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Abstract

Deep learning algorithms require large amounts of la-
beled data for effective performance, but the presence of
noisy labels often significantly degrade their performance.
Although recent studies on designing a robust objective
function to label noise, known as the robust loss method,
have shown promising results for learning with noisy la-
bels, they suffer from the issue of underfitting not only noisy
samples but also clean ones, leading to suboptimal model
performance. To address this issue, we propose a novel
learning framework that selectively suppresses noisy sam-
ples while avoiding underfitting clean data. Our frame-
work incorporates label confidence as a measure of label
noise, enabling the network model to prioritize the training
of samples deemed to be noise-free. The label confidence is
based on the robust loss methods, and we provide theoreti-
cal evidence that our method can reach the optimal point of
the robust loss, subject to certain conditions. Furthermore,
the proposed method is generalizable and can be combined
with existing robust loss methods, making it suitable for a
wide range of applications of learning with noisy labels.
We evaluate our approach on both synthetic and real-world
datasets, and the experimental results demonstrate its ef-
fectiveness in achieving outstanding classification perfor-
mance compared to state-of-the-art methods.

1. Introduction

Recent advances in deep learning have led to remarkable
image classification performance that surpasses human abil-
ity [8, 9]. However, the challenge is that deep learning mod-
els require a substantial amount of labeled data to maintain
their desired performance. Image classification benchmark
datasets often contain tens of thousands [14] to millions [24]
of labeled data. Despite extensive efforts to curate these
datasets, mislabeling is inevitable due to the complexity of
samples and errors made by experts [1]. This issue is par-
ticularly problematic given the capacity of deep networks to
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Figure 1. Comparison with robust loss functions against to
label noise. (a) Cross-entropy loss cannot prevent the learning of
mislabeled samples, as it imposes a stronger penalty on predictions
that are more misaligned. (b) Noise-robust loss prevents the model
from learning mislabeled samples by suppressing strong penalties,
but it carries the risk of underfitting. (c) Ours adjusts the penalty
based on the confidence of each sample, imposing a strong penalty
only on samples with high confidence in their labels.

overfit data samples [35]. Consequently, preventing overfit-
ting on mislabeled data is a critical challenge.

To tackle this challenge, researchers have focused on de-
veloping methods for learning with noisy labels in deep
learning frameworks. These methods can be categorized
into three topics: noise estimation, sample selection, and
robust loss. While noise estimation methods [6, 10, 22, 25]
assume the availability of prior knowledge about the noise
model, obtaining this information in real-world practice can
be challenging. Sample selection methods [7, 12, 31, 34,
13] aim to eliminate noisy labels in the dataset and train the
network model on the refined set. However, the success of
these methods heavily depends on the quality of noise elim-
ination, and the human-designed criteria for configuring the
refined set may not generalize well across various datasets
[33]. Robust loss methods [4, 5, 30, 37], on the other hand,
aim to design loss functions that are theoretically less af-
fected by label noise. However, these methods can also en-
courage underfitting, resulting in lower performance.

This paper presents a novel training strategy aimed at
addressing the underfitting problem commonly encountered
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by robust loss methods. Cross-entropy loss, a widely-used
objective function for image classification tasks, is highly
responsive to incorrect predictions. This is because both the
loss value and gradient magnitude increase when the pre-
dicted probability for a given label decreases. Conversely,
robust loss methods reduce the penalty for erroneous pre-
dictions to prevent the model from learning mislabeled sam-
ples. However, batch-based stochastic gradient descent can
often impede convergence to the optimal point of the robust
loss function, leading to underfitting issues. To alleviate this
challenge, we propose a sample-wise label confidence in-
corporation into our method. This incorporation leads to re-
duced penalties for inaccurate predictions of noisy samples
with lower confidence levels. The proposed approach in-
volves training using a weighted cross-entropy loss, where
the weight is determined based the label confidence. A vi-
sual representation of this methodology is in Figure 1.

Furthermore, we also offer theoretical evidence that our
proposed training strategy is capable of attaining the op-
timal point of the robust loss method, subject to certain
conditions being satisfied regarding the sample-wise label
confidence. Specifically, the calculation of the label confi-
dence is based on the existing robust loss method, and our
proposed method approximates the optimal point of the se-
lected robust loss method. Importantly, it’s worth noting
that our method does not introduce a novel loss function
that inherently accounts for label noise robustness. Instead,
it provides a training strategy to mitigate the underfitting is-
sue of existing robust loss methods like MAE [5], GCE [37],
and JS [4]. Thus, our strategy holds the potential for univer-
sal applicability. Additionally, in contrast to sample selec-
tion methods that often require the hard-tuning of hyper-
parameters based on human-designed criteria, our method
computes the label confidence by simply selecting the ap-
propriate robust loss.

Our research derives label confidence for a dataset con-
sisting primarily of normal samples, inspired by an appli-
cation of the robust loss [21]. While the previous appli-
cation employed a robust loss model to identify unbiased
images by learning features that counteract bias, our pro-
posed method employs a robust loss model that effectively
learns the majority of normal samples. This approach pre-
vents the imposition of excessive penalties on mislabeled
samples. The determination of label confidence plays a piv-
otal role in achieving this objective. In order for the theo-
retical framework to hold, the label confidence must satisfy
two critical conditions: (1) a strict negative correlation be-
tween the label confidence and the robust loss value exists,
and (2) samples with a robust loss value surpassing a spe-
cific threshold must converge towards a label confidence of
0. These conditions are intuitive and align with our assump-
tion that samples with low robust loss values are less likely
to be noisy samples.

In summary, the proposed approach offers a novel learn-
ing strategy to address the underfitting problem of robust
loss methods, which can be combined with existing robust
loss methods in a versatile manner. Moreover, our theo-
retical findings emphasize the potential for designing label
confidence to adhere to two crucial conditions. This insight
can serve as valuable guidance for future research endeav-
ors aimed at calculating label confidence through alterna-
tive approaches. Finally, we evaluate the performance of
the proposed method on synthetic datasets and real-world
datasets. On synthetic datasets, our method significantly
outperforms existing robust loss methods, particularly as
the noise ratio increases. In addition, our method shows
consistent performance across different hyperparameters,
which is a significant advantage over existing learning with
noisy label methods that require hard-tuning. On real-world
datasets, our method also achieves state-of-the-art perfor-
mance, demonstrating its effectiveness in real-world scenar-
ios. Our contributions are three-fold:

• The proposed approach reduces underfitting issues of
robust loss methods by incorporating sample-wise la-
bel confidence, leading to improved convergence to the
optimal point of the robust loss function.

• The proposed method is generally applicable to robust
loss methods, and label confidence can be simply com-
puted by selecting the appropriate robust loss.

• Theoretical evidence supports the proposed method
by providing guidelines for designing label confidence
that approximates the optimal point of the selected ro-
bust loss method, subject to certain conditions being
satisfied regarding sample-wise label confidence.

2. Related Works
Early studies on learning with noisy labels [6, 10, 22,

25, 29, 32] assume that prior knowledge about the noise
rate or clean data is available. Since we address a more
practical problem where this prior knowledge is not given,
these methods are not the focus of this paper.

Classical studies proposing robust loss functions against
label noise replace a given label with the smoothed label
[28] or the network prediction [23]. The Mean Absolute
Error (MAE) [5] proposes a symmetric loss with a constant
sum of losses for all labels for each sample to provide the-
oretical validity. However, MAE has a significant underfit-
ting problem, which is highly correlated with its poor per-
formance. Recent methods [37] design a relaxed symmet-
ric loss or a linear combination of existing loss functions
[19, 30] to alleviate the underfitting effects of the symmet-
ric loss. While they attempt to avoid the underfitting prob-
lem, these methods are still reported to have an underfit-
ting issue compared to the cross-entropy loss [4]. Even the
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method [4] of addressing the underfitting problem proposes
augmentation-invariant regularization and does not directly
solve the underfitting problem.

Sample selection methods refine the given dataset and
train the network model on the refined set to address the
noisy label problem. MentorNet [12] employs a pre-trained
teacher network to identify clean samples. Decoupling [20]
and Co-teaching+ [34] train two models jointly and com-
pare their predictions to determine the samples for training
each model. While Decoupling and Co-teaching+ focus on
identifying prediction disagreements, JoCoR [31] encour-
ages the agreement of predictions. CAR [18] combines
the provided labels with early learning predictions. Despite
their compromised performance, the human-designed pro-
portion of the refined set and the sample selection within the
mini-batch require complex tuning that is dependent on the
dataset, which limits their general applicability [33].

Other studies [26, 33] on learning with noisy labels ad-
dress the open-set noisy label problem, which can occur in
data collected based on web searching. They design the
model to find out-of-distribution samples to show satisfac-
tory performance on the benchmark dataset. Another noisy
label method [11] finds that Mixup [36] augmentation can
be an appropriate regularization for learning with noisy la-
bels. However, the methods that use prior information that
out-of-distribution samples are in the dataset or use a spe-
cific augmentation are outside the scope of this paper.

3. Proposed Method

Preliminaries. Let D = {(xi, yi)}ni=1 denote a clean
dataset, where xi ∈ X and yi ∈ (0, c] are the i-th image
and its corresponding true label, respectively, X is the im-
age space, and c is the number of classes. Given a classifier
parameterized by θ denoted as f(·; θ) : X → Rc, the empir-
ical risk of classification commonly used in deep learning is
defined as RL(θ;D) = E(x,y)∈D[L(f(x; θ), y)].

In [5], Ghosh et al. defines a symmetric loss that satisfies
the condition that the sum of the loss function for all labels
is constant, as follows:

∑c
i=1 L(f(x; θ), i) = Const. for

∀x. Then, the minimizer of RL(·;D) is also the minimizer
of RL(·;Dn), where Dn is the dataset containing noisy la-
bels with a noise ratio less than a certain threshold [5].

However, the critical underfitting problem of the sym-
metric loss is reported in [37]. To address this issue, recent
studies propose a loss function that relaxes the condition of
the symmetric loss that the sum of the loss function for all
labels is bounded [4, 37] or define the loss as a linear com-
bination of various loss functions [19, 30]. Nevertheless,
the noise-robust loss functions still suffer from slow conver-
gence and underfitting compared to the cross-entropy loss
[4]. In this paper, we refer to the relaxed symmetric loss
proposed in [19, 30, 37] as the noise-robust loss.

3.1. Label Confidence Incorporation

To address the underfitting issue of the noise-robust loss,
we introduce the utilization of cross-entropy loss. Our
investigations reveal that simple combinations, such as a
linear combination of cross-entropy loss and noise-robust
loss, significantly deteriorate classification performance (as
represented in Figure 4 and Section 4.1). This perfor-
mance degradation can be attributed to the inherent nature
of cross-entropy loss. The cross-entropy loss is learned
to predict high probabilities for incorrect labels, since the
loss and gradient values tend towards infinity when the
predicted probability for a given label approaches zero
(limp→0 − log p,∇p(− log p) → −∞). In order to circum-
vent the adverse impact of cross-entropy loss, which can
induce overfitting to label noise, we apply cross-entropy
loss adaptively for each sample. This adaptive approach
ensures robust learning that remains less-affected by label
noise-induced overfitting.

Determining which samples to learn with the cross-
entropy loss is based on the theoretical foundation of noise-
robust loss. An optimal parameter set exists that satisfies
both the optimal points of the noise-robust loss on clean
and noisy datasets [5]. It is clear that a model trained on
clean data produces high loss values for noisy labels, as-
suming that the network model has sufficient capacity to
learn clean data. Consequently, we can extrapolate that a
model trained with noise-robust loss on noisy datasets also
yield elevated loss values for noisy samples. Hence, the
model cannot reach the desired optimal point when it over-
fits the samples with high values of noise-robust loss.

Building upon this observation, we propose an adaptive
sample selection approach based on the probability of a
given label being correct, termed label confidence. Our la-
bel confidence is formulated by the noise-robust loss and a
differentiable mapping function as follows:

C(x, y) := P ((x, y) ∈ Dce) = h(L(f(x; θ), y)), (1)

where Dce denotes the set of samples to be trained with the
cross-entropy loss, L is the noise-robust loss function, and
h(·) is the mapping function between the robust loss value
and the label confidence. The label confidence provides a
probabilistic measure of the reliability of the associated la-
bel. This allows for dynamic adjustments in the selection
of samples to be trained using cross-entropy loss, based on
their respective label confidences. Note that deterministic
sample selection can lead to learning instability, particu-
larly as robust loss values for each sample can exhibit fre-
quent fluctuations during batch learning. As a solution, our
adaptive sample selection strategy serves to enhance learn-
ing stability. To be more precise, we compute the expecta-
tion value of the cross-entropy loss weighted by the label
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confidence as:

RCE(θ;Dce) := E(x,y)∈Dce
[CE(f(x; θ), y)] =∑

(x,y)∈Dce

h(L(f(x; θ), y))
|Dce|

CE(f(x; θ), y), (2)

where |Dce| is
∑

(x,y)∈Dce
h(L(f(x; θ), y)).

To design the mapping function, h(·), it should (1) ex-
hibit a monotonically decreasing behavior concerning the
loss value, and (2) yield an output of 0 for the loss val-
ues larger than the particular threshold value. Satisfying
the first condition is essential for aligning with the behavior
of noise-robust loss function values at their optimal points.
This implies that samples with higher loss values should
possess lower probabilities of being learned with cross-
entropy loss. The second condition ensures that samples
associated with exceedingly high loss values are excluded
from learning with the cross-entropy loss. A detailed defi-
nition of the threshold is provided in Section 3.2, where we
present a formal proof of the theorem.

3.2. Theoretical analysis

In our proposed framework, the model is trained with
a weighted cross-entropy loss that incorporates label con-
fidence while simultaneously being trained with the noise-
robust loss to calculate label confidence. However, it cannot
be guaranteed that the proposed training process can reach
the optimal point of the noise-robust loss, which is indepen-
dent of the issue of underfitting. To address this uncertainty,
we provide theoretical evidence that the proposed frame-
work can approximate the minimization of the noise-robust
loss by minimizing the entire loss function provided by the
framework. Specifically, we prove that there exists a lin-
ear combination of the noise-robust loss and the weighted
cross-entropy loss with label confidence, which can serve
as a lower bound for the noise-robust loss:

Theorem 1. Let us assume that L(f(x; θ), y) :=
g(f(x; θ)y), where g : [0, 1] → R+. Given α > 0 such
that limp→1 ∇p(g(p) +α log p) < 0, there exists a value of
τ < 1 that satisfies the following inequality:

RL(θ;D) ≥
n− |Dce|

n
RL(θ;D) + α

|Dce|
n

RCE(θ;Dce),
(3)

where n is the number of samples in D, h(·) satisfies the
two conditions introduced in Section 3.1, and the condition
h(l) = 0 for l > g(τ) holds.

Proof. The proof is in supplementary materials.

Given that the cross-entropy loss is always non-negative,
the following inequality is clearly satisfied:

RL(θ;D) ≤ RL(θ;D) + α
|Dce|

n− |Dce|
RCE(θ;Dce). (4)

Based on the above two inequalities, we can conclude that
minimizing the right-hand side (RHS) of (4) can approx-
imate the minimization of the noise-robust loss, provided
that |Dce| is bounded. Furthermore, as |Dce| approaches
zero, the RHS of (4) becomes a more accurate proxy for the
noise-robust loss. In particular, when |Dce| is equal to zero,
no sample is trained using the cross-entropy loss, and the
RHS of (4) is exactly equal to the noise-robust loss. Thus,
our framework can be considered as a generalization of the
training process with a noise-robust loss.

Our method introduces an approach to enhance the learn-
ing capacity within multi-objective optimization scenar-
ios. This involves training two distinct models indepen-
dently, each aiming to optimize a different objective func-
tion; specifically, the noise-robust loss and the weighted
cross-entropy loss. Given that both models are derived from
a shared underlying model, we impose a penalty on the dif-
ference between the two models to encourage them to in-
clude similar parameters:

n− |Dce|
n

RL(θ;D) + α
|Dce|
n

RCE(θ;Dce) ≥

min
θ∗

n− |Dce|
n

RL(θ;D) + α
|Dce|
n

RCE(θ
∗;Dce)

+λLp(θ, θ
∗),

(5)

where λ > 0 and Lp(θ, θ
∗) is a penalty function that takes

its minimum value of 0 when θ equals θ∗. The validity of
the inequality can be deduced the fact that the minimum
value of the right-hand term in (5) is always smaller than
or equal to itself under the constraint, θ∗ = θ. Similar to
the inequality in (4), all terms on the right-hand side of (5)
are positive. In the same vein, we note that optimizing both
models via this method approximates the optimization of a
single model with noise-robust loss.

3.3. Overall framework

The proposed method consists of two models, namely
the noise-robust model and the noise-free model, both
jointly trained with distinct objectives, as shown in Figure
2. The noise-robust model is trained to minimize the noise-
robust loss on the entire dataset, while the noise-free model
is trained to minimize the weighted cross-entropy loss with
label confidence incorporation. At inference time, only the
noise-free model is utilized due to its superior performance,
as explained in Section 4.1. In our framework, the predic-
tion probability value of the image corresponding to the la-
bel is first calculated by the noise-robust model. Then, the
noise-robust loss value and the label confidence are sequen-
tially derived using the designed mapping function, denoted
as h(·). To ensure that the function meets the proposed con-
ditions outlined in Section 3.1, we define it as follows:

h(f(x; θ)y) = σ(0.5 ∗ (−L(f(x; θ), y) + µ+m)), (6)
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Figure 2. Overall framework of the proposed method. Our framework comprises two models, namely the noise-robust model and the
noise-free model. The noise-robust model is trained on the entire dataset using a noise-robust loss function to calculate label confidence.
The noise-free model is trained using a cross-entropy loss function, incorporating sample-wise label confidence to avoid overfitting on
noisy samples. The sample-wise label confidence is obtained using the noise-robust loss values and the proposed mapping function, shown
in the upper right of the figure. The mapping function satisfies the proposed conditions on the right, enabling our framework to approximate
the optimization of the noise-robust loss function.

where σ(·) signifies the sigmoid function, µ represents the
average loss value, and m is a variable that affects the size
of |Dce|. As m increases, both |Dce| and the effect of the
cross-entropy loss grow. We investigate this phenomenon
through an ablation study in Section 4.1. In order to sim-
plify the description of h(·) and reduce the number of hy-
perparameters, we employ soft thresholding using the sig-
moid function, as opposed to the use of hard thresholding.

Finally, the overall loss function of the proposed method
is given by:

RL(θ;D) + α
|Dce|

n− |Dce|
RCE(θ

∗;Dce) + λLp(θ, θ
∗). (7)

Here, the term training with the cross-entropy loss can be
reformulated as follows:

α
|Dce|

n− |Dce|
RCE(θ

∗;Dce) =

α
∑

(x,y)∈D

h(L(f(x; θ), y))
n− |Dce|

CE(f(x; θ∗), y)).
(8)

Indeed, calculating n− |Dce| at every iteration can be com-
putationally demanding. To address this, we approximate
it by considering a unit batch as follows: n − |Dce| ≈
n/|B|

∑
(x,y)∈B(1− h(L(f(x; θ), y))), where B is a batch.

Note that the stochastic gradient descent (SGD) method cal-
culates the average of the batch unit loss instead of the over-
all average loss, so the n/|B| term can be ignored. The
penalty function, Lp(θ, θ

∗), in (7) can be any function that

attains its minimum value of 0 when θ = θ∗. We suggest
employing the Euclidean distance between two parameter
sets as the penalty function, although an alternative could
involve using a distillation loss between two models.

Recent learning with noisy labels strategies [4, 11] ap-
plied to real-world scenarios have integrated augmentation-
invariant regularizers to learn semantic information that re-
duces the impact of incorrect labels. Additionally, such ap-
proaches [26, 33] often employ label correction techniques
that modify labels during the learning process. Inspired
by these practices, we apply similar heuristic techniques to
train the noise-free model using the cross-entropy loss. Re-
markably, in multiple instances, these techniques exhibit a
notably positive influence on our proposed method.
The augmentation-invariant regularizer is a loss function
that involves augmenting a single image into two different
views, with the objective of aligning the predictions of these
augmented images. We utilize the Jensen-Shannon Diver-
gence to quantify the dissimilarity between the predictions
made for these augmented views.
Incorporating the label correction method entails adjust-
ing labels during the training process based on predictions
generated by an oracle model. Within our proposed frame-
work, we assume the oracle model to be the noise-robust
model. The practical execution of label correction involves
a linear combination of the original ground truth labels and
the predicted labels obtained from the noise-robust model.
This combination occurs after a specific number of training
epochs have been completed.
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3.4. Training procedure

The proposed loss function applied to a batch is formu-
lated as follows:

LB :=

1

|B|
∑

(x,y)∈B

L(f(x′; θ), y) + C(x′, y) · CE(f(x′; θ∗), ỹ)

+ ρ · JSD(f(x′; θ∗), f(x′′; θ∗)) + λ||θ − θ∗||2F ,
(9)

where JSD symbolizes the Jensen-Shannon divergence, ỹ
signifies the corrected label, and ρ operates as a scaling fac-
tor, influencing the intensity of the augmentation-invariant
regularization term. In the equation above, certain hyperpa-
rameters, including α and those governing label confidence,
have been omitted. Guidelines for omitted hyperparameters
can be accessed within the supplementary materials. Both
models are trained jointly using LB. For a clear procedural
overview of the training methodology within a single batch,
please refer to Algorithm 1, which outlines the sequence of
steps.

Algorithm 1 Label Confidence Incorporation for LNL
1: Input: λ, ρ, n
2: Initialize: µ← 0
3: for iter = 1:n
4: Batch sampling: B = {(xi, yi)} ← D
5: Data augmentation: x′, x′′ ← T (x) for x ∈ B
6: If iter > ⌈n/4⌉:
7: ŷ = 0.5 · y + 0.5 · f(x; θ) for (x, y) ∈ B
8: Average loss in (6): µ← 0.7 · µ+ 0.3 ·

∑
L(f(x; θ), y)/|B|

9: Label confidence: C(x, y) = h(f(x; θ)y) for (x, y) ∈ B
10: Derive the gradient of LB w.r.t. θ, θ∗
11: Update parameters with gradient descent, θ and θ∗

In Algorithm 1, lines 6 to 7 illustrate the label correc-
tion process. We formulate this procedure to commence
label correction approximately at the 25% point of the over-
all iterations. This aspect is adaptable, contingent upon the
training pace of the noise-robust model. Line 8 entails the
computation of the average loss value of the noise-robust
model, a pivotal step in deriving the mapping function de-
lineated in equation (6). For computational convenience,
we employ a moving average mechanism.

4. Experiments
We conducted experiments to evaluate the effectiveness

of our work in learning with noisy labels on both synthetic
and real-world datasets. On synthetic datasets, we verified
that the proposed method addresses the underfitting issue of
the noise-robust loss under various noise ratios. Moreover,
we conducted ablation studies to gain insights into the char-
acteristics of our framework. On real-world datasets, we
compared the performance of our proposed method with the

state-of-the-art methods for learning with noisy labels, and
demonstrated its competitive performance.
Experimental setup. We followed the experimental set-
tings of [4] to create the noisy synthetic datasets by adding
label noise to the CIFAR-10 and CIFAR-100 datasets [14].
The synthetic datasets consisted of two types of label noise:
symmetric and asymmetric noise. Symmetric noise as-
sumes that all samples have an equal probability of be-
ing mislabeled, while asymmetric noise assumes label-
dependent noise; that is, samples of a particular class are
easily mislabeled to a certain class. We trained ResNet-
34 [9] with a momentum SGD optimizer as the backbone
model, and it was trained from scratch. For detailed exper-
imental settings, please refer to [4]. To evaluate the pro-
posed method’s effectiveness in learning with noisy labels
on real-world datasets, we used the mini-WebVision [16]
and Clothing1M [32] datasets, which are popular bench-
marks. We trained ResNet-18 and ResNet-50 [9] with a mo-
mentum SGD optimizer on Clothing 1M, and ResNet-50 on
WebVision. Also, we used an ImageNet pre-trained model
for the Clothing1M dataset. To build the pre-trained model,
we performed self-supervised learning [2] instead of using
the label information. In all experiments, we used the GCE
method [37] as the noise-robust model in our framework.
The hyperparameters of the proposed method are reported
in the supplementary materials.

4.1. Synthetic label noise

Comparison with state-of-the-art. We compared the
classification accuracy of our method with state-of-the-art
noise-robust loss methods to demonstrate that it can effec-
tively reach the desired optimal point. The comparison al-
gorithms included LS [28], BS [23], SCE [30], GCE [37],
NCE [19], JS [4], and GJS [4]. We conducted the experi-
ments under the same setting as [4] and the performances of
comparison methods were taken from the paper. We mea-
sured the average accuracy of the proposed method trained
on five different seeds.

Table 1 shows the classification accuracy of various
methods in different noise ratios. Our method outperformed
all other competitors in all cases. In particular, the per-
formance difference with other methods was more signif-
icant in situations with asymmetric noise or high noise ra-
tios. For example, when there was 80% symmetric label
noise, our proposed method achieved an accuracy increase
of 10.45%p and 11.37%p from the second best on CIFAR-
10 and CIFAR-100, respectively. Our proposed method
also demonstrated robust classification performance against
high ratios of label noise compared to GJS [4] that uses an
augmentation-invariant regularizer.
Noise-robust model versus noise-free model. Our pro-
posed framework consists of two models: a noise-robust
model and a noise-free model. The noise-robust model is
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Table 1. Comparison of classification accuracy (%) on noisy CIFAR-10 and CIFAR-100 datasets. The noise ratio is indicated under
the type of noise. The proposed method is compared with other noise-robust methods using ResNet-34 backbone. The results are averaged
over five different seeds. Results in bold indicate the best performance, and underlined text represents the second best performance.

no noise symmetric noise asymmetric noise
Dataset Method 0 20 40 60 80 20 40

CIFAR-10

CE 95.77 91.63 87.74 81.99 66.51 92.77 87.12
BS [23] 94.58 91.68 89.23 82.65 16.97 93.06 88.87
LS [28] 95.64 93.51 89.90 83.96 67.35 92.94 88.10
SCE [30] 95.75 94.29 92.72 89.26 80.68 93.48 84.98
GCE [37] 95.75 94.24 92.82 89.37 79.19 92.83 87.00
NCE + RCE [19] 95.36 94.27 92.03 87.30 77.89 93.87 86.83
JS [4] 95.89 94.52 93.01 89.64 76.06 92.18 87.99
GJS [4] 95.91 95.33 93.57 91.64 79.11 93.94 89.65
Ours 96.10 95.78 95.47 94.47 91.13 95.68 93.17

CIFAR-100

CE 77.60 65.74 55.77 44.42 10.74 66.85 49.45
BS [23] 77.65 72.92 68.52 53.80 13.83 73.79 64.67
LS [28] 78.60 74.88 68.41 54.58 26.98 73.17 57.20
SCE [30] 78.29 74.21 68.23 59.28 26.80 70.86 51.12
GCE [37] 77.65 75.02 71.54 65.21 49.68 72.13 51.50
NCE + RCE [19] 74.66 72.39 68.79 62.18 31.63 71.35 57.80
JS [4] 77.95 75.41 71.12 64.36 45.05 71.70 49.36
GJS [4] 79.27 78.05 75.71 70.15 44.49 74.60 63.70
Ours 79.40 78.21 75.82 71.28 61.05 77.08 68.05

designed to reach the optimal point of the noise-robust loss,
as proven theoretically. Besides, the noise-free model has
the potential to fit well-trained samples effectively from the
noise-robust model. To help users choose between the two
models, we provide training curves for both models, and
their performances are measured at every epoch under chal-
lenging noise ratios (80%), to show a clear difference.

Figure 3 illustrates the accuracy comparison between the
noise-robust model and the noise-free model on CIFAR-
10 and CIFAR-100 datasets with 80% of symmetric label
noise. Both models share knowledge and show similar per-
formance at every epoch on the train dataset. However,
on the test dataset, the difference in accuracy gradually in-
creases as the epoch increases. From the results, it appears
that the noise-free model trained with cross-entropy holds
better generalization performance. The phenomenon that
the noise-robust model loses accuracy in the test set, al-
though the accuracy in the training set is the same as the
noise-free model, can be analyzed as an underfitting prob-
lem in noise-robust loss. This implies that our noise-free
model properly learned both the properties of noise-robust
loss and cross-entropy loss. Therefore, we argue that the
proposed noise-free model can prevent this underfitting is-
sue and recommend using the noise-free model over the
noise-robust model for solving classification problems.
Performance according to the effect of cross-entropy. In
Equation (6), we defined a function that maps the noise-
robust loss value to the label confidence. The mapping func-
tion includes an adjustable variable m, which increases the
entire label confidence as m increases, leading to increase

Figure 3. Comparison of accuracy between the noise-robust
model and the noise-free model. We measure the accuracy on the
test set, clean train set, and noisy train set at each epoch. The per-
formance of both models is measured on CIFAR-10 and CIFAR-
100 datasets with 80% of symmetric label noise.

the effect of the cross-entropy loss. We argued in the pa-
per that our criterion is a simple and generalizable approach
compared to existing sample selection methods. To support
this claim, we conducted experiments on the CIFAR-10 and
CIFAR-100 datasets with 80% symmetric label noise and
verified the performance sensitivity of m. We adjusted m
from -5 to 5 in this experiment, where the average test set
loss was less than 2. Figure 4 shows the performance of the
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Figure 4. Performance according to the effect of the cross-
entropy loss. We measure the classification accuracy while chang-
ing the effect of the cross-entropy loss by adjusting the variable m
in Equation (6). The experiment is conducted on CIFAR-10 and
CIFAR-100 datasets with 80% symmetric label noise. The range
of m is from -5 to 5. As m increases, the effect of the cross-
entropy loss becomes larger, leading to a larger |Dce|.

proposed method as m varies.
The results indicate that the proposed method shows con-

sistent performance while m changes between -1 and 1,
demonstrating the advantage of the adaptive sample selec-
tion approach trained with cross-entropy loss. Even if mis-
labeled samples are trained with cross-entropy loss, their
label confidence may be low. In this case, their contribu-
tion to learning the noise-free model will be reduced. When
m is -5, the performance of the proposed method is similar
to that of the GCE [37] model, supporting the theoretical
analysis that our method approximates the noise-robust loss
model more accurately as the size of |Dce| decreases. Fi-
nally, when m is 5, the influence of the cross-entropy loss
is the strongest in this experiment. The performance of the
proposed method is lower than that of the model trained
with the cross-entropy loss, suggesting that the simple com-
bination of the cross-entropy loss and the noise-robust loss
can cause significant performance degradation.
Variants of the proposed method. In our paper, we pro-
posed that incorporating label confidence into the cross-
entropy loss function can help mitigate the underfitting
problem and approximate the learning of a noise-robust loss
function. To increase the learning capacity of our model, we
extended the single-model approach to a two-model frame-
work, where each model optimizes one of the two objec-
tives. Moreover, we integrated augmentation-invariant reg-
ularization and label correction methods into our frame-
work. To evaluate the impact of each of these modifications
on the performance of our method, we conducted exten-
sive experiments and compared the results with the baseline
method, which uses the GCE loss function [37].

Our experiments on the CIFAR-10 and CIFAR-100
datasets, which involve challenging levels of noise cor-
ruption, revealed that our ‘Single model’ approach, which
simultaneously learns with the cross-entropy and noise-
robust losses, exhibits similar performance to the base-

Table 2. Ablation studies. ‘Single model’ refers to a single model
that minimizes the right-hand side of equation (4). ‘Two models’
refers to our framework without augmentation-invariant regular-
ization and label correction. Bold indicates the best performance
except for our method.

CIFAR-10 CIFAR-100
Method sym-80 asym-40 sym-80 asym-40
GCE [37] 79.19 87.00 49.68 51.50
Single model 78.10 90.54 40.57 58.34
Two models 81.49 91.20 52.22 62.45
Ours 91.13 93.17 61.05 68.05

line method. Unfortunately, both objectives in a single
model did not yield significant performance improvements,
because of the discrepancies between the cross-entropy
loss, which concentrates low-probability predictions, and
the noise-robust loss. This phenomenon is clearly demon-
strated in Figure 3. In contrast, our ‘Two models’ approach,
which trains two separate models, each optimizing one ob-
jective, consistently achieved better performance than the
baseline method. Finally, our full method, which leverages
augmentation-invariant regularization and label correction,
demonstrated superior performance. Supplementary mate-
rial includes experiments conducted across diverse noise
ratios to enable a comprehensive evaluation of module-
specific performance.

4.2. Real-world label noise

We conducted experiments on two datasets to evaluate
the effectiveness of our proposed method in real-world sce-
narios: the Clothing1M dataset [32], which includes 14 cat-
egories of clothing, and the mini-WebVision dataset, which
consists of samples from the 50 most popular classes in the
WebVision dataset [16]. We compared our method with
state-of-the-art approaches, including Co-teaching [7], Co-
teaching+ [34], JoCor [33], ELR+ [17], DivideMix [15],
and GJS [4]. Consistent with GJS, we also presented en-
semble results (‘(E)’ in Table 3) by training two indepen-
dent networks and ensembling their outputs. For the mini-
WebVision experiment, we used a contrastive loss [3] to
learn a model quickly during the warm-up step. Addition-
ally, we applied the ColorJitter method as an image aug-
mentation technique, following GJS. In the Clothing1M ex-
periment, we used only 128,000 samples in the training
dataset and ensured each category contained an equal num-
ber of samples. We adopted the ELR+ settings for our im-
plementation, except for Mixup [36].

In Table 3, our proposed method achieved state-of-
the-art performance on the mini-WebVision dataset and
competitive results on the Clothing1M dataset, demon-
strating its effectiveness in real-world scenarios. Specif-
ically, our method achieved higher accuracy than ELR+
and DivideMix on the mini-WebVision dataset, despite

1830



Table 3. Comparison of classification performance on real-
world noisy datasets. We compare our proposed method with
recent studies on two real-world noisy datasets: mini-WebVision
(WebVision) and Clothing1M (Clothing). ‘(E)’ denotes the en-
semble performance of two independently trained networks, and
‘IResNet2’ indicates InceptionResNetV2. We report the highest
performance described in each paper, except for the GJS method
on Clothing1M. The best performance is indicated in bold.

Method Backbone WebVision Clothing
ELR+ [17] IResNet2 77.78 74.81
DivideMix [15] IResNet2 77.32 74.76
CE ResNet-34 70.69 69.88
GJS [4] ResNet-50 77.99 72.43
Ours ResNet-50 78.72 74.61
GJS (E) [4] ResNet-50 79.28 -
Ours (E) ResNet-50 80.00 -
Co-teaching [7] ResNet-18 - 69.21
Co-teaching+ [34] ResNet-18 - 59.32
JoCor [33] ResNet-18 - 70.30
Ours ResNet-18 - 72.97

the fact that they used a powerful InceptionResNetV2
backbone [27] and Mixup [36] as an augmentation tech-
nique. Similar to our approach, GJS used noise-robust loss
and augmentation-invariant regularization, and it achieved
higher performance than ours by ensembling two inde-
pendently trained networks. However, our method also
achieved similar performance improvements when it used
an ensemble method. In the Clothing1M experiment, meth-
ods without Mixup showed relatively low accuracy. Never-
theless, our proposed method achieved a difference in ac-
curacy of only 0.2%p compared to the highest-performing
method, whereas GJS had a larger gap. In addition, our
method outperformed other sample selection methods us-
ing ResNet-18 backbone. These results suggest that our
proposed method performs competitively, not only in the
presence of synthetic noise but also in real-world noise.

5. Conclusion
In conclusion, this paper proposes a novel training strat-

egy to address the underfitting problem of robust loss meth-
ods in deep learning for image classification tasks with
noisy labels. Our proposed approach incorporates sample-
wise label confidence into the training process, resulting in
lower penalties for incorrect predictions of noisy samples
with lower confidence levels. Our method is trained on the
weighted cross-entropy loss, where the weight is calculated
based on the label confidence, and can be applied to exist-
ing robust loss methods. Theoretical evidence suggests that
our method can achieve the optimal point of the selected
robust loss method, provided certain conditions are met re-
garding the sample-wise label confidence. Experimental re-
sults on both synthetic and real-world datasets demonstrate

the effectiveness and robustness of our proposed method in
handling noisy labels. The proposed method outperforms
existing robust loss methods, extremely as the noise ratio in-
creases, and achieves competitive performance compared to
state-of-the-art methods. We believe that our theoretical ev-
idence can provide valuable guidance for future research in
the field of learning with noisy labels, particularly for those
looking to define their own label confidence measures.
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