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Figure 1: Despite their remarkable ability to generate plausible images from text descriptions, diffusion models fail to be
faithful to multiple concepts in the input text. We identify the issues causing this pitfall, and propose a training-free method
to fix them. We propose two new loss functions, attention segregation loss and attention retention loss, that only require test
time optimization to drive the diffusion process and produce substantially improved generation results. We can note from
these results that our method captures all key concepts in the input prompt as opposed to baseline Stable Diffusion [21].

Abstract there are several limitations. By analyzing the cross-

attention representations of these models, we notice two key

While recent developments in text-to-image generative issues. First, for text prompts that contain multiple con-
models have led to a suite of high-performing methods ca- cepts, there is a significant amount of pixel-space overlap
pable of producing creative imagery from free-form text, (i.e., same spatial regions) among pairs of different con-
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cepts. This eventually leads to the model being unable to
distinguish between the two concepts and one of them being
ignored in the final generation. Next, while these models
attempt to capture all such concepts during the beginning
of denoising (e.g., first few steps) as evidenced by cross-
attention maps, this knowledge is not retained by the end
of denoising (e.g., last few steps). Such loss of knowledge
eventually leads to inaccurate generation outputs.

To address these issues, our key innovations include
two test-time attention-based loss functions that substan-
tially improve the performance of pretrained baseline text-
to-image diffusion models. First, our attention segregation
loss reduces the cross-attention overlap between attention
maps of different concepts in the text prompt, thereby re-
ducing the confusion/conflict among various concepts and
the eventual capture of all concepts in the generated output.
Next, our attention retention loss explicitly forces text-to-
image diffusion models to retain cross-attention informa-
tion for all concepts across all denoising time steps, thereby
leading to reduced information loss and the preservation of
all concepts in the generated output. We conduct extensive
experiments with the proposed loss functions on a variety of
text prompts and demonstrate they lead to generated images
that are significantly semantically closer to the input text
when compared to baseline text-to-image diffusion models.

1. Introduction

The last few years has seen a dramatic rise in the capa-
bilities of text-to-image generative models to produce cre-
ative image outputs conditioned on free-form text inputs.
While the recent class of pixel [20, 23] and latent [21] dif-
fusion models have shown unprecedented image generation
results, they have some key limitations. First, as noted in
prior work [3, 27, 2], these models do not always produce a
semantically accurate image output, consistent with the text
prompt. As a consequence, there are numerous cases where
not all subjects of the input text prompt are reflected in the
model’s generated output. For instance, see Figure 1 where
Stable Diffusion [21] omits ship in the first column, crown
in the second column, and salmon in the third column.

To understand the reasons for these issues, we compute
and analyze the cross-attention maps produced by these
models during each denoising time step. Specifically, as
noted in prior work [5], the interaction between the input
text and the generated pixels can be captured in attention
maps that explicitly use both text features and the spatial
image features at the current time step. For instance, see
Figure 2 that shows per-subject-token cross-attention maps,
where one can note high activations eventually lead to ex-
pected outputs. By analyzing these maps, we posit we can
both understand why models such as Stable Diffusion fail
(as in Figure 1) as well as propose ways to address the is-

Generated Image Bird

Prompt: cat and bird Average attention maps across all timestamps

Figure 2: Cross-attention maps for cat and bird.

Prompt: a bear and a turtle

Stable Diffusion Stable Diffusion + Attend-Excite Stable Diffusion + A-STAR
= e

bear turtle bear turtle bear turtle

Figure 3: Our proposed method reduces the overlap be-
tween various concepts’ attention maps, leading to reduced
confusion/conflicts and improved generation results when
compared to baseline models. In this example, one can note
much less overlap in the high-response regions for bear and
turtle with our method when compared to baselines.

sues.

Based on our observations of these cross-attention maps,
we notice two key issues with existing models such as Sta-
ble Diffusion [21] that lead to incorrect generation out-
puts. First, in cases that involve multiple subjects in the
text prompt, we notice the presence of a significant amount
of overlap between each subject’s cross-attention map. Let
us consider the example in Figure 3. We compute the av-
erage (across all denoising steps) cross-attention maps for
bear and turtle and notice there is significant overlap in the
regions that correspond to high activations. We conjecture
that because both bear and turtle are highly activated in the
same pixel regions, the final generated image is unable to
distinguish between the two subjects and is able to pick only
one of the two. Note that even exciting the regions as done
in Attend-Excite [2] does not help to alleviate this issue. We
call this issue with existing models as attention overlap.

Our next observation is related to an issue we call at-
tention decay of text-to-image diffusion models. Let us
consider the result in Figure 4 where we show the cross-
attention maps for dog, beach, and umbrella across mul-
tiple denoising time steps for the Stable Diffusion model
[21]. One can note that in the beginning of the diffusion
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Prompt: a dog is on the beach with an umbrella

Stable Diffusion A-STAR

Dog Beach Umbrella

Umbrella Dog Beach

Stable Diffusion
Dog
A-STAR

Stable Diffusion
Beach
A-STAR

Stable Diffusion
Umbrella
A-STAR

Cross-attention maps with increasing denoising steps

Figure 4: Our proposed method ensures information reten-
tion for all concepts across all denoising steps, leading to
improved generation. In this example, one can note pixel
activations for dog, beach, and umbrella are retained across
all steps with our method when compared to the baseline.

process (e.g., steps 1-3), cross-attention maps for all three
concepts were highly activated but this was not retained by
the time we reach the end of all the diffusion steps. In the
end (see last column in the figure), one can note the pixel re-
gions that were initially highly activated for these concepts
are now either very sparsely activated or not activated at all.
This suggests while the Stable Diffusion model is trying to
capture all concepts in the input prompt during the early
stages of diffusion, it is not able to retain this knowledge.
This non-retention of information by the end of the diffu-
sion process leads to the model missing out various parts of
the text input in the generated output. For instance, in Fig-
ure 4, one can note umbrella is very sparsely activated at the
end (even though this was not the case in step 1), leading the
Stable Diffusion’s [21] generated output missing it. Please
note that both these issues of attention overlap and decay
are prevalent in many cases and we illustrate the same in
supplementary material due to space constraints.

To address the aforementioned issues, we propose two
new loss functions that only require inference-time opti-
mization and no retraining of the base text-to-image diffu-
sion models. First, our attention segregation loss tackles
the attention overlap issue noted above by explicitly min-

imizing the overlap of high-response regions in the cross-
attention maps of all concept pairs. Our key insight here
is by explicitly segregating the pixel regions that are highly
activated for a pair of concepts, we ensure the model cap-
tures knowledge about both concepts, thereby generating
both in the final output at the end of the denoising process.
Next, our attention retention loss tackles the attention de-
cay issue above by explicitly ensuring information retention
across denoising time steps. We realize this by computing a
mask for each concept’s cross-attention map from the pre-
vious time step and ensuring the highly activated regions in
the current time step’s attention map is consistent with this
mask. Our key insight here is by retaining highly-activated
pixel regions for each subject across the entire denoising
process, we explicitly equip the text-to-image model with
the ability to retain all relevant knowledge by the end of de-
noising, thereby leading to improved generations. We show
some results with our proposed losses in Figures 3 and 4.
In Figure 3, our method reduces the overlap between the
bear and turtle attention maps, leading to improved genera-
tion when compared to baseline Stable Diffusion. Note that
our method gives better results when compared to Attend-
Excite [2] since this technique only ensures all attention
maps are activated but does not explicitly account for any
overlap issues that we have identified. Next, in Figure 4, as
can be seen from the progression of the attention maps, our
method is able to retain high-response regions across the
denoising steps, resulting in the final generation capturing
all three concepts as opposed to baseline Stable Diffusion.

To summarize, our key contributions are below:

* We identify two key issues with existing text-to-image
diffusion models, attention overlap and attention decay,
that lead to semantically inaccurate generations like in
Figure 1.

* We propose two new loss functions called attention seg-
regation loss and attention retention loss to explicitly ad-
dress the above issues. These losses can be directly used
during the test-time denoising process without requiring
any model retraining.

 The attention segregation loss minimizes the overlap be-
tween every concept pair’s cross-attention maps whereas
the attention retention loss ensures information for each
concept is retained across all the denoising steps, leading
to substantially improved generations when compared to
baseline diffusion models without these losses. We con-
duct extensive qualitative and quantitative evaluations to
establish our method’s impact when compared to several
baseline models.

2. Related Work

Before the emergence of large-scale diffusion models for
conditional image synthesis, much effort was expended in
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using generative adversarial networks [8, 34, 35, 17, 9] and
variational autoencoders [7] for either conditional or uncon-
ditional image synthesis. With text-conditioned image syn-
thesis having many practical applications, there was also
much recent work in adapting generative adversarial net-
works for this task [24, 29, 31, 33, 36]. However, with the
dramatic recent success of diffusion models [16, 21, 23, 20],
there have been a large number of efforts in very quick time
to improve them. In addition to methods such as classifier-
free guidance [6], there were also numerous efforts in the
broad area of prompt engineering [14, 27, 28, 4] to adapt
prompts so that the generated image satisfied certain desired
properties. Other recent efforts also seek to customize these
diffusion models [30, 12, 32, 1, 15] to user inputs.
However, as discussed in Section 1, existing text-to-
image diffusion models are not able to capture all concepts
in the input prompt, leading to semantically undesirable
outputs. There have been some recent efforts to address this
issue. In Liu et al. [13], the authors proposed a composi-
tion of diffusion models to generate the final output. How-
ever, this method often fails to generate realistic composi-
tions and is limited to specific object properties. In Chefer
et al. [2], the authors proposed to manipulate cross-attention
maps by maximizing the activations of the most neglected
concepts in the generated outputs. While this does take a
step towards addressing the issue above, it fails in several
cases (see Figure 3 and 7) because attention maximization
does not necessarily ensure all concepts are captured. As
we discussed in Section 1, overlap between two concepts’
cross-attention maps and the non-retention of high activa-
tions over time are two critical issues that impact the final
generations. We address these issues with new test-time loss
functions that explicitly reduce attention overlap and ensure
high-activation knowledge retention across denoising steps,
leading to improvements over not only base models like Sta-
ble Diffusion [21] but also add-ons like Chefer et al. [2].

3. Approach
3.1. Latent Diffusion Models and Cross Attention

We start with a brief review of latent diffusion mod-
els (LDMs) and the associated cross-attention computation
mechanism. LDMs comprise an encoder-decoder pair and
a separately trained denoising diffusion probabilistic model
(DDPM). In Rombach et al. [21], the encoder-decoder pair
is a standard variational autoencoder where an image I €
RW>*Hx3 jg encoded to a latent code z = E(I) € Rh*wxe
of much smaller spatial resolution (when compared to I) us-
ing the encoder E. A decoder D is trained to reconstruct the
image I ~ D(z). The DDPM operates on the learned latent
representations of the autoencoder (regularized using stan-
dard KL-type losses [10, 25]) in a series of denoising steps.
In each step ¢, given the current latent code z;, the DDPM
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Figure 5: A visual illustration of the proposed A-STAR al-
gorithm. See Eq. 2 for Lgg and Eq. 3 for Ly.
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is trained to produce a denoised verison z;_;. This process
can be conditioned using external conditioning factors, and
this typically is the output of a text encoder L (e.g., CLIP
[18], TS [19]). Given the input text prompt p’s encoding
L(p) using the text encoder L, the DDPM €g, parametrized
by @O, is trained to optimize the following loss:

EznB®@),p.e~n (0,1t ll€ — €0 (2, L(p), 1) ][] (D

Once the models (both autoencoder and DDPM) are trained,
generating an image involves getting the text encoding
of the input prompt L(p), sampling a latent code zp ~
N(0,1), running T denoising steps using eg to obtain zo,
and finally decoding using D to get I' = D(z).

In practice [21], the eg model is implemented using the
UNet architecture [22] with both self- and cross-attention
layers. The cross-attention layers is where explicit text infu-
sion happens using cross-attention [26] between projections
of both L(p) and z;. As shown in prior work [2, 5], this re-
sults in a set of cross-attention maps A; € R™*™*N (r = 16
from Hertz et al. [5]) at each denoising step ¢ for each of N
tokens (tokenized using L’s tokenizer) in the input prompt
p. From Figure 2, the cross attention map of cat and bird is
indeed attending to the corresponding spatial location.

3.2. A-STAR: Attention Segregation and Retention

As noted in Section 1,
we identify two key issues,
attention overlap and atten-
tion decay, with existing
models that result in se-
mantically incorrect gener-
ations. Here, we first dis-
cuss our intuition that leads
to these issues and then de-
scribe our proposed solu-
tions to alleviate them. Let
us consider the prompt a
cat and a dog. Using this

A cat and a dog

Figure 6: Stable Diffusion
results with varying seeds.
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input, we generate images using base Stable Diffusion [21]
with varying seeds. In more than 80% of the seeds, we no-
tice either cat or dog were missing (see Fig 6).

For a very small number of seeds, we notice both cat
and dog showing up in the final result (see bottom-right in
Fig 6). This suggests that while the DDPM model has all the
semantic information it needs, the path it takes to the final
denoising result affects the generated image (and based on
this analysis and results in Figure 1, in most cases it ends
up taking an undesirable path). To understand why, we look
at the cross-attention maps that led to results in Figures 3
and 4.

In Figure 3, we notice at a particular step in the denoising
process, there is significant overlap in the highly-activated
pixel regions for both bear and turtle (i.e., high activations
in same local image regions). Put another way, this is like
saying the DDPM is considering putting both bear and fur-
tle in the same local regions in the final generated image,
leading to a clear case of confusion. As can be seen from
the result (column 1), this is indeed the case, with only bear
(no turtle) in the final generation. We call this issue atten-
tion overlap. In Figure 4, we notice that the DDPM has
information on all concepts during the beginning of the de-
noising process, it is unable to retain this knowledge as de-
noising proceeds. See the cross-attention maps from Stable
Diffusion in column 1, where one can note dog, beach, and
umbrella all have high activations at step T but this is lost
by the time DDPM reaches ¢t = 0 (only dog and beach have
high activations whereas umbrella is lost). Consequently,
the image decoded with z, does not have all the concepts
(see base Stable Diffusion result where only dog and beach
show up). We call this issue attention decay. Our intuition
and the results in Figures 3 and 4 suggests if we are able to
correct the issues above with these intermediate represen-
tations, we will be able to guide the DDPM denoising pro-
cess in the right direction that eventually gives a z, that can
be decoded into a semantically-expected generation. This
is where our contributions lie with two new test-time (no
model retraining) loss functions we discuss next. We visu-
ally summarize our proposed method in Figure 5.

3.3. Attention Segregation Loss

As discussed above, one key issue with existing work
[21] is the overlap (in highly activated regions) between
cross-attention maps of various concepts, resulting in con-
fusion that leads to the model to skip several of them in the
final generation. Recall the results in Figure 1 where base-
line Stable Diffusion [21] misses out the ship in the first
example, the crown in the second example, and the salmon
in the third example. Our key insight to address this issue is
simple: eliminate this source of model confusion by reduc-
ing this attention overlap as much as possible. By doing so,
we explicitly force the DDPM denoising process to have

separate, highly activated regions for each concept. This
eventually leads to a zg that is representative of all concepts
that can be decoded to the desirable image. We realize this
idea with our attention segregation loss. This loss operates
on a pair of cross-attention maps, one for each concept, at
each time step ¢. In cases where there are more than two
concepts, we aggregate this loss over all possible pairs from
the set of concepts C. For instance, in the second example of
Figure 1, we consider the frog-crown pair for this purpose.
Given A}" and A} to be a pair of cross-attention maps for
concepts m, n € C at the time step ¢, our proposed attention
segregation loss is defined as:

fo= Y | BT S
vm>n

(@)

where [A}"];; is the pixel value at the (7,7) location.
At its core, the attention segregation loss seeks to segre-
gate/separate the high-response regions for A" and A}
by calculating and reducing their intersection-over-union
(IoU) value. By aggregating over all pairs, this ensures all
concepts have such separated regions. Some results with
and without this loss are in Figure 2, where one can note
improved separation between the bear and turtle attention
maps which then leads to a more desirable output image.

3.4. Attention Retention Loss

The next contribution of our paper addresses the issue of
attention decay discussed in Sections | and 3.2. As dis-
cussed previously in Figure 4, the base Stable Diffusion
model has information about all key concepts in the begin-
ning of the denoising process but is not able to retain it by
the time we reach ¢ = 0. Our key insight to address this is-
sue is to explicitly force the model to retain the information
throughout the denoising process by means of consistency
constraints. By doing so, we explicitly ensure the DDPM
denoising process will produce a z, that has information
about all concepts and can be decoded to the desired image.

We realize the idea above with our proposed attention re-
tention loss. Given the attention map A}" of concept m € C
at timestep ¢, we determine the pixel regions with high acti-
vations and binarize the result to obtain its binary mask B}".
Given we seek the retention of information from time step ¢
tot — 1, we use B}" as a proxy for ground truth and ensure
high response regions in the next time step’s attention map
Aj}" | are consistent with B}". This can be formalized as a
simple IoU maximization objective between A" ; and B}".
We repeat this for all the concepts and aggregate the result-
ing loss, giving us our proposed attention retention loss:

_ 2y min([AY ], [BY"]ij)
L= 2 1= S I+ BET)

meC

3)
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A bird and a red chair A yellow bowl and a turtle A cat and a frog A bear and a turtle

Attend-Excite Structure Diffusion Composable Diffusion Stable Diffusion

A-STAR

Figure 7: Comparison of A-STAR with recent state-of-the-art methods. For each prompt, we generate four images.

where as before [A]" ;];; is the pixel value at the (3, j) from previous time steps, thereby alleviating the attention
location. By seeking to maximize the IoU between A", decay issue. Note that the binary mask B}* in Equation 3
and B}", we force the DDPM process to retain information is updated at each time step. We show some results before
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A monkey with banana and a

red brick wall in background A white horse and a green bird

Stable Diffusion

A-STAR

Figure 8: More comparisons with Stable Diffusion.

and after this loss in the A-STAR row in Figure 4 where
one can note substantially improved information retention
(e.g., highly activated umbrella with our method vs. Stable
Diffusion). Since we retain information for all concepts,
the DDPM gives a zg that captures all of dog, beach, and
umbrella in the final output when compared to the baseline.

3.5. Optimizing LDMs with A-STAR

Our overall loss function (see also Figure 5) includes
both attention separation and attention retention loss as:

L= Eseg + ACret (4)

We now only need to direct the latent code at the cur-
rent time step z; in the right direction as measured by
this overall loss (see the intuition for our proposed losses
again in Section 3.2). We realize this with a latent update:
z; = Z; — oy - Vg, L, Where oy is the step size of the gradient
update. This updated z; is then used in the next denoising
step to obtain z;_1, which is then again updated in a similar
fashion (and the process repeats until the last step).

4. Results

Given the unavailability of standard benchmarks to eval-
uate text-to-image models, we use a mix of commonly
used prompts for qualitative evaluation and the protocol in
prior work [2] for a quantitative evaluation. In particular,
this involves constructing prompts with two subjects in the
following fashion: [animalA-animalB], [animal-color], and
[colorA; objectA-colorB; objectB]. We do evaluate on much
more complex prompts as well (see Figures | and 8).

Qualitative Results. We first begin by discussing our
generation outputs. In Figure 7, we compare A-STAR’s re-
sults with other recent competing methods like Composable
Diffusion [13], Structure Diffusion [3] and Attend-Excite
[2], and one can note A-STAR clearly outperforms these
techniques. For instance, in the first column, all of Stable
Diffusion [21], Composable Diffusion [13], and Structure
Diffusion [3] are not able to capture the two concepts of
bird and red chair whereas A-STAR is able to, showing
the importance of having two well segregated and activated
attention regions that are retained across denoising steps.
Further, as can be seen from the Attend-Excite [2] results,
the chair is either not fully visible (first two images) or is
conflated into the bird (bottom-right), suggesting that sim-
ply maximizing patches in attention maps will not ensure
the holistic properties of all concepts are captured. Simi-
lar observations can be made from results in the other three
columns as well. We also observe significant qualitative
improvements with A-STAR in the binding of attributes to
these concepts. For instance, while competing methods do
incorrect binding (e.g., many baseline generations have red
attribute transferred to bird as well in column 1, the yel-
low attribute transferred to turtle as well in column 2), our
method is able to resolve this correctly (e.g., only red chairs
and yellow bowls in our results).

Next, in Figure 8,
we compare our re-
sults with baseline
Stable Diffusion [21]
on more complex
prompts. In the
first column, while the
baseline is either miss-
ing one of the three
concepts (e.g., banana
in many cases) or
mixing them up (e.g.,
monkey in banana
appearance), A-STAR
captures all of them
as desired. Similarly, A-STAR generates both the white
horse and the green bird as desired. We end this section
with some qualitative ablation results that demonstrate the
impact of our losses. In Figure 10, we show the result of
incrementally adding our losses to base Stable Diffusion
[21]. When we add L., the salmon shows up since it was
previously omitted due to cross-attention overlap between
salmon and bear. When we add L., the forest shows up
since its information was present in the first few timesteps
and hence retained with L,..;. Finally, we achieve both
these aspects as expected with L,cq and L;.¢;.

oY A S A
SD+Lyet SD+L59g + Lyet
Prompt: A grizzly bear catching a salmon in a
crystal clear river surrounded by a forest

Figure 10: Ablation results.

Quantitative Results. We follow existing protocol [2]
and quantify performance with CLIP [18] distances. We
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Figure 9: Average CLIP image-text similarities between the text prompts and the images generated by each method

Method \ Animal - Animal  Animal - Object  Object - Object Method \ Animal - Animal  Animal - Object  Object - Object
Stable [21] 0.76 (-7.9%) 0.78 (-7.7%) 0.77 (-6.5%) Stable [21] 2.2% 6.7% 3.0%
Composable [13] 0.69 (-18.9%) 0.77 (-9.1%) 0.76 (-7.9%) Attend-Excite [2] 3.0% 14.1% 13.3%
Structure [3] 0.76 (-7.9%) 0.78 (-7.7%) 0.76 (-7.9%)

A-STAR 94.8% 79.2% 83.7%
Attend-Excite [2] 0.80 (-2.5%) 0.82 (-2.4%) 0.81 (-1.2%) ‘ 2 ? 2
A-STAR | 0.82 0.84 0.82 Table 3: Results from a user survey with 26 respondents.

Table 1: Text-text similarities between the text prompts and
BLIP-generated captions over the generated images.

Method ‘ Animal - Animal  Animal - Object  Object - Object
Stable [21] 0.76 0.78 0.77
Stable + L, 0.78 (+2.5%) 0.83 (+6.4%) 0.79 (+2.6%)
Stable + Licq 0.79 (+4.0%) 0.82 (+5.1%) 0.80 (+3.9%)

Stable + Lyct + Lseg 0.82 (+7.9%) 0.84 (+7.7%) 0.82 (+6.5%)

Table 2: Ablation results for text-text similarities.

first generate 64 images with randomly selected seeds and
compute the average image-text cosine similarity using
CLIP for each prompt. Here, as in prior work [2], we use
both full prompt similarity (i.e., cosine similarity between
full prompt and generated image) and minimum object sim-
ilarity (i.e., minimum of the two similarities between gener-
ated image and each of the two subject prompts) and re-
port results in Figure 9. A-STAR outperforms the base-
lines across both metrics across all the three categories. In
particular, it outperforms Attend-Excite [2] by 2.9% and
1.4% across all three subsets for full prompt similarity and
minimum object similarity respectively (the correspond-
ing improvements over Stable Diffusion [21] are 7.1% and
10.8%).

We also compute text-text similarities by captioning the
generated images with BLIP [1 1] and comparing them with
the input prompt. See Table 1 where much higher similari-
ties with A-STAR is indicative of the semantic correctness
of the generated results with our method. In the supple-
mentary material document, we provide additional text-text
similarity results with other standard metrics as well. Fi-
nally, we also quantify the impact of each of our losses in
Table 2 where we compute text-text similarities as above.
While each loss individually improves baseline [2 1] perfor-
mance, the full model achieves the highest improvement,

indicating the losses’ complementarity. A graph similar to
Figure 9 for this ablation experiment can be found in the
supplementary material.

User study. Finally, we conduct a user study with the
generated images where we ask survey respondents to select
which set of images (among sets from three different meth-
ods, see Table 3) best represents the input text semantically.
We randomly sample five prompts for each of the animal-
animal, animal-object, and object-object categories in Ta-
ble 3 and generate four different images for each prompt us-
ing each of Stable Diffusion [21], Attend-Excite [2], and A-
STAR. From Table 3, our method’s results are preferred by
a majority of the survey respondents, thus providing addi-
tional evidence for the impact of our proposed losses on the
semantic faithfulness of the images generated by A-STAR.
Supplementary material has more details.

5. Additional Results and Discussion

In Figure 11, we show additional results. In Figure 11(a),
we show more results with a diverse set of prompts where
A-STAR outperforms baseline Stable Diffusion (e.g., base-
line misses out on the bottle in the second row and lotus
in the third row). In Figure 11(b), we show an example
with five concepts, where one can note the baseline misses
out on the bowl and the cat. In Figure 11(c), we show
the improvements over Stable Diffusion is consistent with
higher versions of the baseline checkpoint (e.g., we show
improvements over the v2.1 version here). In Figure 11(d),
we show results with the same object performing a variety
of actions. Note that while A-STAR ensures presence of
both cat and ball, the quality of relations between them is
limited by the base model’s capability. In Figure 11(e),
we show an ablation for the number of steps for which to
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(f) Extra time over SD (in sec)

(g) Jaccard Similarity

Figure 11: (a) and (b) Additional results comparing A-STAR’s performance with baseline Stable Diffusion on a variety of
prompts and concept types. (c) Comparing A-STAR’s performance with the baseline when using a different version of Stable
Diffusion checkpoint. (d) Demonstrating A-STAR’s performance with a variety of action/relation types. (e) Impact of the
proposed losses when applied to only a fraction of the denoising timesteps. (f) Additional compute time needed over baseline
Stable Diffusion for A-STAR and Attend-and-Excite [2]. (g) Additional results comparing A-STAR with Attend-and-Excite

[2] using the Jaccard similarity metric.

Prompt: cat and dog in garden

Prompt: cat and dog in garden

Figure 12: Example results to show an application of our
attention retention loss.

run A-STAR optimization, where we can note using it for
only a few steps (e.g., first five) leads to the model missing
out on key concepts. In Figure 11(f), we show the extra
compute time (over baseline Stable Diffusion) needed by
A-STAR and compare it to Attend-Excite [2]. Finally, in
Figure 11(g), we provide additional quantitative results to
go with the ones in Tables | and 2 where we use the Jaccard
similarity to show A-STAR outperforms Attend-Excite [2]
despite its competitive performance.

Other applications: An interesting application of our
proposed attention retention loss is the ability to generate
layout-constrained images. Instead of the automatically
computed ground-truth masks as discussed in Section 1.2
above, these masks can be supplied directly by the user.

More specifically, the users can delineate where they want
certain concepts to show up in the final generation by means
of binary layout maps. For instance, in the first example (top
left) in Figure 12, a user may specify the cat to show up at
the top-left region in the image and the dog to show up in
the middle-right region in the image. Given masks reflect-
ing this layout constraint, we can apply our attention reten-
tion loss with these masks and generate images constrained
by these inputs. One can note in the results that this indeed
is the case, with the cat being generated in top-left image
region and the dog being generated in the middle-right re-
gion in the first example. Similar observations can be made
from the other two examples.

6. Summary

In this work, we notice that several baseline diffusion
models are not faithful in capturing all the concepts from an
input prompt in the generated image, and identify two key
issues that contributes to this behavior. First, in many cases,
there is significant pixel overlap among concepts in their
intermediate attention maps that leads to model confusion,
and second, these models are not able to retain knowledge
(in attention maps) across all denoising timesteps. We pro-
pose two loss functions, attention segregation and attention
retention, that fixes these issues directly at inference time,
without any retraining. We conduct extensive qualitative
experiments with a variety of prompts and demonstrate that
the images are substantially more semantically faithful to
the input prompts, when compared to many recently pro-
posed models. Further, we also quantify our improvements
with protocols from the literature as well as a user survey,
which clearly brings out the efficacy of A-STAR.
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