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Abstract

We study the problem of future step anticipation in proce-

dural videos. Given a video of an ongoing procedural activ-

ity, we predict a plausible next procedure step described in

rich natural language. While most previous work focuses on

the problem of data scarcity in procedural video datasets,

another core challenge of future anticipation is how to ac-

count for multiple plausible future realizations in natural

settings. This problem has been largely overlooked in pre-

vious work. To address this challenge, we frame future step

prediction as modelling the distribution of all possible can-

didates for the next step. Specifically, we design a gener-

ative model that takes a series of video clips as input, and

generates multiple plausible and diverse candidates (in nat-

ural language) for the next step. Following previous work,

we side-step the video annotation scarcity by pretraining

our model on a large text-based corpus of procedural ac-

tivities, and then transfer the model to the video domain.

Our experiments, both in textual and video domains, show

that our model captures diversity in the next step prediction

and generates multiple plausible future predictions. More-

over, our model establishes new state-of-the-art results on

YouCookII, where it outperforms existing baselines on the

next step anticipation. Finally, we also show that our model

can successfully transfer from text to the video domain zero-

shot, i.e., without fine-tuning or adaptation, and produces

good-quality future step predictions from video.

1. Introduction
Anticipating future steps while performing a task is a

natural human behaviour necessary to successfully accom-
plish a task and cooperate with other humans. Thus, it is
important for a smart AI agent to exhibit this behaviour too,
in order to assist humans in performing procedural tasks
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Figure 1. Summary of the proposed GEPSAN model. Our
model, given an initial video stream representing a sequence of
past procedural steps, predicts multiple feasible alternatives for the
next step in natural language. We first train our model on text-only
data, followed by zero-shot transfer to the video domain.

(e.g., cooking, assembling furniture or setting up an elec-
tronic device). For example, consider a cooking AI assistant
that observes a user as they cook a dish. To be useful, this
assistant needs to anticipate possible next steps in order to
provide timely support with ingredients, cooking tools and
actions. Anticipating future steps from a video stream is a
challenging task, where simply recognizing the current ac-
tion or objects is not sufficient. To anticipate future actions,
one needs to parse and recognize the human-object inter-
actions from an unstructured and cluttered environment in
the current frame, predict the possible task being performed
(possibly leveraging the past observations) and finally antic-
ipate plausible next steps. Given the importance and chal-
lenges associated with this task, several research efforts tar-
geted this application in the recent years [24, 25, 9, 37].

We follow recent work [24] and tackle future anticipa-
tion in the realm of cooking activities. Given visual obser-
vations of the first t steps, our task is to predict the next
step to be executed. This task entails recognizing the cur-
rent step and the recipe being made, which is particularly
challenging given the modest size of cooking video datasets
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with annotations. Fortunately, such instructional knowledge
is available in abundance in the text domain (think of all
the dish recipes online) and can be leveraged to help video
prediction. Prior work [24, 32] builds on this observation
and proposes to first pretrain the anticipation model on a
large corpus of text-based recipes, i.e., Recipe1M+ [17]
to acquire knowledge about the recipe domain, and then
fine-tune the model on visual data. This line of work ef-
fectively alleviates the video annotation problem, however,
these works only predict a single future realization, and thus
it does not take into account all the variability present in the
recipes. For example, given the task of making a salad, and
assuming the first three observed step are: Chop Vegetable,
Add Tomatoes, Add Cucumber, the plausible next step can
be: Add Olive Oil or Add Salt and Pepper (for those who
like more seasoning) or simply Serve. This simple exam-
ple highlights that the task’s output is, in fact, multi-modal.
This observation suggests that a good future step anticipa-
tion model must be able to predict diverse and plausible
future realizations. Moreover, it is known that in a multi-
modal setup using a model that outputs a single prediction
(as done by previous work [24, 32]) may harm the perfor-
mance [35] even further by producing unrealistic samples
that “fall between” the true modes.

In this work, we embrace the uncertainty inherent in the
task of future anticipation and propose to learn a Generative
Procedure Step Anticipation model (GEPSAN), that cap-
tures the distribution of possible next steps and allows to
sample multiple plausible outputs given an initial observa-
tion from video input. A summary of our proposed work
is depicted in Figure 1. To achieve this goal, we design
a model that consists of three modules: 1) a modality en-
coder, that ingests a sequence of previous instruction step
observations (in either text or video format), 2) a generative
recipe encoder, that, given the observation history, proposes
the next plausible instruction vector, and 3) an instruction
decoder, that transforms the next step prediction (given by
the recipe encoder) into rich natural language. The core
component of the model is the generative recipe encoder;
it combines the benefits of the transformer model [28] (to
process long input sequences) and Conditional Variational
AutoEncoder (CVAE) (to capture the uncertainty inherent
to the task) and can produce multiple plausible alternatives
for the next step in a procedure. Another key element of
the pipeline is the input encoder; in contrast to the previ-
ous works that learn it from scratch, we adapt a pretrained
video-language feature extractor [16] to serve as our en-
coder. Since the encoder has been trained to map video and
text into a common embedding space, our model, trained
only on the recipe text corpus, can generalize to future step
anticipation from video zero-shot, without any finetuning.

Contributions. Our contributions are twofold:

• We propose GEPSAN, a new generative model for fu-
ture step anticipation that captures the uncertainty in-
herent in the task of next step prediction.

• We show that GEPSAN, only trained using text
recipes, can generalize to video step anticipation zero-
shot, without finetuning or adaptation.

Thanks to that, we achieve state-of-the-art results in next
step anticipation from video on YouCookII [40] and show
that our model can generate diverse plausible next steps,
outperforming the baselines in modelling the distribution of
next steps.1

2. Related work
Procedure planning and future anticipation. Previous
work on future anticipation [5, 6, 20] and procedure plan-
ning in video [1, 3, 27] is mainly based on the visual modal-
ity and relies on strong visual supervision. Moreover, action
anticipation is often considered as a classification problem,
where the task is to predict a future action label from a pre-
defined closed action set, e.g., [9, 31, 10, 19, 39, 34]. Unlike
most previous work, we rely on weak supervision from the
language modality, and predict future actions in rich natural
language. This allows us to transfer knowledge from a large
scale text data to the visual domain, while only requiring a
small text-aligned video data.

A few recent studies draw on language instructions as a
source of weak supervision to perform future anticipation
for procedural activities [25, 24, 32, 8]. Given a portion
of an instructional video, these models predict plausible fu-
ture actions, expressed using natural language. Whereas the
model of [25, 24] works by re-using the text recipe model
parameters and fitting a visual encoder to the rest of the pre-
trained model, the models of [32, 8] transfer textual knowl-
edge to the task of visual action anticipation via knowledge
distillation. Our work is most similar to that of [25, 24],
but we offer a number of improvements. First, we design a
modern transformer-based architecture and present an im-
proved training objective with complementary loss func-
tions. Second, for efficient transfer learning across modali-
ties, we leverage single-modality (language and video) en-
coders that are jointly trained for cross-modality alignment.
Importantly, thanks to this design choice, we not only show
improved predictions compared to relevant previous work
of [24, 25], but also present a new benchmark in zero-shot
cross-modality transfer with competitive performance. Fur-
ther, we consider diversity in future prediction task to cap-
ture the inherent uncertainty in future anticipation, which
is overlooked in most related prior work on future anticipa-
tion from video [24, 25]. Notably, recent work on proba-

1Our code will be available at
https://github.com/SamsungLabs/GePSAN
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bilistic procedure planning [36] also explicitly tackles un-
certainty. However, unlike this work, which is conditioned
on the start and end of the procedure, we model uncertainty
in a more challenging setting, where we only observe the
start of the procedure, thereby making an approach model-
ing uncertainty even more relevant.

Visual-textual representation learning. The ability to
learn with minimal supervision is becoming increasingly
important, and as such recent work focuses on the com-
plementarity across the visual and textual modalities as
an inexpensive source of supervision [4, 23, 36, 26]. To
further enable the use of cross-modal supervision, a large
body of work uses aligned multimodal data for learning
rich representations that can be adapted for downstream
tasks with minimal finetuning on task-specific annotations
[16, 18, 30]. Such methods learn multiple single-modality
encoders, each producing features aligned with the other
modalities. We leverage the multimodal alignment offered
by one such model - UniVL [16] - to facilitate cross-modal
transfer learning. For our initial text-only model, we adopt
a frozen pretrained UniVL text encoder. Later, for trans-
fer learning to videos, we replace the above encoder with a
frozen pretrained UniVL video encoder. Importantly, our
model design is not tied to this specific encoder but can
readily be adapted to leverage stronger modality encoders.

Modeling uncertainty and diversity. Many previous
works explicitly model uncertainty inherent to the task and
leverage it to produce diverse output. Recent works [22, 33]
propose VAE based methods for diverse human motion syn-
thesis. Other work proposes an RNN augmented with a
VAE for stochastic sequence modelling [11] . They evaluate
their approach on speech and sequential image generation.
In the context of action anticipation, some approaches use
VAE to predict diverse future actions for the objects in the
static image in terms of pixel-wise motion, e.g., [29], while
others use conditional GAN for long-term discrete action la-
bel anticipation [37]. Unlike the existing works, we tackle
diversity for future action prediction in natural language.
Thus, we find inspiration from various approaches for di-
verse dialogue modelling. DialogWAE [12] is a Wasserstein
autoencoder (WAE) based solution for dialogue modeling.
SPACEFUSION [7] relies on the fusion between seq2seq
model and VAE for diverse Neural Response Generation.
Knowledge-Guided CVAE [38] provides discourse-level di-
versity for open-domain conversations. Similar to the above
works, we adopt conditional VAE in our model to predict
multiple plausible next steps in rich natural language.

3. Technical approach
In this section, we formalize the problem of multi-modal

future step anticipation, where the task is to predict multiple

plausible next steps (Sec. 3.1). We then describe our solu-
tion - a generative future step prediction model (Sec. 3.2).
Sec. 3.3 describes the proposed training objectives that we
use to train a model from a pure text-based corpus. Next,
Sec. 3.4 describes how to transfer the learned model to the
video domain, with little fine-tuning or completely zero-
shot. Finally, we provide implementation details in Sec. 3.5.

3.1. Problem definition
In this work we tackle the task of next step anticipation

in procedural activities, e.g. cooking, and propose to explic-
itly capture the multi-modal nature inherent to the task of
future prediction. Specifically, given the first t steps s1:t of
a recipe, in video (or textual) format, our model outputs one
or multiple (k � 1) plausible options for the next procedure
step, each expressed as a natural language sentence, i.e.,
{s(1)

t+1, · · · , s(k)
t+1}. To better specify the prediction problem,

we follow the prior work [24, 25, 32] and use the ingredient
list as the 0-th step, s0.

3.2. Model
We illustrate our model in Figure 2. Our model consists

three modules; namely, a single modality encoder, a recipe
encoder and an instruction decoder.

Single-modality (text or video) encoder. Given the ob-
served instruction steps, s0:t, in text or video domain, our
single-modality encoders produce embeddings f0:t. Un-
like prior work [24, 25], we use UniVL [16] language and
video encoders that were pretrained to embed the sentences
or video clips into a common feature space. Additionally,
we augment UniVL (text or video) features with a learnable
projection head, P , such that ft = P (UniVL(st)).

Recipe encoder. The recipe encoder is the core of
our model, it takes in a sequence of embeddings,
f0:t, corresponding to t observed instruction steps, s0:t,
and outputs multiple plausible future step embeddings,
{f 0(1)

t+1 , · · · , f 0(k)
t+1}. It consists of two components: a con-

text encoder and a conditional Variational Auto Encoder
(CVAE).
Context encoder. The context encoder is implemented as a
transformer [28] block. It aggregates past sentence embed-
dings f0:t into a single context vector Rt. To take only the
past history into account, we use causal attention in our con-
text encoder, that is, we only use f0:t to produce Rt. During
training, our context encoder observes all embeddings up to
t � 1 and produces R0:t�1 simultaneously.
Conditional VAE. Our CVAE consists of a posterior net-
work and a prediction head. During training, the poste-
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Figure 2. Detailed view of our GEPSAN. Our GEPSAN consists of three modules: a single-modality encoder (i.e., text or video encoder),
a recipe encoder and an instruction decoder. At training time: A single-modality encoder processes steps s1:t+1 (text or video format)
independently and produces features f1:t+1. Next, given f1:t+1, a recipe encoder reconstructs ft+1 as follows. First, a context encoder
predicts a context vector Rt from f1:t and passes it to a CVAE. Then, in the CVAE, i) a posterior network predicts a posterior distribution
q(zt+1|ft+1, Rt) from f1:t and Rt, and ii) a prediction head reconstructs ft+1 from Rt and a sample zt+1 ⇠ q(zt+1|ft+1, Rt). We denote
the reconstructed ft+1 as f 0

t+1. We pass the above f 0
t+1 to the instruction decoder, which predicts st+1 in natural language. Additionally,

the instruction decoder also decodes ft+1 to predict st+1 in natural language. We train our model using the training objectives shown in
the table on the right. At inference time: Given s1:t (text or video), a single-modal encoder predicts features f1:t. Given f1:t, a context
encoder predicts a context Rt and passes it to the CVAE. In the CVAE, i) we draw multiple samples for zt+1 from a Gaussian prior, and
ii) we pass each zt+1 and Rt to a prediction head, which predicts multiple independent f 0

t+1. Given multiple f 0
t+1, a sentence decoder

predicts diverse and independent alternatives for st+1.

rior network ingests the concatentation of the context vec-
tor, Rt, (i.e., conditional input) and the next sentence em-
bedding, ft+1, and predicts a posterior q(zt+1|ft+1, Rt).
We then sample a latent, zt+1 ⇠ q(zt+1|ft+1, Rt), con-
catenate it with the context vector, Rt, and pass them to
the predication head to predict the embedding of the next
instruction f 0

t+1. During training, we minimize KL diver-
gence between the predicted posterior q(zt+1|ft+1, Rt) and
a standard Gaussian prior with zero mean and unit variance.
Thus, at inference, we discard the posterior network, sample
zt+1 from N (0, I), and follow the same steps as described
above. This way, by using a CVAE on top of the context en-
coder, we essentially learn a distribution of the next steps,
conditioned on the observed step history. Another advan-
tage of the CVAE framework is fast sampling at test time.

Instruction decoder. Given a predicted embedding f 0
t+1,

our instruction decoder decodes the next step in natural lan-
guage. We implement the instruction decoder as a simple
LSTM (not a transformer) as it demonstrated better valida-
tion results.

At inference, we sample one or multiple (k � 1)
z(k)
t+1 from N (0, I) and combine it with a given context

Rt. Subsequently, our CVAE predicts multiple embeddings
{f 0(1)

t+1 , · · · , f 0(k)
t+1} and our sentence decoder decodes each

embedding into a separate and independent alternative for

the next step.

3.3. Training objectives
Our training objective combines three losses that help

GEPSAN capture the probability distribution of next steps,
provide good sentence decoding, and stabilize training.

Conditional evidence lower bound. Conditional Evi-
dence Lower Bound (or conditional ELBO) is the loss used
to train the CVAE and is mostly responsible for capturing
the multi-modal distribution associated with the task of next
step prediction. The conditional ELBO used to train our
model can be expressed as follows:

LELBO(t) = Lpred(t) + �LKL(t). (1)

Lpred(t) = �
Mt+1X

j=1

log p(wj

t+1|w
j
0
<j

t+1 , zt+1, Rt), (2)

LKL(t) = KL[q(zt+1|ft+1, Rt)||N (0, I)], (3)

where zt+1 ⇠ Eq(zt+1|ft+1,Rt) and wj

t+1 is the jth word out
of total Mt+1 words in the (t + 1)th sentence. To avoid
posterior collapse in the early epochs, we introduce � co-
efficient for the KL divergence in the above objective and
anneal � linearly [2].

2991



Auxiliary objective. Previous works [38, 11] suggest that
an auxiliary loss is essential to train a CVAE along with a
seq2seq model. Thus, we introduce an additional auxiliary
loss,

Laux(t) = MSE(f 0
t+1, ft+1). (4)

Note that we compute gradient of the above objective with
respect to f 0

t+1. The embeddings ft+1 act as a target only.
Notably, the auxiliary loss also simplifies the sentence de-
coding process (i.e., Eq. 2) by: i) compelling our CVAE
to reconstruct the embeddings f 0

t+1 given [zt+1; Rt], and ii)
allowing our sentence decoder to decode the (t + 1)th sen-
tence from f 0

t+1.

Sentence reconstruction objective. While the auxiliary
loss is designed to simplify the decoding process, initially,
it is still difficult for the sentence decoder to predict the next
sentence since f 0

t+1 is not yet learnt. Therefore, we also
train our sentence decoder to reconstruct the individual sen-
tences from their projected UniVL embeddings, i.e., ft+1.
Note that ft+1 is a more stable input for the decoder com-
pared to f 0

t+1. The reconstruction objective is,

Lrec(t) = �
Mt+1X

j=1

log p(wj

t+1|w
j
0
<j

t+1 , ft+1). (5)

Our final training objective is:

L =
T�1X

t=0

�
LELBO(t) + ↵Laux(t) + �Lrec(t)

 
. (6)

where ↵ and � are hyperparameters used to balance the
training objectives.

Pretraining domain. Due to its flexible design, GEP-
SAN can ingest instruction step representations s0:t in the
form of text or video. While our final objective is to do
next step prediction purely from video, the size of anno-
tated video-based cooking datasets does not allow us to
train such a model from scratch. Thus, we follow prior
work [24, 25] and pretrain GEPSAN on a large corpus of
text-only recipes. That is, given a sequence of step sen-
tences as input, our pretraining objective is to model the
next step distribution from textual input only, using the
training pipeline and the final loss (in Eq. 6) described
above. After this pretraining stage, the model can be
adapted to take video as input, using a modest amount of
fine-tuning or completely zero-shot.

3.4. Transfer learning
After the model has been pretrained on the text corpus, as

described above, we adapt the model to accept video snip-
pets as input. To do so, we replace the frozen UniVL sen-
tence encoder with the frozen UniVL video encoder. Since

the UniVL video and text features are aligned by design
(i.e., they live in the same embedding space), after the above
switch, our model readily offers strong future step antici-
pation performance, without further fine-tuning or adapta-
tion. We refer to this setting as zero-shot modality trans-

fer. Optionally, to further boost the step anticipation per-
formance, we can finetune GEPSAN on a small annotated
video dataset, as done in previous work [24, 25] by default.
It is important to note that the finetuning stage is essential
for the previous methods to work, and is only optional in
our case, as we can already perform future step anticipation
from video without any finetuning with competitive results
as we later demonstarte in the experiments section.

3.5. Implementation details
For the loss hyperparameters, we set ↵ = 3 for

Recipe1M+, and ↵ = 1 for YouCookII. We set � = 1 in
all cases. For Recipe1M+, we set � = 0.2 with linear KL
annealing to reach that value in 100, 000 steps. � is set to
0.1 for YouCookII. We use the Adam optimizer [15] with
a learning rate of 0.0001, weight decay of 0.01, and a one
epoch linear warm-up. The batch size is set to 50. Re-
garding the architecture, we used a 3-layer residual block
for the UniVL projection head, and a one-layer MLP for
the ingredients regressor that takes as input a one-hot vec-
tor of ingredients (the number of ingredients is 3, 769). The
context encoder is a 6-layer transformer with an input di-
mension of 512 and 8 heads. The posterior network and the
prediction head are both 3-layer MLPs, with the latent vari-
able z having a dimension of 1024. The instruction decoder
is a 3-layer LSTM with a hidden size of 512 and a word
embedding size of 256.

4. Experiments
In this section, we evaluate the performance of GEP-

SAN, our proposed approach, on the task of future step
anticipation, make a comparison to relevant baselines, and
perform an ablation study of the proposed model compo-
nents. We begin by detailing the experimental setup and
adopted evaluation metrics given our newly proposed view,
which takes the multi-modal nature of the task into account
(Sec. 4.1). We then evaluate our model on the main task
of future step anticipation from video input (Sec. 4.2). We
finally show the role of pretraining on a large text-based
dataset, highlight the flexibility of our model that can take
video or text as input, and demonstrate the role of each com-
ponent in our training objective (Sec. 4.3).

4.1. Experimental setup
Datasets. For the text-only pretraining stage, we follow
previous work and take advantage of a large text-based
recipe dataset. Specifically, we use the publicly available
Recipe1M+ dataset [17], which contains over one million
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Model Unseen Split Seen Split
ING VERB B1 B4 MET ING VERB B1 B4 MET

Text ! Video Zero-
shot Transfer

GEPSAN (S) 16.5 24.1 23.0 2.2 8.3 - - - - -
GEPSAN (M) 30.0 28.7 31.4 3.7 11.6 - - - - -

Finetuning
on Video

BASELINE (S) 16.8 26.9 25.1 3.1 9.2 19.6 27.5 25.8 4.0 9.8
GEPSAN (S) 21.5 29.9 27.6 4.8 10.8 25.6 30.8 28.9 5.8 11.8
BASELINE (M)

⇧ 27.8 31.6 33.1 4.4 12.3 32.2 34.2 35.0 5.9 13.7
GEPSAN (M) 31.6 37.8 35.6 7.9 14.5 36.7 38.4 37.1 9.3 15.7

Table 1. YouCookII future anticipation from video input. We report results for two settings: (top) zero-shot text-to-video modality
transfer and (bottom) finetuning on video modality. For each setting, we compare our results with the baseline [24] results (when available)
for single (S) and multiple (M) next step prediction. To achieve single and multiple predictions, we evaluate GEPSAN using latent
zt+1 = 0 (i.e., mean of a Gaussian prior) and five random zt+1 ⇠ N (0, I), respectively. ⇧We use Nucleus sampling [14] to achieve
multiple predictions from the deterministic baseline. Further, we present comparison for recipe-types unseen and seen in the training split.

Model Unseen Split Seen Split
ING VERB B1 B4 MET ING VERB B1 B4 MET

Zero-shot
Dataset
Transfer

BASELINE (S) 22.9 29.1 25.8 3.0 10.0 - - - - -
GEPSAN (S) 20.0 28.3 24.7 3.1 9.4 - - - - -
BASELINE (M)

⇧ 27.1 31.3 29.3 2.5 11.4 - - - - -
GEPSAN (M) 33.3 33.7 32.4 4.7 15.2 - - - - -

Finetuning
on the Target
Dataset

BASELINE (S) 26.9 31.8 30.6 6.6 12.2 29.1 32.9 31.0 7.3 12.8
GEPSAN (S) 28.9 33.7 33.0 7.2 13.2 32.7 35.2 35.0 8.5 14.4
BASELINE (M)

⇧ 38.4 38.8 39.3 8.6 15.8 40.0 39.2 39.6 8.8 16.1
GEPSAN (M) 41.7 42.9 41.4 11.0 17.3 44.6 43.7 43.0 12.3 18.4

Table 2. YouCookII future anticipation from text input. We report results for two settings: (top) zero-shot dataset transfer and (bottom)
finetuning on the target data. For each setting, we compare our results with the baseline [24] results (when available) for single (S) and
multiple (M) next step prediction. To achieve single and multiple predictions, we evaluate GEPSAN using latent zt+1 = 0 (i.e., mean of
a Gaussian prior) and five random zt+1 ⇠ N (0, I), respectively. ⇧We use Nucleus sampling [14] to achieve multiple predictions from the
deterministic baseline. Further, we present comparison for recipe-types unseen and seen in the training split.

cooking recipes to pretrain our model. Then, given that
the main target of the proposed approach is future step an-
ticipation from video input, we follow previous work [25]
and evaluate on the YouCookII dataset [40], a video-based
cooking dataset, (i.e., we use Recipe1M+ for learning pro-
cedural knowledge from text, and showcase transfer learn-
ing to visual domain on YouCookII). YouCookII consists
of 2000 long untrimmed videos (in 3rd person viewpoint)
from 89 cooking recipes. Each video is associated with an
ordered list of steps describing the recipe being performed
in free form natural language, together with start and end
times of each step in the video. Notably, while previous
work also evaluated on the Tasty video dataset [25], it is not
used in this work due to copyright limitations.

Evaluation metrics. Our model predicts next steps in
free-form natural language, therefore, we follow standard
protocol [25, 24] and evaluate using sentence matching
scores, including: BLEU1 (B1), BLEU4 (B4) and ME-
TEOR (MET). Notably, we use the standard corpus-level
calculation method for the BLEU [21] and METEOR

scores, while previous work [25, 24] used the average of
sentence-level BLEU and METEOR scores; see supplement
for a detailed discussion and the complete set of results us-
ing both methodologies.

We also calculate the recall on the set of ingredients
(ING) and verbs (VERB) included in the ground truth sen-
tence, i.e., we calculate the ratio of the verbs and ingredients
in the ground truth predicted by the model. Note that the re-
calls on ING and VERB are stronger indicators of model
performance as they highlight the diversity of the predicted
actions rather than the diversity in the sentence styles.

Importantly, unlike previous work, our approach can pre-
dict either multiple (M) plausible next steps or a single

(S) next step (i.e., by setting the latent zt+1 to the maxi-
mum likelihood sample from the latent prior distribution,
N (0, I), which happens to be a zero vector). To evaluate
our approach in the multiple setting using the same evalua-
tion metrics described above, we have to select just one out
of k predicted next steps, since we only have one ground-
truth in the dataset. To do so, we pick the predicted step
that is closest to the ground truth sentence using the Jaccard
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Ingredients: salt, pepper, 
flour, chicken, eggs, 
bread, oil, parmesan 

cheese, marinara sauce

Coat chicken with flour, then 
egg, then bread crumbs.

Mix flour, salt, pepper, and 
parmesan cheese in a bowl.

Mix flour and salt together.

Cut the chicken Pound the chicken

G
EPSA

N
…

Remove the peppers from the 
oven and cut into small pieces.

While the peppers are roasting, 
prepare the salsa.

The peppers should be soft and 
the skin should be charred.

G
EPSA

N

Take 2 peppers and 1 green 
bell pepper take out the 
seeds and cut it into half

Grease the pan and place them 
upside down at 400 degrees for 

30 minutes in the oven

When it is done take out and 
cover them up and let them 
steam in its heat for 15 mins

Slice up the ginger finely

Place in a large saucepan and 
add water to cover.

…
Add in to liquid.

Add in salt and pepper to taste.

Chop the green chiles Add chile powder

G
EPSA

N

! − $ !

Figure 3. Qualitative results on the Text ! Video Zero-shot Transfer without any finetuning on videos. Please note that only the
video is passed to the model as input, the text here is provided for context.

Similarity (Intersection over Union). Precisely, we treat the
words in each sentence as a Bag of Words (BoW) and cal-
culate the Jaccard similarity between each predicted sen-
tence and the ground truth. Notably, we elect to use Jaccard
similarity here as it is a well accepted metric for comparing
two sentences, but any alternative metric for comparing sen-
tences can be used for this step. Intuitively, this inference
procedure is meaningful because the model samples multi-
ple plausible next steps, only one of which is contained in
the labels, so the matching step described above associates
the ground-truth with the closest predicted sample. k is set
to 5 in all the experiemnts. See supplement for the impact
of increasing k on the results.

Baselines. We use previous state of the art for future step
anticipation from cooking videos [24]2 as our main BASE-
LINE and compare our single (S) prediction setting directly
to it. For our multiple (M) next step prediction setting, there
is no directly comparable baseline, to the best of our knowl-
edge. Therefore, we augment our main BASELINE with a
simple approach to generate multiple next steps. Specifi-
cally, we replace the deterministic greedy approach used in
the decoder of the BASELINE, with the Nucleus sampling
method [14] to generate k alternatives for the next step.

4.2. Results
YouCookII video-based future anticipation. As previ-
ously mentioned, the main target of this work is future

2We use the code shared with us by the authors.

step anticipation given video input. Note that we evaluate
both the single (i.e. deterministic) and multiple (i.e. gen-
erative) prediction versions of our approach in two main
settings; namely, (i) text ! video zero-shot transfer and
(ii) with video finetuning. In the zero-shot modality trans-
fer setting, we use our model pretrained on the text-based
Recipe1M+ dataset, and directly replace the textual input
with visual input from the YouCookII dataset, and use the
UniVL video encoder instead of the text encoder. In the
modality finetuning setting, we further finetune the model,
except for the pretrained UniVL encoder, on the training
split of YouCookII.

In addition to the variations in terms of training settings,
we follow previous work [24] and also assess our model on
two different splits of the YouCookII dataset; namely, (i)
unseen split, containing recipes never seen during training,
and (ii) seen split, containing only seen recipes [24].

Table 1 summarizes our main results on the YouCookII
dataset. The results of both variants of our model (i.e., (S)

vs. (M) ) compared to the baseline speak decisively in favor
of our approach, where we outperform the baseline under all
settings in all the considered metrics. Notably, comparing
our model to the baseline in the zero-shot modality trans-
fer setting is not possible, as the baseline relies on train-
ing a new model for the visual modality. In contrast, we
judiciously use modality encoders that were pretrained, in
unsupervised settings, such that visual and language repre-
sentations share a common embedding space. This strategy
allowed us to focus on pretraining a stronger recipe encoder,
which is reflected in results reported in Table 1.
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Importantly, comparing the multiple (M) prediction to
single (S) prediction settings, highlights the importance of
modeling the uncertainty inherent to the task of future an-
ticipation, where a model yielding multiple plausible out-
puts better captures possible future steps, as evidenced by
(M) results always outperforming (S) results. Figure 3 illus-
trates some qualitative results from GEPSAN (M) , thereby
further validating the relevance of the multiple plausible fu-
ture step predictions. Obtaining corresponding quantitative
results to better quantify the plausibility of the generated
next steps is unfortunately not possible in the absence of
a dataset capturing multiple feasible ground truths, which
would allow calculating precision. Curating such a dataset
is outside the scope of this paper.

YouCookII text-based future anticipation. While our
main goal is video-based future step anticipation, for the
sake of completeness we also evaluate our model on text-
based future anticipation. The results of predicting multi-

ple plausible next steps in Table 2 further confirm the su-
periority of our approach and the importance of capturing
the uncertainty inherent to the task of future prediction.
As expected, the results with text-based input are better,
compared to the visual-based input, as there is no modal-
ity change in these settings. However, although there is no
change of modality here, the results before and after finetun-
ing indicate that there is a difference in the distributions of
the two datasets. More generally, these results highlight the
flexibility of our model that can readily use either textual
or visual input in zero-shot settings, unlike previous work
[24].

4.3. Ablations
Contribution of the different training objectives. We
evaluate the role of each loss component by gradually re-
moving each objective. The results in Table 3 confirm the
pivotal role of the auxiliary loss, Laux, to train the CVAE
as mentioned in Sec. 3.3. The prediction loss, Lpred, also
plays an important role in boosting performance. Note that
removing the KL divergence, LKL, leads to model diver-
gence. Finally, while the results in Table 3 suggest that the
reconstruction loss, Lrec, does not contribute much to the
model, during our experiment we noted that it plays an im-
portant role earlier during training and helps in faster and
smoother convergence.

Recipe1M+ pretraining. Additionally, we include a
comparison of the pretraining phase performance on the
Recipe1M+ text dataset in Table 4. In the single (S) pre-
diction setting, our performance is on-par, or slightly sub-
par, with the BASELINE, which suggests that when training
on a large textual dataset, it might be beneficial to learn the
text encoder from scratch instead of using the pre-trained

Model Recipe1M+ (Textual)
ING VERB B1 B4 MET

GEPSAN (S) 27.2 28.5 25.9 7.5 11.2
GEPSAN (M) 37.2 36.2 32.2 10.7 14.6

w/o Laux (S) 26.8 27.9 23.9 7.4 10.9
w/o Laux (M) 29.4 29.2 25.4 8.2 11.6

w/o Lpred (S) 25.7 29.0 25.9 5.2 11.0
w/o Lpred (M) 34.0 35.4 33.2 7.7 13.8

w/o Lrec (S) 27.7 28.3 25.7 7.3 11.0
w/o Lrec (M) 36.6 36.5 32.2 10.8 14.6

Table 3. Ablation Study for the text-based future anticipation
on Recipe1M+. We assess contribution of the individual training
objectives during the model pretraining phase. We report results
for single (S) and multiple (M) next step prediction. To achieve
single and multiple predictions, we evaluate GEPSAN using latent
zt+1 = 0 (i.e., mean of a Gaussian prior) and five random zt+1 ⇠
N (0, I), respectively.

Model ING VERB B1 B4 MET

BASELINE (S) 27.0 29.4 24.1 7.8 11.3
GEPSAN (S) 27.2 28.5 25.9 7.5 11.2

BASELINE (M)
⇧ 34.7 34.6 31.7 9.4 14.2

GEPSAN (M) 37.2 36.2 32.2 10.7 14.6
Table 4. Text-based future anticipation results on Recipe1M+.
We compare our results with the baseline [24] results for single (S)

and multiple (M) next step prediction. To achieve single and mul-
tiple predictions, we evaluate GEPSAN using latent zt+1 = 0
(i.e., mean of a Gaussian prior) and five random zt+1 ⇠ N (0, I),
respectively. ⇧We use Nucleus sampling [14] to achieve multiple
predictions from the deterministic baseline.

UniVL encoder (though the opposite is true for testing on
video). However, GEPSAN outperforms the baseline in the
(M) prediction setting even with the sub-optimal text en-
coder, which shows that our model can capture the multi-
modal nature of the task under such settings as well. No-
tably, if the model is trained from scratch on YouCookII,
the performance collapses, which shows the importance of
the pretraining phase given data scarcity in the video do-
main, and the difficulty of training a generative model on
such a small dataset.

5. Conclusion
In this work, we have addressed the problem of next

step prediction from instructional videos (focusing on cook-
ing activities). In particular, we have proposed GEPSAN,
a generative next step prediction model that concentrates
on capturing the uncertainty inherent to the task of future
step anticipation, which was largely overlooked in previous
work tackling this task in realistic open-world setting (i.e.,
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not relying on a predefined closed set of step labels). In
addition, we showed that GEPSAN can effectively capture
multiple feasible future realizations, and outperforms exist-
ing baselines on video anticipation, with or without domain-
specific adaptation, i.e., zero-shot, thanks to the judicious
use of aligned modality representation. We hope that this
work will open up new avenues for future research that au-
tomatically considers multiple possible future realizations
in open world next step prediction, with datasets and met-
rics that better support evaluation under these settings.
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