
SSDA: Secure Source-Free Domain Adaptation

Sabbir Ahmed1∗, Abdullah Al Arafat2∗, Mamshad Nayeem Rizve3∗, Rahim Hossain1,
Zhishan Guo2, Adnan Siraj Rakin1

1Binghamton University (SUNY), 2North Carolina State University, 3University of Central Florida

Abstract

Source-free domain adaptation (SFDA) is a popular un-
supervised domain adaptation method where a pre-trained
model from a source domain is adapted to a target do-
main without accessing any source data. Despite rich re-
sults in this area, existing literature overlooks the secu-
rity challenges of the unsupervised SFDA setting in pres-
ence of a malicious source domain owner. This work in-
vestigates the effect of a source adversary which may in-
ject a hidden malicious behavior (Backdoor/Trojan) during
source training and potentially transfer it to the target do-
main even after benign training by the victim (target do-
main owner). Our investigation of the current SFDA set-
ting reveals that because of the unique challenges present
in SFDA (e.g., no source data, target label), defending
against backdoor attack using existing defenses become
practically ineffective in protecting the target model. To
address this, we propose a novel target domain protec-
tion scheme called secure source-free domain adaptation
(SSDA). SSDA adopts a single-shot model compression of
a pre-trained source model and a novel knowledge transfer
scheme with a spectral-norm-based loss penalty for target
training. The proposed static compression and the dynamic
training loss penalty are designed to suppress the malicious
channels responsive to the backdoor during the adaptation
stage. At the same time, the knowledge transfer from an un-
compressed auxiliary model helps to recover the benign test
accuracy. Our extensive evaluation on multiple dataset and
domain tasks against recent backdoor attacks reveal that
the proposed SSDA can successfully defend against strong
backdoor attacks with little to no degradation in test accu-
racy compared to the vulnerable baseline SFDA methods.
Our code is available at https://github.com/ML-Security-
Research-LAB/SSDA.

1. Introduction

Deep Neural Networks (DNNs) have shown remarkable
success across a multitude of tasks [18, 8, 12, 9, 5, 37,
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Figure 1: Performance of a) existing SFDA [24, 42, 43, 44]
methods and SSDA against one attack [10], and b) one
competing SFDA [24] and SSDA against popular backdoor
attacks [10, 3, 28]. Compared to the vulnerable previous
SFDA, the proposed SSDA is highly secure.

2, 15, 26]. In particular, they have exhibited extraordi-
nary performance in various visual tasks such as classifi-
cation [18], object detection [8], and semantic segmenta-
tion [12]. Even though DNNs have achieved great success
in various visual tasks, they heavily depend on the under-
lying distribution of training data. Unfortunately, DNNs
deployed in real-world scenarios, such as those utilized in
autonomous vehicles, frequently encounter new situations,
such as varying weather conditions [1] and changing illu-
mination levels [36]. Consequently, the machine learning
community has increasingly directed their attention towards
domain adaptation [4, 27, 22] concept.

Existing Domain Adaptation (DA) setup requires access
of the source domain dataset for target domain adaptation.
However, due to increasing privacy concerns and a lack of
available source data, these existing DA methods are be-
coming impractical. To address this, researchers have intro-
duced a new setup for domain adaptation, popularly known
as source-free domain adaptation (SFDA), which aims to
transfer knowledge from a prior domain (i.e., source) to a
new domain (i.e., target) w/o accessing the source dataset.
Moreover, recent SFDA works [24, 43, 6, 19] have also con-
sidered the practical constraint of limited labeled data in the
real world and performed domain adaptation without any
labeled data in the target domain dataset. Therefore, the
two primary constraints in SFDA setting are that the target
domain is denied access to the source dataset during adap-
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tation and that the target domain training is unsupervised,
i.e., without labeled data.

In this work, we are the first to focus on the security of
the target domain in SFDA. In particular, under the SFDA
setting, the target domain owner can not access the source
dataset and is also completely unaware of the training pro-
cess of the source model. Such a setting makes the target
domain adaptation extremely vulnerable to adversaries con-
sidering the adversary can access source training (as shown
in Fig. 2). After training, the target domain owner takes
the pre-trained malicious source model and then adapts it to
a new target domain dataset without any label, utterly un-
aware of the consequences of malicious source training.

The security threat we want to investigate in this work is
the Backdoor/Trojan attack [10, 28]. In a backdoor attack,
an attacker poisons a subset of the training data using a spe-
cific trigger (i.e., input pattern) to train the model. During
inference, the model functions accurately under normal cir-
cumstances (i.e., no attack scenario). However, when the
attacker-designed particular trigger pattern appears in the
input, the model fails as intended by the attacker. In the case
of SFDA, the backdoor attack becomes more relevant as the
source owner can inject the backdoor into the source model
w/o any defensive measure from the target owner (who has
no access to source data/training). To the best of our knowl-
edge, no prior works have explored the vulnerability of the
target model against backdoor attacks, considering a mali-
cious source domain owner (attacker).

However, given the above setting, defending against
backdoor attacks during the target domain adaptation is ex-
tremely challenging because of the unique challenges pre-
sented by the SFDA setting. First, the target model is ini-
tialized using the malicious source model which is already
infected with backdoor. Second, the target owner cannot
access the source dataset used initially to inject the back-
door. As a result, the target owner cannot trivially fine-tune
the model using the source dataset for Trojan removal. Fi-
nally, the target training is unsupervised, making detect-
ing/cleaning backdoor-infected models more challenging.
Because of these unique challenges in SFDA, existing back-
door defenses [23, 39, 11] are practically ineffective in de-
fending the target model from a source adversary.

Our initial investigation of backdoors in SFDA (in Ta-
ble 2) confirms that even after benign training in the tar-
get domain, the target model remains vulnerable to the at-
tacker’s designed triggered inputs. To make it worse, the
threat remains persistent even after applying strong back-
door defenses [47] in the current SFDA setting (in Table 3).
Hence, we are the first to validate that current SFDA tech-
niques are not safe against the backdoor attack, and none
of the existing defenses can protect the target domain
model.

To address this issue, we propose a novel target domain

training scheme called Secure Source-Free Domain Adap-
tation, SSDA, the first successful defense against backdoor
attacks tailored for source-free domain adaptation. Our pro-
posed novel training method SSDA consists of two key
components: first, it performs a single-shot static defen-
sive compression of the source model. It uses spectral
norm-based ranking to remove (i.e., setting the weight val-
ues to zero) malicious channels contributing to the success-
ful transfer of backdoor attacks from the pre-trained source
model. However, the static compression before target train-
ing may lead to information loss, leading to poor perfor-
mance [29] (i.e., lower accuracy) in the target domain due
to domain shift. Since we do not have labels in the target
domain, we cannot afford to lose any information from the
pre-trained source model. In addition, we need a dynamic
defense component to take advantage of the target training
and target data to the defender’s benefit, which the exist-
ing backdoor defenses fail to resolve. Hence, the second
component of the SSDA performs knowledge transfer from
an auxiliary (uncompressed) model to recover benign ac-
curacy. For more secure knowledge transfer, we propose
a novel spectral norm-based loss penalty to suppress ma-
licious channels sensitive to backdoors. However, com-
puting the spectral norm penalty during training is expen-
sive. Hence, we derive a computationally efficient safe up-
per bound of the norm and then use this novel upper bound
to compute the approximate spectral norm efficiently and
effectively during training. We extensively evaluated our
defense across multiple datasets, tasks and attack combina-
tions. It shows that the proposed SSDA can successfully
defend (drops to ∼1% from ∼ 99% attack success rate)
against strong backdoor attacks (e.g., WaNet [28]) with lit-
tle to no accuracy degradation compared to existing vul-
nerable SFDA methods (as demonstrated in Fig. 1). Fi-
nally, we show that regardless of the source model being
benign/malicious, our proposed SSDA can successfully per-
form the adaptation of target domain.

2. Background

2.1. Prior Works

Source Free Domain Adaptation: The objective in Tra-
ditional Unsupervised Domain Adaptation (UDA) [16, 17,
41, 25] is to utilize the knowledge obtained from a source
domain to achieve classification in an unlabeled target do-
main. However, a significant limitation of traditional UDA
approaches is that they need access to the source data during
target model training. In real-world scenarios, access to the
source data is often restricted [34] due to concerns related
to data privacy or memory constraints on small devices.
Thus, researchers have developed a popular form of UDA
known as Source-free domain adaptation (SFDA) to resolve
this issue. SFDA carries out domain adaptation by relying
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Figure 2: A malicious source adversary can inject hidden behavior into the source model. Then the target owner performs
benign adaptation using this malicious source model, leaving the target model vulnerable to attack at the inference phase (on
the left). In contrast, our proposed SSDA effectively mitigates this threat (on the right).

solely on the pre-trained source model without needing ac-
cess to the source data. Previous studies [20, 21] suggest
that the pre-trained source model already encompasses suf-
ficient knowledge regarding the source feature distribution.
Consequently, many variants [24, 43, 6, 19] of SFDA have
emerged that utilize the pre-trained model’s knowledge to
resolve domain shift problem. While SFDA methods elimi-
nate the concerns related to source data privacy, they fail to
address the security concerns in the target domain.
Backdoor attacks and defenses: Backdoor attacks [10, 3,
28, 40, 31] involve injecting a trigger, typically an image
patch chosen by the attacker, into the training data. When
trained on this data, the model learns to associate the trig-
ger with a particular target category, poisoning the model.
Although the model works well with clean data, it mal-
functions when the attack’s specific trigger is present dur-
ing testing. In particular, Backdoor attacks pose a severe
security risk in the SFDA setting, where the target domain
owner cannot access the source dataset and cannot control
the source model’s training process. Thus an attacker from
the source owner side can easily access the source training
to poison the source data to create a backdoor source model,
resulting in a similar backdoor target model after SFDA.
Given this major security risk, it is pivotal to consider this
security threat while adapting the source model.

Although there are existing backdoor defenses in the lit-
erature [11, 35, 7, 23, 39, 46, 48], these approaches have
limitations that make them unsuitable for direct applica-
tion in SFDA. Current Backdoor defense methods can be
broadly categorized into two groups: training-based de-
fenses [11, 35, 7] and model post-processing-based de-
fenses [23, 39, 46]. The former suppresses the influence of
backdoor triggers or eliminates poisoned data during train-
ing and thus requires full access to both clean and poisoned
data. However, in existing SFDA, training-based defenses

cannot be adopted since the target owner cannot access
source training/data. The latter fine-tunes the backdoored
model with a small subset of clean data and eliminates the
backdoor threat from the model. However, post-processing-
based defenses are limited by the need for labels for target
instances and the lack of available source data. As a re-
sult, although these methods exhibit potential in defending
against backdoor attacks in DNN models, they do not di-
rectly fit into the SFDA setting to prevent the transfer of
backdoor attacks.

These limitations of the two primary track of defense
methods have motivated us to investigate data-free tech-
niques for mitigating backdoor attacks, which would be an
ideal candidate defense in SFDA. To our knowledge, Chan-
nel Lipschitzness-based Pruning (CLP) [47] is the first and
only data-free backdoor defense method. CLP prunes chan-
nels in a malicious model that are more sensitive to back-
door triggers than normal channels, based on channel Lips-
chitz constant. Hence, CLP is a static post-training defense
method. However, using CLP in SFDA requires answering
several critical questions i) When to perform the pruning
(i.e., after source or target training)? ii) Apart from channel
pruning, how to leverage the target data/training as a de-
fense tool for the defender? In Section 4, we demonstrate
that CLP fails to address these questions for SFDA and be-
comes practically ineffective against backdoor attack under
the SFDA setting.

2.2. Preliminaries and Notations of SFDA

Consider the source domain dataset with ns labeled
samples denoted by Ds = {(xi

s, y
i
s)}

ns
i=1 and target do-

main dataset with nt unlabeled samples denoted by Dt =
{xi

t}
nt
i=1. In SFDA scenario, we have access to the source

model Fs(·), which is trained on Ds in a supervised manner.
The source model Fs(·) is the composition of two modules:
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Table 1: The list of information the attacker (source owner)
and the victim (target owner) can access.

Information Source Owner (Attacker) Target Owner (Victim)
Source Training ✓ ✗

Source Model ✓ ✓

Source Data ✓ ✗

Source Label ✓ ✗

Target Training ✗ ✓

Target Model ✗ ✓

Target Data ✗ ✓
Target Label ✗ ✗

the feature encoding module Gs and the classifier module
Hs, i.e., Fs = Hs ◦ Gs. For training the target model
Ft(·), only data Dt and the pre-trained source model Fs(·)
is available, and no data in Ds can be used.

3. Threat Model

In this work, we consider a threat model wherein the at-
tacker possesses the source domain (i.e., source model and
source dataset). In contrast, the victim has the target domain
(i.e., target model and dataset w/o labels). As shown in Ta-
ble 1, the attacker can access every component of the source
domain (e.g., training, data, model, label). Specifically,
the attacker leverages access to the source model training
process to poison a subset of the source dataset, creating a
backdoored model. Eventually, the attacker aims to attack
the target model at the inference stage using the input trigger
patterns generated during the source training stage. On the
other hand, the victim, who owns the target domain, has ac-
cess to the target domain training (e.g., model, data). How-
ever, the victim/defender can not access any source dataset
and target data label. Hence, the defender’s goal is to de-
velop a domain transfer process starting from a malicious
source model to improve the security of the target model at
the inference stage.

Considering this strong threat model, where the attacker
can easily inject a backdoor during source training with-
out any defensive measure from the defender (no access
to source training), the victim should take defensive mea-
sures during this adaptation process to eliminate the risk.
However, given this threat model, defending against attacks
in the SFDA setting presents significant challenges for the
defender. First, the target domain model is initialized us-
ing the source domain architecture and pre-trained weights,
leaving it vulnerable to attacks from the source domain.
Second, the absence of the source domain dataset restricts
the ability to analyze the pre-trained source model for de-
tecting and mitigating attacks. Third, training the target
domain model without labeled data poses additional dif-
ficulties in identifying and mitigating threats. To address
these limitations, our goal in this work is to develop a novel
secure training scheme for the target domain designed to
eliminate the risk of backdoor attacks in SFDA.

Table 2: This table illustrates a successful backdoor at-
tack in SFDA, where the trojan is transferred from a source
model to a target domain of the Office-Home [38] dataset.

Attack Rw Rw → Ar
ACC ASR ACC ASR

BadNets [10] 86.24 100.00 74.21 99.59
Blended [3] 86.01 100.00 74.04 98.06
WaNet [28] 86.70 100.00 74.21 99.88

4. Why Current SFDA Methods are not Se-
cure?

Before introducing the details of our proposed SFDA
technique, in this section, first, we demonstrate the problem
(i.e., security threat) that our work aims to address. Here,
we for the first time, empirically demonstrate the threat of
backdoor attacks in existing SFDA methods.
Attack Formulation. Here, we consider an attacker who
trains the source model, denoted as Fs(·), using the source
dataset Ds. To execute a backdoor attack, the attacker poi-
sons a subset of the source dataset Ds with a specific input
pattern known as a ‘trigger’ at a ratio of ρ, which repre-
sents the proportion of poisoned training samples. During
source model training, each clean pair (xs

i , y
s
i ) in the subset

is substituted with a backdoor pair (B(x), c(y)), where B(·)
represents the backdoor injection function, and c(·) is the
poisonous label function. After training, the source model
generates malicious predictions for source instances with a
trigger input, as shown in the following equation:

c(ysi ) = Fs(B(xs
i )), ∀i = 1, . . . , ns

The next step involves training the target model, denoted
by Ft(·). This model is initialized with the weights and
architecture of the source model, Fs(·), and then trained
using the target instances in Dt without any labels. How-
ever, even after the target model has been trained without
any poisonous samples, the attacker’s goal is to ensure that
the backdoor attack still persists in the target domain, i.e.,

c(yti) = Ft(B(xt
i)), ∀i = 1, . . . , nt

Observations. The experimental results of the above threat
model and attack scenario is illustrated in Table 2, which
shows that a malicious source model can result in an equally
malicious target model after SFDA, even though the target
owner trains the target model without any intrusion from the
source attacker. Thus, this leads to our first observation:

Observation I. Performing a backdoor attack in the
source domain is sufficient to attack the target domain, mak-
ing existing SFDA highly vulnerable to the risk of a mali-
cious source adversary.
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Table 3: Performance of existing defense methods against
backdoor [10] attack in SFDA on Office-Home [38]. Some
methods are not applicable here which is denoted by N/A,
since they either need access to source data or target labels.

Methods Source data Target labels Rw → Ar
ACC ASR

Baseline SFDA [24] ✗ ✗ 74.21 99.59
SPECTRE [11] ✓ ✗ N/A N/A

Neural Cleanse [39] ✗ ✓ N/A N/A
NAD [23] ✗ ✓ N/A N/A
CLP [47] ✗ ✗ 56.53 15.00

SSDA (Ours) ✗ ✗ 74.17 3.05

Given the significant security risk posed by backdoor
attacks in SFDA, owners of target domains must consider
backdoor threats during adaptation and attempt to incorpo-
rate existing defenses into the adaptation process. However,
existing defense methods for backdoor attacks have signifi-
cant limitations, as illustrated in Table 3. For instance, exist-
ing strong defense methods such as SPECTRE [11], Neural
Cleanse [39], and NAD [23] are not practical in their current
form in SFDA, as they require either the source dataset or
target labels for defense. As we discussed previously, given
the SFDA setting, the recently proposed data-free CLP [47]
method can potentially be a good candidate. However, as
shown in Table 3, CLP provides reasonable security at the
expense of clean (i.e., no attack) accuracy. CLP fails be-
cause it is a static post-pruning scheme after completing the
target domain training. It fails to take advantage of avail-
able target data and training phase, which are additional re-
sources the defender can leverage in defending the backdoor
for SFDA. We hypothesize that instead of applying static
techniques like CLP in SFDA, the defender needs to utilize
the target domain training phase and develop a dynamic de-
fense against the backdoor while performing the adaptation.
This leads to our second observation, which is as follows:

Observation II. The existing backdoor defense meth-
ods are ineffective in mitigating the security threat demon-
strated in SFDA.

These observations confirm the vulnerability of current
SFDA methods to backdoor attacks and the inadequacy of
existing defense methods in mitigating this security threat.

5. Our Proposed SSDA Method
To improve the security of SFDA against backdoor

attacks, we propose a novel training scheme called se-
cure source-free domain adaptation (SSDA). Our proposed
SSDA consists of two critical components for improving the
transferred domain’s security.

The first component is called Single-shot Static Defen-
sive Compression, which takes the pre-trained source model
as input and produces a compressed version of the initial

source model. We define compression as setting some sen-
sitive malicious channels’ weights to zero, but the channels
remain part of the model (i.e., no pruning). Next question,
how do we quantify malicious or sensitive channels respon-
sible for backdoor transfer? In our work, we adopt Spectral
Norm as a metric to evaluate the sensitivity of each chan-
nel. Since it is well-established [32, 47] that spectral-norm
can accurately measure the channel sensitivity for adversar-
ial input attack or backdoor attack. We rank the channels of
a pre-trained source model using spectral norm and set the
sensitive channels’ (i.e., high spectral norm) weight to zero.

Our first defense component is a post-source training
static defense approach. However, in SFDA, the defender
has additional target data and an adaptation stage, which
the defender can use to their advantage. Hence, we need
a dynamic (i.e., training stage) defense component to en-
sure that we can train the target model w/o compromising
accuracy and security. Thus, the goal of our training stage
defense component would be to maintain the benign test ac-
curacy after adaptation. Additionally, to improve security,
we also want to make sure that during the adaptation pro-
cess, we suppress the malicious channels that contribute to
the model’s backdoor behavior.

The above motivation has led us to develop our second
novel defense component, called Knowledge Transfer with
Dynamic Channel Suppression. Here, we train another un-
compressed target model that ultimately leverages the orig-
inal pre-trained source model (i.e., the exact source model
provided by the source owner). We propose to train this
auxiliary target model to generate pseudo-labels, later used
to train our primary compressed model. The intuition be-
hind this knowledge transfer is that an uncompressed source
model can generate more accurate pseudo-labels specifi-
cally for benign inputs than the compressed counterpart,
thus helping to improve the benign accuracy. To generate
the pseudo-labels, we adopt a standard prior SFDA tech-
nique [24]. Finally, on top of our static compression, where
we compress the model with a high spectral norm (i.e.,
higher likelihood of being malicious), during training, we
propose to add a novel regularization loss that penalizes the
channels with a high spectral norm. However, computing
spectral norm during training is computationally intensive.
To address this, we provide a novel theoretically validated
safe upper bound of this norm to compute it during training
efficiently.

5.1. Single-Shot Static Defensive Compression

This component will perform a single-shot compression
of the model by setting the weights of the sensitive backdoor
channels to zero. Specifically, we will perform the com-
pression on the feature encoder of the source model Gs(·),
keeping the classifier module Hs(·) unmodified which is
consistent with prior works of UDA [20, 24, 21].
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Figure 3: The proposed training pipeline of SSDA includes Single-Shot Defensive Compression (SSDC) to compress the
source model’s malicious (red-colored) channels. The primary target model is then trained using our knowledge transfer
(KT) scheme and novel spectral norm penalty.

We use spectral norm to identify the sensitive backdoor
channels in the model, considering each channel as a linear
function. In general, spectral norm of a linear function is
defined as,

σ(A) = max
||x||2 ̸=0

||Ax||2
||x||2

,

where, A is the transformation matrix of the linear func-
tion. Now, consider the source feature encoder Gs(·) of L
convolution layers with a set of convolution weight tensor
W = {W l : l = 1, 2, . . . , L}. W l ∈ RKl×cl×hl×wl

repre-
sents weight tensor of the l-th convolutional kernel, where
Kl, cl, hl, and wl are the number of output channels, input
channels, height, and width of the convolutional kernel, re-
spectively. To compute spectral norm of the kth channel of
the lth convolution layer, denoted by W l

k ∈ Rcl×hl×wl

, we
reshape the tensor into a matrix as follows,

reshape : W l
k ∈ Rcl×hl×wl

→ Wl
k ∈ Rcl×hlwl

(1)

Note that the spectral norm of this reshaped matrix approxi-
mates the spectral norm of convolution operation performed
using the weight tensor validated in prior works [45, 47].
Next, we calculate the mean and variance of the spectral
norm of the lth layer as follows:

µl =
1

Kl

Kl∑
k=1

σ(Wl
k), sl =

1

Kl

Kl∑
k=1

(σ(Wl
k)− µl)2

Subsequently, we compress the channels of lth layer if its
spectral norm exceeds a certain threshold, i.e.,

W l
k = 0, ∀σ(Wl

k) > µl + γ ·
√
sl,

where γ is a hyper-parameter. Finally, we repeat the above
steps for each layer of the source model and obtain the
compressed source model F̂s = Hs ◦ Ĝs, where Ĝs is
the compressed source feature encoder. Overall, by utiliz-
ing the concept of spectral norm, we identify and compress

the most sensitive channels of the source model initially be-
fore training for target domain adaptation. However, as the
name implies, it is a one-time static (i.e., pre-target train-
ing) method on the pre-trained source model. Thus, during
the target model’s training, we need a dynamic (i.e., train-
ing stage penalty) approach for suppressing the malicious
channels as well.

5.2. Knowlege Transfer with Dynamic Channel
Suppression

The second component of our proposed SSDA method
performs knowledge transfer from an auxiliary model (non-
compressed) to the primary compressed model to recover
the clean accuracy, as shown in Fig. 3. We call it knowledge
transfer because the auxiliary model generates a more accu-
rate pseudo-label and transfers the label information to the
primary compressed model. Then, the compressed model is
trained using the pseudo-label in a supervised setting. Next,
to improve security during the knowledge transfer, we want
to ensure our target training still suppresses the high spectral
norm channels (i.e., backdoor sensitive). However, com-
puting the spectral norm during training is computationally
intensive. Hence, we derive a novel upper bound of the
spectral norm and use this to efficiently penalize the high
spectral norm channels during target training.

Our knowledge transfer process involves training two
target models sequentially. The primary model, denoted as
F̂t(·), is adapted from the compressed source model F̂s(·),
while the auxiliary model, denoted as Ft(·), is adapted from
the non-compressed source model Fs(·). Training the aux-
iliary model first aims to generate more accurate pseudo-
labels. The primary model suffers from inaccurate pseudo-
label generation due to its initialization with a compressed
source model. The auxiliary model can be trained using
existing SFDA methods to generate the pseudo-labels. In
our approach, we generate the pseudo-label set, denoted as
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Table 4: Evaluation of SFDA (Baseline) [24] and SSDA on Office-Home dataset [38] for three different attacks for a subset
of domains (rest are in supplementary).

Attack Method Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNets SFDA [24] 55.60 74.23 77.31 88.08 80.70 83.22 67.37 96.33 77.29 85.40 78.24 92.72
SSDA (Ours) 55.60 1.56 77.27 1.80 80.54 1.72 67.33 3.05 77.40 1.91 78.13 1.77

Blended SFDA [24] 55.99 95.03 77.74 88.13 81.62 47.42 66.75 77.46 77.65 90.00 78.63 27.04
SSDA (Ours) 55.88 1.72 77.83 1.78 81.32 1.72 66.71 3.42 77.72 1.89 78.38 1.72

WaNet SFDA [24] 56.70 93.10 76.21 90.65 81.96 88.27 67.94 98.93 79.03 98.51 79.07 82.86
SSDA (Ours) 56.75 4.31 76.32 1.91 81.59 1.79 68.03 14.34 79.05 2.00 78.98 1.79

Ŷt for the target instance set Xt, by training the auxiliary
model using [24]. While training the auxiliary model, we
only need to store the pseudo labels after each epoch, which
results in a negligible memory overhead (∼ 1 % worst case)
for our defense.

Next, we will use these pseudo-labels to train the pri-
mary model using the standard cross-entropy loss function.
Therefore, the loss function for our knowledge transfer ap-
proach can be defined as follows

LKT(Xt, Ŷt; F̂t) =
1

nt

∑
xt,ŷt∈Xt,Ŷt

ℓ(ŷt, F̂t(xt)) (2)

where ℓ(·) is the standard cross-entropy loss.
Finally, to ensure that channel sensitivity is not fur-

ther amplified during target training, we still want sensitive
backdoor channels to get suppressed. We impose a con-
straint on the knowledge transfer loss function to achieve
this by adding a penalty based on the spectral norm. The
spectral norm penalty is calculated for the feature encoder
of target model Ĝt(·) during target training as:

Lsnorm(Ĝt) =
1

L

L∑
l=1

Kl∑
k=1

σ(Wl
k)

where Wl
k is the reshaped weight tensor (defined in Equa-

tion 1) of k-th channel of the l-th convolution layer of Ĝt(·).
However, computing the spectral norm for the whole

target encoder Ĝt(·) during training can be computation-
ally expensive as it requires Singular Value Decomposition
(SVD). To alleviate this computational burden, we propose
an approximation method to replace the spectral norm with
its upper bound derived through the following lemma,

Lemma 5.1. The spectral norm of a matrix A ∈ Rm×n is
upper-bounded by,

σ(A) ≤ trace(ATA)

Proof. Consider the SVD of matrix A = UΣV, where U
and V are orthonormal matrices and Σ is a diagonal matrix
with singular values in the diagonal entries. Now,

ATA = (UΣVT )T · (UΣVT ) = VΣTΣVT

Applying Spectral theorem [14], we get ATA = SΛST ,
where S is an orthonormal matrix and Λ is a diagonal ma-

trix with eigen values of ATA in the diagonal entries. Then
it follows that Λ = ΣTΣ. Therefore,

σ(A) = max
i

Σii ≤ trace(Λ) = trace(ATA),

which proves the lemma.

Hence, we approximate the spectral norm penalty as,

L̂snorm(Ĝt) =
1

L

L∑
l=1

Kl∑
k=1

trace
(
Wl

k

T
Wl

k

)
(3)

Therefore, the overall loss function for training the target
model F̂t(·) is as follows,

LSSDA(Xt, Ŷt;Ht ◦ Ĝt) = LKT(·) + λ · L̂snorm(·)

where LKT(·) and L̂snorm(·) are defined in Equation 2
and Equation 3, respectively. Here, λ controls the weight of
the approximate spectral norm penalty. During target train-
ing, the defender’s objective is to update W by minimizing
LSSDA(·).

6. Experimental Setup

We evaluate our proposed SSDA on three commonly
used visual benchmarks for assessing DA methods: Of-
fice [33], Office-Home [38] and VisDA-C [30] (in the sup-
plementary). We are following standard SFDA setting [24]
including network architecture (e.g., ResNet-50 [13] for
Office-Home and Office, ResNet-101 [13] for VisDA-C)
and hyper-parameters. We evaluate the effectiveness of our
proposed SSDA against three well-known and recent at-
tack methods: BadNets [10], Blended Backdoor Attack [3]
and WaNet [28]. All attacks employ an All-to-One strategy
where the poisoning label for a subset of the source dataset
is set to a specific label Ck, i.e., ysi = Ck. We set γ to 1,
and λ to 100 for all of our experiments. We direct the reader
to the Supplementary section for additional implementation
details and ablation studies of hyper-parameters (e.g., λ). In
our evaluation, we report the standard test accuracy (ACC
in %) in the target domain and attack success rate (ASR in
%), which is the percentage of test samples classified to the
target class for test samples with embedded attacker trig-
gers.
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Table 5: Evaluation of SFDA [24] and SSDA on Office dataset [33] across all possible attack combinations and domains.

Attack Method A → D A → W D → A D → W W → A W → D
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNets SFDA [24] 92.37 99.80 88.30 98.74 73.91 68.51 98.74 100.00 73.45 38.62 99.80 96.59
SSDA (Ours) 92.37 2.61 88.30 3.65 73.87 3.41 98.74 3.65 73.38 3.27 99.80 2.61

Blended SFDA [24] 91.77 99.80 89.69 93.08 74.01 38.05 98.62 79.87 73.55 80.51 100.00 100.00
SSDA (Ours) 91.77 6.63 89.69 3.65 74.01 4.01 98.62 5.91 73.62 5.61 100.00 31.73

WaNet SFDA [24] 92.17 100.00 89.43 100.00 74.80 42.60 98.74 99.62 73.55 78.20 100.00 99.80
SSDA (Ours) 92.17 56.02 89.43 36.98 74.76 3.44 98.74 18.36 73.41 3.76 100.00 55.42

Table 6: Evaluation of the performance of SFDA and pro-
posed SSDA under two different cases: i) Considering a be-
nign source training (Left-half); ii) Considering a malicious
source training (Right-half).

Method Ar → Cl Cl → Ar Method Ar → Cl Cl → Ar
ACC ACC ACC ACC

SFDA [24] 56.66 68.03 SFDA [24] 55.60 67.37(benign source) (malicious source)
SSDA 56.56 67.99 SSDA 55.60 67.33(benign source) (malicious source)

7. Evaluation and Discussion

Evaluation of SSDA. The evaluation of SSDA is pre-
sented in Table 4 on the office-home dataset. This table
compares our SSDA with the baseline SFDA [24] case.
First, we observe that SFDA is highly vulnerable to back-
door attacks with high ASR for all the attacks across all
the domains. In contrast, our SSDA can significantly lower
the attacking threat by achieving less than 4% ASR against
BadNets and Blended attacks and less than 5% ASR against
WaNet attack across all the tasks in Table 4. We achieve
this improved security against the backdoor attack without
compromising test accuracy compared to baseline SFDA.
The results further indicate that, although all attacks pose
significant security threats for SFDA, WaNet is the most
potent attack, achieving higher ASR on most tasks (∼ 90 %
or above). Regardless, SSDA can still successfully defend
against this strong attack by lowering the attack success rate
by more than 80 % from the baseline case.

We also present results on the Office benchmark dataset
in Table 5 and the VisDA-C dataset in the supplementary
materials. A general conclusion across different datasets,
tasks and attacks is that our proposed SSDA can signif-
icantly improve the defense against backdoor (i.e., much
lower ASR than SFDA) with little to no degradation in test
accuracy. In addition, in Table 6, we demonstrate that in the
case of benign source training (i.e., no attack), our SSDA’s
adaptation performance does not deteriorate (with 0.1 %)
compared to the baseline SFDA [24]. To summarize, our
comprehensive evaluation across the different datasets and
multiple tasks confirm that the backdoor is a critical secu-
rity concern for SFDA. Our proposed SSDA provides a fea-
sible solution with no compromise in test accuracy.
Comparison to SOTA SFDA techniques and Backdoor
defenses. In Table 7, we compare the proposed SSDA with

Table 7: Performance of different SFDA methods against
BadNets [10] on Office-Home dataset.

Method Ar → Cl Cl → Ar
ACC ASR ACC ASR

SHOT [24] 55.60 74.23 67.37 96.33
G-SFDA [43] 54.96 97.16 64.07 99.55

NRC [42] 56.93 60.69 67.94 83.93
AaD [44] 58.42 78.95 66.50 67.70

SSDA (ours) 55.60 1.56 67.33 3.05

Table 8: Effect of each component of our proposed SSDA.
Here, SSDC denotes Single-shot static defensive compres-
sion (the first component of our defense).

Method Ar → Cl Cl → Ar
ACC ASR ACC ASR

SFDA [24] (Baseline) 55.60 74.23 67.37 96.33
SFDA [24] + SSDC 10.84 42.08 16.73 66.09
SSDC + LKT (Ours) 56.54 34.78 67.66 47.55

SSDC + LKT + λ · L̂snorm (Ours) 56.75 4.31 68.03 14.34

existing SOTA SFDA techniques. The result further con-
firms that the backdoor is a persistent threat to all exist-
ing SFDA methods. Our SSDA provides the best protec-
tion against backdoor attacks (i.e., lowest ASR) with sim-
ilar test accuracy. However, to be fair to the prior meth-
ods [24, 42, 43], our method requires twice (worst-case) the
training time as we do need to train two different models
sequentially. Additionally, we have a slight memory over-
head (∼ 1% for the worst case) as we need to store the 8-
bit pseudo labels for primary model training, which is tiny
compared to the model size (e.g., ResNet-101).

We have already compared our proposed SSDA with ex-
isting backdoor defenses (in the context of SFDA) in Sec-
tion 4 in Table 3. Therein, we showed that the existing
backdoor defenses either do not apply in their current form
or are ineffective in countering backdoor attacks in SFDA,
thereby making SSDA the first and only successful defense
against backdoor attacks in SFDA.

Ablation Study. In Table 8, we summarize the effect of
each component of our defense and its role in improving
test accuracy and defense. First, we show the baseline
SFDA [24] case, which suffers from poor defense perfor-
mance. Next, adding the first component of our defense
(SSDC) improves defense performance at the expense of an
accuracy drop in the target model due to pre-training com-
pression. Next, we can recover test accuracy to the baseline
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Figure 4: Effect of spectral norm minimization on ASR.

level using better pseudo-labels from our novel knowledge
transfer loss strategy (SSDC + LKT), but still with poor se-
curity performance. Finally, to defend against backdoor at-
tacks successfully while maintaining benign accuracy, our
novel upper bound of the snorm loss penalty ensures that
the malicious channels are suppressed during target train-
ing to reduce ASR. This observation is further validated in
Fig. 4, clearly exhibiting the relation between minimizing
the snorm loss term and ASR.

8. Conclusion

We are the first to demonstrate a major security threat
for SFDA by considering a source adversary. Hence, we
develop a novel target domain training method by com-
pressing and penalizing the sensitive channels with high
spectral norms augmented by a knowledge transfer scheme.
Our novel SSDA is the first and only successful defense
against a backdoor in SFDA, completely mitigating the
threat in the target domain. We perform extensive exper-
iments on multiple datasets and tasks to comprehensively
evaluate the impact of our proposed method in mitigating
the risk. Our proposed defense is the first successful de-
fense against a backdoor in SFDA while ensuring the per-
formance of the domain adaptation does not suffer regard-
less of benign/malicious source. In the future, we hope
more investigations will be undertaken to secure vulnerable
SFDAs against malicious adversaries.
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