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Abstract

We introduce a novel representation called Ordered
Atomic Activity for interactive scenario understanding. The
representation decomposes each scenario into a set of or-
dered atomic activities, where each activity consists of an
action and the corresponding actors involved and the order
denotes the temporal development of the scenario. This de-
sign also helps in identifying important interactive relation-
ships, such as yielding. The action is a high-level seman-
tic motion pattern that is grounded in the surrounding road
topology, which we decompose into zones and corners with
unique IDs. For example, a group of pedestrians crossing
in front is denoted as C1 — C4: P+, as depicted in Fig-
ure 1. We collect a new large-scale dataset called OATS'
(Ordered Atomic Activities in interactive Traffic Scenarios),
comprising 1026 video clips (~ 20s) captured at intersec-
tions in San Francisco Bay Area. Each clip is labeled with
the proposed language, resulting in 59 activity categories
and 6512 annotated activity instances. We propose three
fine-grained scenario understanding tasks, i.e., multilabel
atomic activity recognition, activity order prediction, and
interactive scenario retrieval. We also propose a Graph
Convolutional Network based framework that models both
appearance and motion of traffic participants to tackle the
above tasks, that performs favorably against state-of-the-
art methods. However, we find that the methods cannot
achieve satisfactory performance, indicating rising oppor-
tunities for the community to develop new algorithms for
these tasks towards better interactive scenario understand-

ing.

1. Introduction

Intelligent transportation systems (ITS) have made sig-
nificant progress in addressing traffic fatalities, with ad-
vancements in perception [20, 55, 70, 26, 19], predic-
tion [90, 48, 16], hazard identification [54, 71, 39, 31], and
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Figure 1. Ordered Atomic Activity. Instead of using natu-
ral language to describe a scenario which is verbose and time-
consuming, Ordered Atomic Activity decomposes each interactive
scenario into a set of ordered atomic activities, where each ac-
tivity consists of an action and the corresponding actors involved
and the order represents the temporal development of the scenario.
The activity of a group of pedestrians crossing in front” is repre-
sented as C1 — C4: P+, where C1 and C4 are the two corners, —
denotes the moving direction and the actors P+ (a group of pedes-
trians) perform the action. We denote the temporal development
in a scenario by tagging the order of activities based on their oc-
currence. Ordered Atomic Activity also enables efficient scenario
retrieval for applications such as scenario-based assessment.

planning [5, 1]. To deploy ITS at scale, extensive research
has been conducted on scenario-based simulation assess-
ment [15, 5, 85, 1] to validate ITS in challenging scenarios
and identify the causes of failure. Effective scenario under-
standing and retrieval of real-world data, therefore, can en-
hance scenario-based assessment [65, 21] and help improve
ITS deployment.

In this work, we focus on intersection scenarios, which
involve the highest number of interactions among traf-
fic participants and account for approximately 40% of all
crashes [53]. We specifically examine scenarios where traf-
fic participants are crossing at the intersections, rather than

8624



static participants who do not directly interact with the ego
car. This design choice is motivated by the practice of
scenario-based safety assessment [77, 63, 21, 13], which fo-
cuses on activities relevant to the ego vehicle. Our primary
research objective is to identify an effective way to describe
an interactive scenario involving traffic participants, in or-
der to achieve a better scenario understanding and retrieval.

According to [77, 13], an interactive scenario representa-
tion should include information about the activities of road
users (including their location, moving direction, and goal),
the static environment, and the temporal evolution of these
activities. We can use natural language [43, 34, 33], road
scene graphs [89, 74], and attributes [58, 42, 48, 65] to rep-
resent interactive scenarios. While it is intuitive and ex-
plainable for humans using natural language, it often lacks
explicit information about the motion directions and goals
of road users, leading to verbose descriptions that are diffi-
cult to label and control for quality, as shown in Figure 1.
Additionally, it is challenging to retrieve videos efficiently
with lengthy natural language descriptions. Road scene
graphs have also become a popular representation of traffic
scenes. Each road user is represented as a node with low-
level states such as location, speed, and direction, whereas
edges capture pair-wise relationships between pairs of road
users such as “following.” However, these approaches do
not represent the high-level semantics between actors’ ac-
tions and the underlying road topology, which enables effi-
cient tagging for scenario-based assessment [21]. Attribute-
based representations are promising options. However, ex-
isting works have not explored bridging the gap between
activity and underlying road scene structures. Moreover,
both road scene graphs and attribute-based approaches have
not tackled the temporal development of a scenario and also
lack activity order information.

To this end, we propose a novel representation of an in-
teractive scenario called Ordered Atomic Activity. In Fig-
ure 1, we see an ego vehicle turning right and yielding to a
group of crossing pedestrians in the front and a crossing ve-
hicle from the left side, while another car in front is crossing
in the opposite direction of the ego vehicle. We represent
this detailed description in a concise yet interpretable man-
ner using our proposed representation, where each activity
comprises an action and the corresponding actors, such as a
group of pedestrians or the ego vehicle. The action is a high-
level semantic motion pattern grounded in the surrounding
road topology. Specifically, we decompose a road scene,
such as a 4-way intersection, into a set of regions that rep-
resent corners and zones. For example, a right-turn action
is denoted as Z1 — Z2, representing a motion pattern from
an initial position to the destination. ”A group of pedestri-
ans crossing in front” is denoted as C1 — C4: P+, where
C1 and C4 are the two corners, — is the motion direction
and P+ are the group of pedestrians performing the action.

Moreover, we denote temporal development in a scenario
by tagging the order in which the activities occur. This also
helps in representing yielding relationships. In Figure I,
the order of the group of pedestrians, crossing vehicle in
the same direction as ego vehicle, and ego vehicle activities
represent yielding. Ordered Atomic Activity is designed at a
video level, making it highly scalable and easing the burden
of annotation.

We collect a large-scale dataset OATS and annotate
monocular videos with Ordered Atomic Activity. The OATS
dataset comprises 1026 clips, each approximately 20 sec-
onds long, of real human driving in the San Francisco Bay
Area captured using an instrumented vehicle. We pro-
pose three new and challenging fine-grained scenario under-
standing tasks, including multilabel atomic activity recog-
nition, activity order prediction, and interactive scenario re-
trieval. We design a graph convolutional network-based al-
gorithm that models both appearance and motion of traffic
participants for the above tasks. We also implement multi-
ple baselines (including recent state-of-the-art video under-
standing algorithms [6, 79, 87, 18, 76, 2, 83]) and evaluate
them on the proposed dataset.

Our extensive experiments demonstrate that the methods
perform inadequately on the proposed three tasks. Specifi-
cally, the best-performing algorithms for multilabel activity
recognition, activity order prediction, and interactive sce-
nario retrieval achieve 26.7% mAP, 16.1% matching score,
and 16.6% Recall@top50. To successfully recognize mul-
tiple Atomic Activities in a scenario, a model should detect
and track moving road users, associate their spatio-temporal
action with respect to the underlying road topology, and
capture the concept of groups. We believe the proposed Or-
dered Atomic Activity and the dataset introduce new chal-
lenges to the video scene understanding community. We
hope to encourage the research community to work collec-
tively on this important and challenging area.

This paper makes the following contributions. First,
we introduce a novel representation called Ordered Atomic
Activity for interactive scenario understanding. Second,
we construct a large-scale dataset and propose three essen-
tial fine-grained scenario understanding tasks: multilabel
atomic activity recognition, activity order prediction, and
interactive scenario retrieval. Third, we propose a graph
convolutional based network that models both appearance
and motion of traffic participants and performs favorably
against state-of-the-art methods on the above tasks. We also
conduct extensive experiments on the three tasks and estab-
lish a comprehensive benchmark suite for future research.

2. Related Work

Traffic Scene Datasets. In recent years, many traffic scene
datasets have been proposed to stimulate progress in detec-
tion [20, 84, 55,70, 26], tracking [20, 84, 55,70, 26, 60, 59],
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| PIE [59]| JAAD [60] | STIP [46] | LOKI [22]| OATS

# Clips - 346 556 644 1026
RGB Images v v v 4 4
LiDAR Point Cloud X X X v v
# Agent type 1 1 1 8 6
Type of Intersection X X X X 4
Atomic Activity X X X X v
Activity Order X X X X v

Table 1. Comparison of OATS with other datasets.

semantic segmentation [11, 84, 88, 19], trajectory fore-
cast [26, 90, 69], and long-term localization [47]. In ad-
dition to perception and prediction tasks, nuScenes [26],
Argoverse [8], and Lyft [32] provide high definition maps
that enable road topology understanding from monocular
videos [64, 56]. Moreover, the datasets containing anno-
tations for activity recognition and intention prediction of
traffic participants [60, 58, 59, 46, 48, 22] are essential for
the field. Some recent datasets [05] also provide HD maps,
but lack a concept of spatial zones and only contain infor-
mation in the form of semantic labels (road segments, lanes)
or polylines/polygons. A dataset that jointly considers the
relationship between behaviors of traffic participants, ego
vehicle, and underlying road topology is under-explored.

To this end, we collect a large-scale dataset with di-
verse interactive scenarios labeled with the proposed rep-
resentation Ordered Atomic Activity. Although Ordered
Atomic Activity can be used to represent scenarios in ex-
isting datasets [16, 26, 19], these interactive scenarios are
not predefined in the released annotations. Moreover, IP-
related issues can make it challenging to augment and re-
lease data from such datasets. Therefore, we collect our
own dataset to facilitate the new research direction. In ad-
dition, we propose and benchmark three novel fine-grained
interactive scenario understanding tasks. We provide ex-
tensive discussion on the challenges posed by the proposed
dataset and tasks. Table 1 shows a comparison of OATS
with existing datasets.

Video Analysis and Understanding. Video analysis and
understanding have been an active research topic in the
community. A significant amount of temporal models have
been proposed for action recognition [75, 78, 6, 79, 92, 82,

, 23]. Recently, the community has exploited object pro-
posals [2, 49, 25, 40] as an inducted bias to boost the per-
formance of video understanding. Recently, Nagarajan et
al., [51] propose a method that converts egocentric videos
of daily kitchen activities into a topological map consist-
ing of activity “zones” and their rough spatial proximity.
In contrast, we investigate the connection between traffic
scenes. Specifically, the proposed Ordered Atomic Activity
offers a new challenge to the video understanding commu-
nity. We believe there is a great synergy between the recent
road topology understanding works [80, 56, 64, 74, 28] and
the proposed tasks. Additionally, we study the link for all
traffic participants instead of only the ego agent as in [51].

All these unique aspects mentioned above introduce new
challenges for understanding traffic scenes from videos.

Activity Order Prediction. The task of generating an
ordered list of actions is commonly referred to as tran-
script prediction within the action understanding commu-
nity. While many studies utilize this activity order as weak
supervision to address complex tasks like action segmenta-
tion [29, 61, 62, 14,7, 41, 3, 67], only a few studies explic-
itly focus on generating this transcript using the ordered list
of actions as the ground truth [67, 3]. Existing works have
concentrated on cooking activities [37, 4, 17, 68] where ob-
ject movements are limited or only a single action occurs
at a given point in time. The community has not yet ex-
plored this aspect in traffic scenes, where the order of ac-
tions can help to identify critical interactions, such as yield-
ing. In traffic scenes, individual actions begin at different
times, and their progression happens simultaneously, mak-
ing it extremely challenging to identify the multiple actions
and corresponding orders. Note that this order cannot be
automatically generated even if timestamps [16] are avail-
able. Timestamps alone cannot tell when a pedestrian starts
crossing. Moreover, a car yielding to a crossing pedestrian
might start crossing the zones before the pedestrian based
on timestamps. The complicated interactive patterns make
automatic generation infeasible. Thus, we label the activity
orders manually and release the dataset. To the best of our
knowledge, our work is the first to introduce and tackle this
problem in driving scenes.

Traffic Scenario Retrieval. The focus of most existing
work in the analysis is detection and tracking of traffic
participants [12, 73, 52], recognition of actions in traf-
fic scenes [59, 60, 58, 46, 22], and traffic anomaly detec-
tion [52]. To enable fine-grained scenario retrieval, we need
to analyze human driving data at multiple levels, ranging
from object detection to fine-grained activity orders. Exist-
ing traffic scenario retrieval solutions describe traffic scenes
using natural language [43], traffic scene attributes [42, 65],
and latent representation [27]. Our work is closely re-
lated to [42, 65] as the proposed description language can
be treated as traffic scene attributes. The paper [42] pro-
poses attributes such as driver behavior/intention/attention.
For [065], they consider vehicles’ speed and density, ve-
hicles’ actions (e.g., braking, keeping lane), and vehicle-
to-vehicle interactions (e.g., braking for another vehicle).
However, we observe the following differences. First, we
predict traffic scene attributes using monocular videos in-
stead of multimodal data (e.g., GPS/IMU, LiDAR, and HD
maps). Second, existing scene attributes do not jointly con-
sider the relationship between action and road structures.
While the work [65] offers HD maps to link actions and
road structures, their attributes only describe the locations
of vehicles. Third, Ordered Atomic Activity enables the de-
velopment of predicting the activity order in a scenario.
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Figure 2. Sizes of each atomic activity class in the OATS dataset sorted by descending order, with colors indicating actor types.

3. The OATS Dataset
3.1. Data Collection Platform

The data is collected using an instrumented vehicle
equipped with 3 Point Grey Grasshopper video cameras
with a resolution of 1920 x 1200 pixels, a Velodyne HDL-
64E S2 LiDAR sensor, and high precision GPS. All sensor
data are synchronized and timestamped using ROS and cus-
tomized hardware and software. The data is collected in the
San Francisco Bay Area region and captures a diverse set
of traffic scenarios at intersections, including different envi-
ronments such as urban and suburban areas.

3.2. Annotation Methodology

Modeling both driver and traffic agent behavior is com-
plex and involves different levels of cognitive processes,
particularly in complicated interactive scenes, and is essen-
tial for the development of robust intelligent driving sys-
tems. Therefore the data selection and annotation protocol
must be carefully designed. The first step involves the man-
ual selection of short clips from hours of recording that in-
clude appropriate scenarios. Although in this work we only
focus on 4-way intersections as mentioned in Section 1, we
show the flexibility of Ordered Atomic Activity for differ-
ent topologies in the supplementary material. We clip ~20s
short clips around intersections. Each clip contains both
the entering and exit of the ego vehicle from the intersec-
tion. We discuss the different aspects of our annotation in
the following.

Annotation Consistency. We conduct the following qual-
ity control strategy. Given a video, it is first annotated by 2
independent human annotators who are experienced drivers
residing in the USA to ensure familiarity with the rules of
the road, signs etc. Finally, we have an internal expert anno-
tator to review and obtain the final version. To demonstrate
the consistency and validity of the annotations, we compute
the intra-class correlation coefficient (ICC) [66], which is
widely used [58] for the assessment of consistency made by

different observers measuring the same quantity. The ICC
for our annotations is 0.91, which indicates “excellent” con-
sistency (ICC =1 for absolute agreement) according to [10].
Atomic Activity. An atomic activity consists of an action
and the corresponding actors. The action is a high-level se-
mantic motion pattern that is grounded in the surrounding
road topology. We first decompose the surrounding road
topology into four corners (C1, C2, C3, C4) and four zones
(Z1, 72,73, 74) with respect to the ego vehicle in an anti-
clockwise manner, as shown in Figure 1. Actor consists of
seven classes: car (C), bicyclist (K), pedestrian (P), car (E),
group of cars (C+), group of bicyclists (K+), group of pedes-
trians (P+). Given a clipped video, the annotator watches
the full video to understand both the type of agents in the
scenario and their direction of motion. After analyzing the
video, the annotator annotates the Atomtic Activity. For in-
stance, we denote a group of pedestrians’ crossing activity
from the near-right corner to the near-left corner with re-
spect to the ego vehicle as C1 — C4: P+.

Activity Order. Besides labeling activities, we also assign
labels to their corresponding order. The starting time of the
activity, i.e. when the agent starts crossing, is the basis for
annotating this order except for yielding actions. In such
cases, the agent that yields is labeled later, regardless of
when the action begins or ends. For instance, when a car
yields to a pedestrian at a crossing, it may eventually cross
the zones before the pedestrian, but the pedestrian should
be labeled first. The strategy is challenging to be labeled
automatically using timestamps This is why human obser-
vation is necessary when annotating the activity order, and
it cannot be inferred heuristically or programmatically us-
ing timestamps.

Type of Intersection. We further categorize the sce-
nario into the following four types of intersections: Four-
Way Unprotected Turn (AWUT), Four Way Protected Turn
(4WPT), Four way Two Stop (4W2S) and Four Way Four
Stop (4W4S). These scenarios are differentiated based on
the number of stop signs and traffic light types at intersec-
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tions. This is particularly useful for traffic scene under-
standing and scenario retrieval based on a specific type of
intersection.

3.3. Dataset Statistics

Our dataset comprises 1026 video clips and 59 activity
categories. Figure 2 depict the label distribution of the dif-
ferent activities in our dataset, sorted in descending order.
As shown in the figure, the label distribution is not uniform,
which is typical of real-world data. For instance, activi-
ties comprising a group of actors (e.g., Z3-Z1:K+) are very
rare compared to more frequent activities, such as Z3 —
Z1:C or C2 — C3:P. More details regarding the frequency
of individual activities, actors, actions and also the types of
intersections can be found in the supplementary material.

4. Methodology
4.1. Model Description

In this section, we present the proposed model for multil-

abel atomic activity recognition. The framework is depicted
in Figure 3. As atomic activity comprises both action and
actor, our network considers both appearance and motion
features. Given a video sequence, we begin by extracting
tracklets of the actors in the scene using pre-trained Mask
R-CNN [24] pre-trained on COCO dataset [44] and Deep
SORT [81]. We then select a set of Z frames from the video
and extract appearance features of N traffic agents using the
Inception-v3 [72] backbone and RolAlign [24]. We also ex-
tract motion features from tracklets using bounding boxes
of agents. After completing the feature extraction process,
we pass the motion and appearance features through sepa-
rate graph convolution networks [35], with each node repre-
senting an actor. Finally, we fuse the learned features from
both graphs for multilabel atomic activity recognition. We
discuss the specifics of each module below.
Appearance Model. We utilize the graph structure to ex-
plicitly model pair-wise relations between different agents
in the driving scene. Unlike prior graph-based algo-
rithms [2, 83] that treat objects in the graph independently,
we construct our graph by utilizing tracking. Given a set of
N agents in the traffic scene with their corresponding track-
lets, we construct a spatio-temporal graph G¢ = (V,*, A;),
where V,* = {v{|Vi € {1,....,N}} is the set of vertices
of graph G¢ and A; = {a;|Vi,j € {1,....,N}} is the ad-
jacency matrix V¢ € {1,...., Z}. In our graph, a;’ models
the appearance relation between two agents at time ¢ and is
formally defined as:

aij — fp(vzvvz)e)?p(fa(vzavj)) i
Soim fo(vh vl )exp(fa(vf,v]))

where f,(v¢, v{ ) indicates the appearance relation between
agents ¢ and j at time ¢, and f,(v},v]) is an indicator func-

6]

tion that determines the presence of a tracklet. The softmax
function is used to normalize the influence on agent ¢ from
other objects. The appearance relation is calculated as be-
low: .
0(vi)" ¢(v])

\/5 )
where 0(vf) = wo! and ¢(v!) = w’v!. Both we RP*P
and w’e€ RP*P are learnable parameters that map appear-
ance features to a subspace and enable learning the corre-
lation of two objects, and v/D is a normalization factor.
While [2, 83] can fill the graph with any random node at
time ¢, we need to take into account missing nodes due
to both inconsistencies in tracking and agents entering and
leaving the traffic scene at different times. To mitigate this
issue, we set adjacency matrix values to zero when an object
is missing using indicator function f,, as:

fa(UiaUg) =

2)

fp(vi,vl) =T(vi = present and v} = present)  (3)

Once the nodes and adjacency matrix values are de-
fined, we reason over the Graph Convolutional Network
(GCN) [35]. GCN takes a graph as input, performs com-
putations over the structure, and returns a graph as output.
For a target node ¢ in the graph, it aggregates features from
all neighbor nodes according to values in the adjacency ma-
trix. Formally, one layer of GCN can be written as:

ZUH) = g AZzOW O, (4)

where A € RV?*NZ ig the adjacency matrix for appear-
ance model and Z! € RN%*P is the feature representations
of nodes in the 1" layer. The matrix W' € RP*P is the
layer-specific learnable weight matrix. The function o(-)
denotes an activation function. We adopt ReLU as the ac-
tivation function. Note that this layer-wise propagation can
be stacked into multi-layers.

Motion Model. An essential aspect of our problem is how
we represent the motion of agents, as it is a crucial part
of our annotations. In this work, we model the motion of
agents in 2D. Our motion model is inspired by recent suc-
cess in the motion-based action recognition [86] and tra-
jectory prediction [50, 36, 91]. We use the relative motion
between tracklets at different times ¢ as input to the graph
rather than absolute coordinates in the image space. We
construct another spatio-temporal graph G}* = (V;™, Ey),
where V;, = {u}|Vi € {1,....,N}} is the set of vertices of
graph Gi" and F; = {e/|Vi,j € {1,....,N}} is the set
of edges. We set e, = 1 if e} and e are connected, and
e,/ = 0 otherwise. We attach a value by’ to model the rela-
tion between two nodes ¢ and j, which is computed by some
kernel function for each e;’. The b,’ are organized into the
weighted adjacency matrix B;. We introduce by}, , as a
kernel function to be used within the adjacency matrix B;.
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multi-label classification.

Algorithm 1 Retrieval Algorithm

Input: L, P,V and model I
Output: recall@QtopK

tp,=0,fp=0,fn=0
top K = Hamming(I(Sg), L)
: for k <1 to K do:
for i <1 to ¢ do:
if Ms, ngf then:
tp+ =1
else
fot=1
: for k <1 to {F — K} do:
for i <1 to g do:
if Ms, QMsf then:

— tP
return recall = Py

— =
TReY I LA

_.
»

The function b7 _ is defined as:

sim,t
1 i J
||u§7u{H2’ ||ut_ut||27é0
i o _ ; P
bgim.t 1, ui or u] missing (5)
0, otherwise

where u} is 2D position of agent i at time ¢ and can be de-
fined as:

Uy =[x, ¢y, (6)
where ¢, and c, are centers of bounding box for agent ¢
at time t. Once the nodes, edges, and adjacency matrix for
motion GCN are formed, we perform spatio-temporal graph
convolution operation similar to [50, 86].

Loss Function. After constructing the motion and ap-
pearance graphs, we extract feature representations learned
through the GCNs and combine them for recognition. As
both our motion and appearance graphs are composed of
tracklets, there are multiple ways to link information from

the two graphs. We experimented with various approaches
and discovered that late fusion works best. We conjecture
that it is because the tracklet cues are noisy. We discuss the
performance of different fusion schemes in the supplemen-
tary material. The entire model can be trained end-to-end
with backpropagation. The final loss function is defined as:

R
L= —% > vilog(p(y:)) + (1 = yi)log(1 = p(y)), ()

where y is the label, p(y) is the predicted probability and R
is the batch size.

4.2. Activity Order Prediction

The appearance and motion features are obtained from
our spatio-temporal graphs Gf and G}*, respectively. We
fuse them to form a latent video representation O € RT*P
of an input video X; = {z,|Vt € {1,...., Z}}. To model the
activity order, we incorporate the frame classification and
segment generation branches (denoted as F'C and SG re-
spectively) proposed in [67] for calculating the mutual con-
sistency loss. The branch F'C' takes the shared latent video
representation O as input and predicts the class probabili-
ties FC(O) = Y € RT*P where P is the number of ac-
tivities in the dataset. The branch SG predicts the segments
SG(0) = S, where each segment s,,, consists of predicted
ordered activity probabilities a,, and the estimated relative
log length [,,, of that segment. To calculate the mutual con-
sistency loss for training the network, we first start with the
estimated relative log length [,,, for each segment s,,,, which
is then converted into the absolute length I/ . For each seg-
ment, we compute its absolute starting position p/, within
the video. Given [}, and p!,,, for each segment we generate
a mask w,, using the differentiable mask generation mod-
ule. For each segment, we use the ground-truth action label
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Method Backbone Pretrain Splits mAP

S1 52 53
CSN [76] Resnet152 1G65M 12.14  12.57 12.89 | 12.53
TPN [87] Resnet50 | ImageNet | 11.57 13.26 12.94 | 12.59
SlowOnly [18] Resnet50 | ImageNet | 11.20 14.73 12.92 | 12.95
SlowFast [18] Resnet50 None 10.80 15.09 14.45 | 13.45
13D (NL) [79] Resnet50 | ImageNet | 11.87 1548 14.00 | 13.78
13D [6] Resnet50 ImageNet | 11.82 1430 16.84 | 14.32
ORN [2] Resnet50 | ImageNet | 16.83 13.39 18.14 | 16.12
ARG [83] Inceptionv3 | ImageNet | 20.21 21.34 19.25 | 20.26
Ours Inceptionv3 | ImageNet | 24.34 28.56 27.21 | 26.70

Table 2. Comparison of our framework with other state-of-the-art algorithms for multi-label atomic activity recognition.

am, instead of the estimated class probabilities. The final
loss function is given by:

M
LM = Z LMm (K wm>&m) (8)

m=1

For more details regarding the loss function, please refer

to [67].
4.3. Scenario Retrieval

We denote an intersection scenario as S; = (V, P) in
the query set (), where V' is the set of agents in a scenario
and P is the set of tracklets. Each activity [ in video-level
labels L has the format of Action:Actor where the former
gives direction of motion and the latter denotes the type of
agent. When retrieving scenarios for driver behavior un-
derstanding, not only is it important to match the config-
uration of the traffic scene based on activities, but also to
independently focus on the type of agent and motion dy-
namics. This is because sometimes the focus for retrieving
a certain scenario could be based on the number of type of
agents in the scene, e.g. car or pedestrian or both, while
other times the user might be more interested in the direc-
tion of motion of traffic participant, e.g. Z1-Z2 or C1-C2.
Some users might be interested in both aspects. Therefore,
we formulate a metric that takes into account all three fac-
tors: activities, action, and actor.

We denote the scenario database as F' and our goal is
to retrieve top K similar scenarios S;} = (V,P)Vi €
{1,...., K} given S,. We first retrieve top K scenarios us-
ing the hamming distance between predicted binary labels
(through model I in Figure 3) for S, and ground truth la-
bels for S¢Vf € {1,...., F'}}. Once the top K scenarios are
retrieved, we convert predicted labels for S, and L into dic-
tionaries Mg, and Mg, respectively, where the key is noun,
verb or action unit and values are their instances/frequencies
in the output. We consider a retrieved scenario to be a match
if Mg, is a subset of Mg,. The algorithm of the proposed
retrieval system is discussed in Algorithm 1.

Method ‘ Splits ‘ mAP

S1 S2 S3
Motion 13.68 1570 1427 | 14.55
Appearance 18.25 21.48 20.25 | 19.99
Motion + Appearance | 24.34 28.56 27.21 | 26.70

Table 3. Ablation studies showing the effect of motion and appear-
ance modeling in our framework.

5. Experiments and Analysis

Datasets & Metrics. To account for the variability in
the number of labels in each video, we divided our OATS
dataset into three groups, namely s1, s2, s3, with a sufficient
number of samples for each class. The splits s; and s con-
sist of 350 video clips while split s3 has 326 clips. These
groups are permuted as splits for training and testing to en-
sure fair evaluation [38]. For further details on the dataset
creation and experimental setup, refer to the supplementary
material.

We also conduct action understanding experiments on
the Collective Activity dataset [9], which contains 44 short
video sequences from 5 group activities (crossing, waiting,
queueing, walking, and talking) and 6 individual actions
(NA, crossing, waiting, queueing, walking and talking). We
follow the same evaluation scheme as in [83, 57]. We re-
port mean average precision (mAP) for multilabel atomic
activity recognition, matching score [67] for activity order
prediction, and recall@topK for scenario retrieval.
Implementation Details. Our implementation is based on
PyTorch and we use a single Nvidia Quadro RTX 6000
GPU. We use 32 frames as input each having an image size
of 224 x 224, and a batch size of 1 for experiments. We
adopt stochastic gradient descent with ADAM to learn the
network parameters and train the model for 50 epochs using
a learning rate ranging from 0.0002 to 0.0001. All feature
layers are jointly updated during training. More implemen-
tation details and qualitative results can be found in the sup-
plementary material.
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Figure 4. Qualitative results for activity order prediction of our method against MuCon [67]. All ground truths contain ego vehicle action,
i.e. activities starting with E’, just for reference and it is not used for order prediction. The GT denotes ground truth, and green and red

color denote true and false positives respectively.

Multilabel Atomic Activity Recognition. Given the la-
beled Ordered Atomic Activity in the OATS dataset, we
formulate the problem as a multi-label recognition prob-
lem. We compare our method in Sec. 4 against the dif-
ferent state-of-the-art video understanding algorithms. We
start with algorithms extracting features at the video-level
[6, 79, 87, 18, 76]. As shown in Table 2, given that our
scene deals with multiple agents in the scene spanning ap-
proximately 20s of video, implicitly focusing on agents
through video-level features cannot recognize activities suc-
cessfully. For algorithms [2, 83], which explicitly models
objects in videos, the results improve. While these object-
aware models perform better than purely video-based mod-
eling, they focus on the appearance modeling of the agents,
instead of motion modeling. As atomic activity comprises
both action and actor, both appearance and motion should
be modeled explicitly. The efficacy of the proposed model-
ing is presented in Table 2. We also conduct ablation studies
to diagnose the effects of appearance and motion modeling
of our framework in Table 3. It is worth noting that the un-
satisfactory performance demonstrated in Table 2 indicates
the challenging nature of the task. In addition, also high-
light the scope for improvement before moving on to even
more complicated scenarios and descriptions.

We also provide results on the Collective Activity dataset
in Table 4 to show the efficacy and generalizability of our
proposed framework. Since we design our framework keep-
ing in mind video-level supervision, we avoid individual ac-
tions and only use group activities in our experiments. We
compare our method against [83], which is the state-of-the-
art algorithm on the Collective dataset. To have a fair com-

Method |Group Action

ARG [83]
Ours

85.28%
86.58%

Table 4. Comparison with the state-of-the-art algorithm on the
Collective dataset

Matching Score

Method sl 2 3 Avg
MuCon [67] 48.12/16.45 52.06/15.93 47.93/13.23 49.37/15.20
Ours 52.09/17.32 52.94/16.28 51.73/14.65 52.25/16.08

Table 5. Activity order prediction results on OATS w/ (left) and
w/o (right) start and end tokens.

parison, we run their publicly available code’ using their
own fixed setting but without individual action supervision.
We observe that even though [9] has much less object mo-
tion in the image space compared to OATS, our framework
can perform favorably against the state-of-the-art.

Activity Order Prediction. Very few works focus on ex-
plicitly predicting activity order using only the ordered list
of activities as ground truth, and none do so in traffic scenes
to the best of our knowledge. Therefore, we adapt state of
the art method MuCon [67] to our task as a baseline for
comparison. Table 5 demonstrates that our method out-
performs MuCon [67] for activity order prediction on the
OATS dataset. We report results with both w/ and w/o start
and end tokens, which help in correctly identifying the num-
ber of activities in the predicted sequence [67]. The re-
sults indicate that while our method is much better when
it comes to predicting the correct number of activities, it
is only slightly better in predicting the actual activity or-

Zhttps://github.com/wjchaoGit/Group-Activity-Recognition
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Figure 5. Qualitative results of our method for scenario retrieval. On the left is the query input, middle contains some examples from the
scenario database, and right shows the top two retrieved scenarios from the database.

Activity

Actor Action
Method ‘ ‘ ‘R@]O R@30 R@50

R@10 R@30 R@50|R@10 R@30 R@50

ARG [83]| 0.60 191 322|032 149 231|032 149 231
Ours 6.80 1292 18.87| 1.53 633 16.56| 1.53 633 16.56

Table 6. Scenario retrieval results on the OATS dataset

der itself, indicating that a more sophisticated approach is
required to solve this challenging task. Some qualitative re-
sults are shown in Figure 4.

Scenario Retrieval. Given the low performance in Table 2
and Table 5, we select a subset of videos from the 3 splits
$1, S2, and s3, which comprises 13 activities and train the
proposed model for multi-label atomic activity recognition.
We then use those results for the task of scenario retrieval.
More specifically, we use one split, e.g. s; as our query
set and train our model using the database which comprises
the other two splits, e.g. s; and so. We then use the trained
model to predict binary labels for the query set which is then
used for retrieval as described in Section 4.3. We calculate
the recall@topK (for different Ks) for Actor, Action, and
Activity individually. Due to the lack of existing methods
in this space, we compare with the best-performing method
in Table 2. Figure 5 and Table 6 show that although our
method performs favorably against [83], the absolute num-
bers are quite low, indicating the challenging nature of the
task and encouraging future research. This is also natural
given the low performance of multi-label classification by
state-of-the-art methods in Table 2. These low results are
also at par with other retrieval applications [45] where the
ground truth generally focuses on a single aspect, whereas
we are trying to retrieve a complex traffic configuration that
covers various aspects such as type of agent, motion infor-
mation, and scene information.

Inference Speed. Although real-time inference is not the
focus of this paper, our model is quite fast. While scenario
retrieval has an offline use case, the model takes around 40
ms for multi-label classification in Table 2 and about 70
ms for Activity Order prediction in Table 5 using a single
Nvidia Quadro RTX 6000 GPU, making it viable from an
application point of view.

Limitations. One of the limitations of our work is that we
do not explicitly model group actions in our framework, i.e.
P+, C+, and K+. Distinguishing between individual and
group actions can play an important role in downstream ap-
plications. Additionally, we primarily rely on [67] for Ac-
tivity Order modeling whereas results in Table 5 show that
a more sophisticated approach is required to solve this chal-
lenging task. We plan to address these issues in future work.

6. Conclusion

We introduce a novel representation called Ordered
Atomic Activity for interactive scenario understanding. The
representation decomposes each scenario into a set of or-
dered atomic activities, where each activity consists of
an action and the corresponding actors involved and the
order denotes the temporal development of the scenario.
Given the lack of an appropriate dataset, we introduce a
new large-scale dataset OATS along with three crucial fine-
grained interactive scenario understanding tasks, i.e., multi-
label atomic activity recognition, activity order prediction,
and scenario retrieval. We also provide an algorithm to
solve scenario retrieval and benchmark these tasks on our
dataset with existing SOTA algorithms, as well as with our
proposed framework that performs favorably against these
methods, for enabling future research.
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