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Abstract

Sign Language Generation (SLG) is a challenging task
in computer animation as it involves capturing intricate
hand gestures accurately, for several thousand signs in
each sign language. Traditional methods require expen-
sive equipment and considerable human involvement. In
this paper, we provide a method to automate this process
using only plain RGB images to generate sign poses for an
avatar - the first of its kind for SLG. Current state of the
art models for human 3D pose estimation do not perform
satisfactorily in SLG due to the large difference between
tasks. The datasets they are trained on contain only tasks
like walking and playing sports, which involve significantly
different types of motion compared to signing. Synthetic,
manually created 3D animations are available for diverse
tasks including sign language performance. Modern 2D
pose estimation models which work on real world images
are also robust enough to work on these animations accu-
rately. Inspired by this, we formulate a novel method of
leveraging animation data, using an intermediate 2D pose
representation, to train an SLG animation model that works
on real world sign language performance videos. To create
the dataset for training, we extend an available animated
dataset of signs in the Indian Sign Language (ISL) by per-
muting different hand and body motions. A novel quater-
nion based architecture is created to perform the task of lift-
ing the 2D keypoints to 3D. The architecture is simplified to
match the requirements of our task as well as to work with
our smaller dataset size. We train a model, SignPose, us-
ing this architecture on the constructed dataset and demon-
strate that it matches or outperforms current models for hu-
man pose reconstruction for the Sign Language Generation
task. We will release both the dataset as well the model to
the public to encourage further research in this field.

*indicates equal contribution

1. Introduction
Sign languages are complete languages, having their

own grammar and syntax. Unlike spoken languages, which
have a standard simple textual representation for commu-
nication, sign languages have no such text form. Children
born Hearing Impaired (HI) have difficulty in learning spo-
ken languages and by extension their reading comprehen-
sion is also low [17]. Therefore the only way to commu-
nicate or create media in sign languages is through realis-
tic performance, either by a human interpreter, or through
computer generated output, mostly using animation [2].

Sign Language Generation (SLG) is a developing field
involving automatic generation of sign language in a visual
medium. The most common mode of output involves 3D
animations of a computer agent performing the signs. This
requires a database of animations of all the signs in the spe-
cific sign language, which number in the several thousands.
This database has traditionally been generated using either
sophisticated motion capture equipment [2, 13], or using
parametrized representation of signs to generate animations
[1, 7, 20]. The first method requires expensive equipment
and the second method creates robotic and unnatural results,
besides requiring complicated annotation by hand for each
sign. Recently, much work has been done in estimating 3D
pose from RGB images. Sign languages generally have a
paucity of data, but several video dictionaries of signs are
available [28, 32]. In this paper we look into leveraging the
techniques of monocular 3D pose estimation to generate an-
imations for Indian Sign language (ISL), for use with such
a dictionary.

Current 3D pose estimation models are for general hu-
man activity involving full body motion captured from dif-
ferent camera angles, without a primary focus on the hand
configuration [14, 18]. With sign language videos, there
is both a decrease and increase in complexity in different
aspects of the problem. On the one hand, the person is rel-
atively stationary, with the camera fixed directly before the
person, capturing only the upper body. On the other, high
accuracy is necessary in estimating the handshape, the most
important part of signing. Current 3D pose estimation mod-
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els fail at one of these aspects, failing to either work with
images containing only the torso and upwards, or to capture
accurate hand pose. The output avatar must also have real-
istic human features for ease of comprehension, especially
facial features like eyes which are necessary for conveying
expression. Current models output a featureless humanoid,
which will require creating textures and clothing to make it
seem more human. Some also generate a different mesh for
each person, and even each frame [24]. This makes generat-
ing a reliable texture for use across different sign language
performers very difficult. There is therefore a need to create
a specific solution addressing these issues for the problem
of pose estimation in the context of sign language anima-
tion.

Pose estimation models require large and diverse 3D
pose datasets to train. The datasets are created mostly by
having actors perform in a controlled environment and us-
ing expensive motion capture equipment to obtain 3D pa-
rameters [12, 19, 31]. We propose a novel approach of us-
ing completely synthetic, manually created animations as
the dataset to train our model. An animated dataset of ISL
signs [16] is used in conjunction with a 2D pose estima-
tion model to learn human poses in real world sign lan-
guage videos. Since this dataset is small, we have used a
method of generating ”pseudo-signs” by combining differ-
ent hand and body poses to significantly increase the size
of the dataset. While animation has previously been used
to enhance datasets to make them look realistic enough to
train image based pose estimation, this approach of using
2D pose estimation along with plain animation has not been
done previously, to the extent of our knowledge.

This work makes the following contributions:

• We present a novel approach of using animations of
a realistic looking human model to acquire 2D to 3D
human pose data, and implement it in the context of
sign language generation.

• We generate using this approach a dataset of 3D sign
language poses. We utilize and extend an available
database of 1300 signs performed by a fully textured
model, creating a database of > 100, 000 frames.

• We train a simplified, modular architecture based on
previous 2D to 3D lifting models on this dataset. The
simplification is done to exploit the constraints in
our task as well as to work with our smaller dataset.
We also use a novel method of using quaternions to
parametrize the output. We compare this trained model
with the state of the art in the field of 3D pose esti-
mation and demonstrate that our model overcomes the
issues they have with sign language generation.

The code, models and datasets associated with SignPose
are opensourced.

2. Related work

2.1. 3D human pose estimation

With regards to our task, current 3D pose estimation
models can be divided into models extracting pose directly
from image [15, 18, 29], and those that convert a 2D pose
to 3D, termed ”lifting” [4, 27, 34].

The first method has the advantage of utilizing all infor-
mation available in an image, but this also puts constraints
on the training data. The visual difference between train-
ing data generated in a controlled lab environment versus
the actual use-case of in-the-wild images needs to be ac-
counted for. The training dataset must have a wide varia-
tion in visual features such as different people, clothing and
backgrounds. This is sometimes overcome by modifying
the dataset to mimic in-the-wild images, usually by adding
different realistic textures and real world backgrounds [38].
Often, an intermediate or joint 2D representation of key-
points is also used to aid the process [25, 36]. These mod-
els may also estimate body shape parameters, which deter-
mine the body mesh of the person. These models largely
work with the body mesh provided by [18] and [24]. How-
ever these meshes do not come with a realistic texture with
clothes, hair and skin tone. Creating a uniform texture for
these models is a challenging task, especially given that the
mesh changes across different body types and there are vari-
ations across different frames of a video as well.

The second method utilizes 2D pose, estimated from the
image using a separate model such as OpenPose [3] or Me-
diaPipe [38]. These 2D pose estimation models are trained
on a wide range of realistic images and work in most con-
ditions. This method is therefore more robust to the visual
variations associated with images, working purely with the
geometric pose which abstracts these features away. This
means that these models work well with in-the-wild im-
ages even if trained on datasets that are generated in con-
trolled lab environments. However, this also means that
the accuracy of these models depends on the the accuracy
of the 2D pose estimation model. Our model builds from
this research: animation training data visually differ from
real world data, but 2D pose estimation models are robust
enough to perform well on them.

The method of representing the 3D pose output also
varies across models. Models either directly estimate the
depth coordinate [21, 27] which gives the output in terms of
3D Cartesian points, or they estimate joint rotations [6, 18],
which is in line with our model. In the case of the first
method, additional constraints of bone length need to be
taken care of [27], and Inverse Kinematics needs to be per-
formed to animate the 3D model. Using rotations, on the
other hand, gets rid of these length constraints, and anima-
tion is achieved through much simpler forward kinematics.
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2.2. 3D human pose datasets

There are several datasets of 3D human pose data, gen-
erally stored in the form of motion captured data performed
in a controlled environment. There are many large scale
datasets for full body human poses [8, 12, 19], and a few
datasets of only hand poses [23, 39]. Models estimating
both body and hand poses usually combine data from both
these kinds of datasets [24, 29]. This requires explicit align-
ment of the two components and leads to greater error in the
common joint between the body and the hand, usually the
wrist. As the datasets are recorded in controlled lab environ-
ments with motion capture devices, they need modifications
to work in real world cases. Some approaches use synthetic
3D models with real world background images to generate
realistic images for training robust models [12], which re-
sembles our approach of employing synthetic training data
for real world use. These datasets are also prohibitively ex-
pensive to create, due to the equipment cost. On the other
hand, we have used an entirely synthetic and manually an-
imated dataset, created without any specialized equipment,
to generate our 2D to 3D pose data.

2.3. Sign language animation

When animating sign languages, accuracy in reproduc-
ing meaningful components such as handshape and place of
articulation takes prime importance. The intricacy of finger
poses and the relatively small space they take up visually
adds to the complexity of the problem. This is further com-
pounded by the fact that the process needs to work for a
significantly large number of unique signs, numbering in
the thousands in each sign language.

Older work on sign language animation generally fo-
cused on motion capture methods which, besides having a
high cost, require significant human oversight of the pro-
cess [2]. Alternatively, this process was automated to an
extent by generating signs at run-time using a parametriza-
tion of signs [7]. The methods of parametrization were ei-
ther based on general sign language transcription systems
such as HamNoSys [20] or SigML [10], or used newly
constructed parameters tailored to the individual sign lan-
guage [1]. These parametrizations capture sign language
features such as the places of articulation, handshapes and
expressions to varying degrees. However, the parametriza-
tion of each sign needs to be annotated manually, which
is a lengthy process requiring specialized knowledge [11].
This method also ends up losing the subtle differences in ar-
ticulation that occur when the same features are present in
different signs, making the animated output seem robotic.
More recently, there have been attempts to completely au-
tomate the animation process, using 3D human pose esti-
mation methods. Zelinka et al. [37] come very close to our
work lifting 3D pose from 2D, although they simply gener-
ate a 3D stick skeleton, and not a human avatar animation.

(a) (b)

Figure 1: Sample pose from the dataset (a), and another
pose with an OpenPose overlay (b).

Parametrized SLG animation as described above is an-
imated and designed by hand. Manual animation can be
taken further to generate entire signs, creating a database of
hand-animated signs to be used for SLG. Krishna et al. [16]
utilize this method to generate ISL output, and they have
also made available the dataset of these manually animated
signs. This dataset serves as the base dataset for training
our model.

3. Dataset generation and augmentation

The primary dataset used in this paper is obtained us-
ing the dataset presented in [16]. This is a dataset of 1300
animations of signs in ISL. There is a wide variety of hand
and body poses, and more importantly, hand and body poses
come integrated, instead of being separate. This dataset also
comes with a realistic looking model that is used to perform
the animations, allowing for a finished output of sign ani-
mation (Fig. 1a). The model is realistic enough that existing
2D pose estimation models such as OpenPose [3] and Medi-
aPipe [38] work very accurately on it (Fig. 1b). Using these
2D pose estimates solves the problem of the model needing
to be robust across visual changes, by avoiding using the
image directly, and delegating this issue to more robust 2D
pose estimation models.

Various forms of 3D pose parametrizations are obtain-
able from the animations, including 3D joint locations, Eu-
ler angle representations, as well as rotation quaternions.
Our dataset consists of 2D pose estimates as generated by
OpenPose on videos of the animations, along with the corre-
sponding 3D pose represented by rotation quaternions. The
videos have been generated using a fixed camera before the
model at approximately chest height.
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The animation dataset is fairly small in size, and we aug-
ment it by generating “pseudo-signs”. This process involves
generating permutations of the hand portion of one anima-
tion with the body portion of a different animation. This
process ensures that, in the new dataset, both the hand-
shapes as well as the body motion are typical of ISL. This
data is filtered, keeping only data where OpenPose recog-
nized all 54 joints of our model input. The final number of
frames in the dataset is 102,582, which is split into 96,419
train and 6,163 test frames.

4. Methodology

Our project, SignPose converts an image of sign lan-
guage performance to 3D pose for a human avatar. It starts
with running a 2D pose estimation model to obtain the 2D
keypoints, which serve as input to our model. Our model
then converts the 2D pose into 3D. The model is composed
of two separate models for the hands and the body, and the
output from these two is combined to get the full body 3D
pose. This 3D pose is compatible with the avatar we use,
and is used to animate it, completing the pipeline.

4.1. Model input and output

The function of our model is converting a 2D represen-
tation of the pose, p ∈ Rj×2 into a 4D representation of the
3D human pose, P ∈ RJ×4 . Here j is the number of joints
in 2D pose, and J in the 3D pose, as these can be differ-
ent. p is the list of the j 2D coordinates of the joints, and
P is the list of the J quaternion parameters, each joint hav-
ing 4 parameters. In both the 2D and 3D representations,
only the joints above the pelvis are used, since our use-case
does not require estimation of the lower body, which re-
mains stationary. Among these, the body model receives all
joints except those of the hand as input. The set of joints
that go into the hand model consists of the joints of the arm
along with those of the hand. This is to better estimate the
orientation of the whole hand with respect to the rest of the
body. This is done separately for each hand, which means
the hand model runs twice per image, once for each hand.

Random noise is added to this input, in the form of ro-
tation of the bones (≤ 10◦), scaling (≤ 40%), translation
of the entire 2D pose (≤ 20% for both axes ). We find this
makes the model robust to data in-the-wild.

4.2. 3D pose parametrization

Previous work on 2D to 3D lifting that we encountered
infer either 3D joint coordinates, or joint rotations. Rota-
tions were represented either using Euler angles, or in the
axis-angle notation form.

Using 3D joint coordinates comes with the issues of hav-
ing to constrain bone lengths, significantly complicating
model calculations. Furthermore, given the coordinates,

we need to perform Inverse Kinematics in order to gener-
ate the pose. Using joint rotations bypasses both these is-
sues: bone lengths are independent of rotations, and gener-
ating the pose is done through simple Forward Kinematics.
There is, however, an added variation in 3D coordinates of
the joints if the same rotation parameters are applied to dif-
ferent models having bones of different lengths. Since we
use the same model for training and output, this issue does
not appear in our case.

Representations for 3D rotation such as Euler angles and
axis-angle representation exist in R3, and it has been shown
that this ends up causing discontinuities or singularities in
the representation space. A discontinuity in a rotation rep-
resentation space refers to a subspace within which there is
no change in the rotation of the object, alternatively, within
this subspace no rotation is possible [9]. This manifests as
issues like gimbal lock and the infinite number of repre-
sentations due to periodicity. Quaternions, however, exist
in R4 and do not have these issues. They are also more
compact and computations involving them are more effi-
cient. Furthermore, we obtain them directly from the ani-
mation, through Blender. This is in contrast to [26], another
work that uses quaternions, where they had to be calculated
and an additional constraint of quaternion length had to be
added.

A quaternion q is represented as either a 4-tuple or a 4-
dimensional vector [w, x, y, z]. Here w is the real term and
x, y & z are the complex terms.

q = w + xi + yj + zk

where i, j and k are hypercomplex numbers satisfying the
equation:

i2 = j2 = k2 = ijk = −1

Quaternions represent rotation around a vector ê by an an-
gle θ, by the equations w = cos(θ/2) and [x, y, z] =
ê sin(θ/2).

4.3. Model architecture

We have based our model network on previous work
which involved 2D to 3D lifting, mainly [5] and [21]. Fig. 2
gives an overview of our architecture. The network con-
sists of a fully connected layer which encodes the 2D pose
to a 4096-dimensional vector, which is then fed into a sin-
gle residual block. This block consists of a fully con-
nected layer, 1D batch normalization, ReLU activation, and
dropout. The fully connected layer has the same dimen-
sion of 4096, and dropout probability is set to 0.5. Finally a
last fully connected layer converts the output of the residual
block into 4D quaternion parameters.

The primary difference in our model is that we use a sin-
gle residual block instead of two blocks as suggested by
previous work. Using two blocks on our smaller dataset
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Figure 2: Architecture of the model network.

ended up causing issues with overfitting and we found us-
ing a single block was optimal for our task. We also based
this simplification on the fact that only one camera view is
utilized, as well as the fact that fewer joints are being esti-
mated in the body.

The loss function we have used is the squared L2 norm
between the predicted quaternions and ground truth quater-
nions i.e., the Mean Squared Error:

Lquaternion = ∥P − P∗∥22

=

J∑
i=1

(wi − w∗
i )

2 + (xi − x∗
i )

2 + (yi − y∗i )
2 + (zi − z∗i )

2

4J
,

where the asterisks represent predicted values.

4.4. Evaluation

As is standard in human 3D pose estimation, we have
used the mean per joint position error (MPJPE). Since our
dataset is completely synthetic, absolute metrics in mm
needs to be estimated. To convert values to mm, we com-
pared human femur length (taking the average value of
452.7mm) to the thigh bone length of our model, and cal-
culated the rest of the values with regards to this. An-
other metric tested for is the Percentage Correct Key-
points (PCK), which measures the percentage of keypoints
that are detected within a certain accuracy. We measured
PCK@150mm, which is the standard.

There is a significant difference in the tasks present in
datasets used in evaluation of existing models, versus our
dataset. Furthermore, the animation avatar model that we
have used differs from existing models in joint configu-
ration and comparing evaluation results becomes difficult.
Hence we only evaluated our model against our dataset
while comparing results. While these results do not fit a
specific competitive context, they provide a good bench-
mark to compare our model performance. Also given we

are releasing our dataset to the public, we make our model
open for future competitive evaluation.

4.5. Implementation details

The videos of each sign are generated using Blender,
keeping the camera fixed across all animations. OpenPose
whole body pose estimation is run on these videos to ob-
tain the 2D pose at each frame. The network is constructed
using Pytorch. Adam optimizer is used to update weights
with minibatch size of 80. The learning rate is set to 10−4

and after 30 epochs, it is decreased to 10−5. Two mod-
els are independently trained: one for the body without the
fingers, and one for both the hands. The input for the body
model has j = 54 (including face keypoints) and the output,
J = 14. For the hand model, these are j = 49 (including
arm joints) and J = 38. The models are run for 60 epochs.
The training is done on a single NVIDIA RTX 2080 Ti GPU
with 12 GB RAM, and takes around half a day to run on our
dataset.

5. Results

5.1. Quantitative results

Quantitatively, the values we get for the metrics MPJPE
and PCK@150mm on our datasets are significantly better
compared to other models on general human pose datasets.
Table 1 shows the MPJPE and PCK@150mm results of ex-
isting models. The MPJPE values are on the Human3.6M
[12] dataset, which we noted gave the best results for those
models, and the PCK@150mm values are on the MPI-INF-
3DHP [22] dataset, which is more complex. Table 2 lists the
evaluation results of our hand model on our dataset as com-
pared to existing models on the EHF [24] and FreiHAND
[39] datasets. Our left hand and average prediction val-
ues were comparable to these models, but the right hand
performs poorly. However, the values reported here for
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Figure 3: Results on two different signs from the ISLRTC dictionary [28]: (L-R) original, ExPose, FrankMocap, SMPL-X,
SignPose (ours).

Table 1: Comparison with existing body models

Model MPJPE PCK@150mm

Pavlakos ’18[25] 56.2 71.9

Yang ’18[36] 58.6 69.0

Kolotouros ’19[15] 41.1 76.4

Pavllo ’19[27] 46.8 -

Chang ’20[4] 52.5 83.9

Choi ’20[5] 64.9 -

Sarandi ’20[30] 49.3 89.6
SignPose (Ours) 27.09 99.0

other models in PA-MPJPE, which uses ground truth val-
ues in performing Procrustes Analysis for alignment. For
the body, we have noticed a reduction of more than 30% of
the value of MPJPE (using data collated in [6]), which puts
our hand MPJPE values well within the range of the others.
As noted earlier there is incompatibility in direct compari-
son of these models and datasets versus ours. These results,
however, demonstrate that the performance of our model
on our datasets is comparable to the performance of state-
of-the-art pose estimation models on general pose datasets.
Since we are also releasing our dataset to the public, we ex-
pect more competitive comparisons from future work using
our data.

Another important aspect of our model is the simpli-
fied architecture, which leads to short execution times. The
model, given OpenPose input, processes 1 frame in 0.01s.
However, OpenPose ends up taking 1.1s per frame, slow-

Table 2: Comparison with existing hand models: the first set
is on the EHF and the second set on the FreiHAND datasets

Model
Joint Error

L/R Hand Both

SMPL-X [24] 12.2/13.5 12.8
MTC [35] 16.3/17.0 16.6

ExPose [6] 13.5/12.7 13.1

MANO [39] N/A 10.9

Pose2Mesh [5] N/A 7.4
ExPose [6] N/A 12.2

SignPose (Ours) 11.7/17.1 14.4

Table 3: Comparison of execution times

Model Time (s)

SMPL-X 130

FrankMocap 0.5

ExPose 0.3

SignPose (Ours) 1.11 (1.1a +0.01)
a OpenPose running time

ing the process significantly. Even with that included,
our model is much faster than SMPL-X, but ExPose and
FrankMocap perform quicker when this added OpenPose
time is taken into consideration. Our model, therefore is
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(a)

(b)

(c)

(d)

(e)

Figure 4: Qualitative comparison of outputs for various models: (a) original input , (b) SMPL-X [24] output , (c) FrankMocap
[29] output, (d) Expose [6] output and (e) SignPose (our) output.
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effectively limited by the speed of the 2D pose estimation
model. MediaPipe, another 2D pose estimation model, per-
forms much faster than OpenPose, running at 0.17s per
frame and using it would bring down our processing time
significantly below 1s and comparable to the other two
models.

5.2. Qualitative results

The whole body outputs of our model versus current
pose estimation models images are presented for five sam-
ple sign images in Fig. 4. While the upper body pose accu-
racy is comparable to our model, FrankMocap and SMPL-
X perform poorly on lower body stability and accuracy on
images where the entire body is not present. The error
in the lower body output is very drastic in FrankMocap
(Fig. 4c), where the legs end up various very unnatural posi-
tions. SMPL-X performs better, but there can be significant
full body rotation which is not present in the original im-
age (Fig. 4b). Our experiments with trying to use the upper
body results only for these models gave very unsatisfactory
results due to changes in the entire body orientation that
occurs. Expose is better at full body estimation, but hand
estimation is not very accurate (Fig. 4d, many extended fin-
gers not estimated). ExPose also has some very unnatural
left hand poses when the hand is out of frame (Fig. 4d, third
image). Our model on the other hand, works very well with
upper body only images, as well as maintaining hand pose
accuracy.

Hand outputs comparison of our model against other cur-
rent models is presented in Fig. 3 for signs in the ISLRTC
dictionary. Here we can see how Expose still struggles with
fingers in extension. SMPL-X performs better, but allows
for a slightly unnatural looking hand shape in the second
image, and body hunching is also evident. FrankMocap
gives the best looking results for hands, with our model also
performing comparably.

From the above examples, we can see that our model
combines good accuracy in estimating full body pose, while
also predicting the hand pose well. Furthermore, as can
be seen, our model has human textures, making the output
more fit for use in an end product for generating sign lan-
guage. One drawback we noticed was that our model has
some difficulty with the left hand when it is out of frame,
though this is not as drastic as in ExPose.

5.3. Drawbacks and future work

One aspect of sign language that our work lacks is that it
does not capture facial expressions. Facial expressions are
an important feature in Sign Language communication. As
can be seen in Fig. 4, both ExPose and SMPL-X are expres-
sive, and they capture facial expressions. The dataset we
use has a subset of signs which have expressions built into
them, and we want to pursue it in the future, taking inspira-

tion from works like FACSvatar [33]. Our model also fails
to simulate larger motion of the head, and overall torso ro-
tation and bending. This is due to the lack of such data in
the dataset. Encouraged by our experiments with the exten-
sion of the dataset, we wish to experiment with automati-
cally adding this variation to the animations to capture this
behaviour. In the context of generating videos, our model
ends up causing considerable jitter in motion as there is no
dependency across different frames of the videos. Since our
model keeps the lower body stationary, this jitter is lower
than those of existing models, but is still a significant hur-
dle to realistic video generation. As our dataset is one of
animation videos, sequence training is possible. In the fu-
ture, we intend to incorporate sequence modeling into the
pose estimation procedure to produce smooth video output.

6. Conclusions
We present a novel approach of utilizing manually cre-

ated animations in the task of 3D human pose generation,
specifically for Sign Language Generation. Using this ap-
proach on a previously existing animation dataset, we gen-
erate a dataset for 2D to 3D pose lifting for Sign Language
animation. We simplify the current architecture for 3D lift-
ing to better fit both, the input parameters specific to the
task, as well as the smaller size of our dataset as compared
to the ones the previous models have been trained on. A new
way to represent the output pose using quaternions is imple-
mented as a better representation of the output. We train a
model, SignPose, using this architecture on the dataset cre-
ated and demonstrate it performs competitively, while hav-
ing a low computational footprint. Our work also produces
outputs compatible with a realistic human avatar making it
suitable for end-user consumption. We make both dataset
and model available to the public to encourage further re-
search in the field.

7. Acknowledgements
This work received funding from the Mphasis CSR grant

as well as the MINRO grant to IIIT-B.

References
[1] Inês Almeida, Luı́sa Coheur, and Sara Candeias. From

european portuguese to portuguese sign language. In
SLPAT@Interspeech, 2015. 1, 3

[2] Andrew Bangham, Stephen Cox, John Glauert, I. Marshall,
S. Rankov, and Mariah Wells. Virtual signing: capture, ani-
mation, storage and transmission-an overview of the visicast
project. In IEE Seminar on Speech and Language Processing
for Disabled and Elderly People, 2000. 1, 3

[3] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh. Openpose: Realtime multi-person 2d pose estima-
tion using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019. 2, 3

2647



[4] Ju Yong Chang, Gyeongsik Moon, and Kyoung Mu Lee.
Poselifter: Absolute 3d human pose lifting network from a
single noisy 2d human pose. arXiv e-prints, 2020. 2, 6

[5] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee.
Pose2mesh: Graph convolutional network for 3d human pose
and mesh recovery from a 2d human pose. In European Con-
ference on Computer Vision (ECCV), 2020. 4, 6

[6] Vasileios Choutas, Georgios Pavlakos, Timo Bolkart, Dim-
itrios Tzionas, and Michael J. Black. Monocular expressive
body regression through body-driven attention. In European
Conference on Computer Vision (ECCV), 2020. 2, 6, 7

[7] A. Conway and T. Veale. A linguistic approach to sign lan-
guage synthesis. In BCS HCI, 1994. 1, 3

[8] Saeed Ghorbani, Kimia Mahdaviani, Anne Thaler, Konrad
Kording, Douglas James Cook, Gunnar Blohm, and Niko-
laus F. Troje. Movi: A large multipurpose motion and video
dataset. arXiv e-prints, 2020. 3

[9] F. Sebastin Grassia. Practical parameterization of rotations
using the exponential map. J. Graph. Tools, 3(3):29–48, Mar.
1998. 4

[10] Angus B. Grieve-Smith. Signsynth: A sign language synthe-
sis application using web3d and perl. In Ipke Wachsmuth and
Timo Sowa, editors, Gesture and Sign Language in Human-
Computer Interaction, pages 134–145, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg. 3

[11] Thomas Hanke. Sign language transcription with syncwriter.
Sign language & linguistics, 4(1-2):275–283, 2001. 3

[12] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 36(7):1325–1339, jul 2014. 2, 3, 5

[13] Richard Kennaway, John Glauert, and Inge Zwitserlood.
Providing signed content on the internet by synthesized ani-
mation. ACM Transactions on Computer-Human Interaction
(TOCHI), 14:15, 09 2007. 1

[14] Muhammed Kocabas, Nikos Athanasiou, and Michael J.
Black. Vibe: Video inference for human body pose and
shape estimation. In Computer Vision and Pattern Recog-
nition (CVPR), pages 5252–5262, 2020. 1

[15] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In ICCV, 2019. 2, 6

[16] Shyam Krishna, Ankit Rajiv Jindal, Mahesh R, Rahul K, and
Dinesh Jayagopi. Virtual indian sign language interpreter.
In Proceedings of the 2020 4th International Conference on
Vision, Image and Signal Processing, 2020. 2, 3

[17] Fiona Kyle and Kate Cain. A comparison of deaf and hearing
children’s reading comprehension profiles. Topics in Lan-
guage Disorders, 35:144–156, 04 2015. 1

[18] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: A skinned multi-
person linear model. ACM Transactions on Graphics, (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015. 1, 2

[19] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. AMASS: Archive of

motion capture as surface shapes. In International Confer-
ence on Computer Vision, pages 5442–5451, Oct. 2019. 2,
3
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