
the rough global motion compensation also has an impact
on both the precision and recall of the system. As discussed
in Section 3.2, the use of rough motion compensation en-
ables us to optimize the optical flow network. Given ample
computational resources, the motion compensation step can
be eliminated by i) adding more layers to the optical flow
network and ii) increasing the search radius, d in the feature
correlation layer.

4.2. Quantitative Results on CDnet14

CDnet14 [44] is a widely used foreground segmentation
benchmark dataset. We trained JanusNet on the full CD-
net14 training dataset without using Unreal4 videos. Most
videos in CDnet14 are stationary-camera videos, so we
turned off the explicit global motion estimation on these
videos. Otherwise we used the same model architecture
and training procedures as described in Section 3. JanusNet
reached F-Measure of 0.56 which is similar to GMM [50]
and KDE [12]. (The ground truth of CDnet14 dataset in-
cludes stationary foreground objects, but JanusNet uses
high-pass filters to exclude stationary objects so it puts
JanusNet at a disadvantage. Whether stationary foreground
objects are wanted depends on applications). On the other
hand, FgSegNetV2 [23] and DCBS [4] outperform our
model on this dataset (see Table 3). However, JanusNet
has several advantages over these approaches: i) JanusNet
is much smaller and faster; ii) JanusNet is more general;
FgSegNetV2 requires training on the exact scene. DCBS
requires a corresponding background image, which is usu-
ally not available in practical scenarios; JanusNet works on
both stationary and moving cameras. While FgSegNetV2
can handle some camera motion, it is limited in this capa-
bility as it must be trained on the same scene.

4.3. Qualitative Results on UAV Videos

We also compared these algorithms on UCF Aerial [2]
and Kaggle Drone videos [1]. To our knowledge, there is
no benchmark UAV foreground segmentation datasets with
ground truth labels, so we only provide qualitative results
as shown in Fig 5. The results show that JanusNet suc-
cessfully separates foregrounds and backgrounds in a vari-
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Figure 5. Performance on various videos. Column 1 is from UCF Aerial Action [2], Column 2-4 are from Kaggle Drone Videos [1],
Column 5 is from Davis Dataset [44]. All videos have camera movements, and column5 has significant motion blur. The camera movements
can be seen from the ”Diff” (frame difference) row. The ”w/o Attention” row is JanusNet but without the high pass filter bank.
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Method Moving
Camera?

Unseen
Videos?

F-Measure

FrameDiff False True 0.21
GRASTA[15] False True 0.36
JanusNet True True 0.56
GMM[50] False True 0.57
KDE[12] False True 0.57
KNN[51] False True 0.59
DCBS[4] False Limited 0.76
FgSegV2[23] Limited False 0.97

Table 3. Performance on CDnet14. Although DCBS can work on
unseen videos it requires background images which are often un-
available

ety of scenarios. In the training Unreal4 videos, the fore-
ground objects only include pedestrians, deer, and various
types of automobiles. JanusNet successfully adapts to real
world foreground objects that are not in the training set
(bikes and bulls in column3 and column5 of Fig 5). This
shows the transfer-ability of JanusNet models to different
environments. It also demonstrates that the model can suc-
cessfully utilize and switch to different information sources,
for example using motion and attention models when the the
scene semantics do not match the learned semantic models.

5. Discussion
In this section, we discuss some of the questions that

were raised during our internal review of the paper.
Comment 1: How do you handle the domain gap between
the synthetic data used for training the model and the real-
world videos?
Response: As shown in Fig 5, JanusNet performs well
on unseen real videos. To accomplish this, we have in-
cluded many real world challenging scenarios: waving
trees, shadows, different lightings, water reflections, etc in
Janus Dataset. We have also used artificial motion blurs to
mimic real world motion blurs created from camera move-
ments. Moreover, by incorporating multiple sources of in-
formation, especially motion features, the model is not sim-
ply reliant appearance features and image semantics where
the domain gap is generally more prominent.
Comment 2: What is the significance of hyper-parameters,
d, v, and sk, how are they selected, and how do they impact
the results?
Response: The hyper-parameter d defines the search space
for feature correlation and is included in many state-of-the-
art optical flow models. It governs the maximum motion
that the optical flow module can detect. At 480× 480 reso-
lution, the chosen value of d = 5 enables detection of mo-
tions up to 52.5miles/hour from UAVs flying at 20m alti-
tude, which is sufficient for most applications. On the other
hand, the hyperparameter v indicates the minimum motion

that the network tries to detect and we believe v = 0.5 (1
pixel) motion between adjacent frames is general enough
for most applications. The kernel sizes sk in the high-pass
filter bank help highlight attention models and identify ob-
jects at different sizes. As shown in Fig 5, JanusNet can
detect pedestrians from far-field and also detect a bull-rider
in near-field using the same hyperparameters.
Comment 3: Can you provide results from SOTA model
such as FgSegNetV2, DCBS, SegFlow on UAV videos?
Response: FgSegNetV2 [23] is a scene specific model that
requires to be trained on a specific scene to work well on
that scene. DCBS [4] requires a corresponding background
image. Both are not possible for arbitrary UAV videos.
SegFlow and other similar models are trained using a dif-
ferent training goal that does not match our foreground
segmentation application. Moreover, at a high level, our
model without explicit homography and attention maps (Ta-
ble 2) is conceptually similar to their model as applied to the
problem-at-hand.
Comment 4: Can you use DAVIS and Seg-Track v2
Datasets for testing?
Response: DAVIS and Seg-Track v2 datasets are for object
segmentation. It differs from our application in two ways,
i) it includes stationary objects; and ii) it excludes moving
objects if they are not the main targets.

6. Conclusion
In this work, we present JanusNet: a fast but effective

foreground segmentation model for videos from UAVs and
moving cameras. JanusNet uses the recent advancements in
deep learning and employs a convolutional neural network
that learns to combine dense optical flow, attention models,
image features, and foreground priors to produce accurate
foreground segmentation in a variety of scenarios. Janus-
Net is trained using a simulated video dataset generated
with Unreal-4 Engine. As opposed to many deep learning
methods for background separation, JanusNet can success-
fully detect novel foreground objects from unseen videos
taken from moving cameras. Our qualitative results (Fig.5)
on UCF Aerial[2] and Kaggle Drone videos [1] datasets
demonstrate that the network is capable of transferring its
learning to real world datasets and can detect small moving
targets in a variety of scenarios. JanusNet model also uses
an efficient architecture and can process 640 × 640 videos
at 25fps on Nvidia GTX1070 GPU and 3.1fps on Nvidia
Jetson Nano.
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