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Abstract

Co-speech gestures are a key channel of human communi-
cation, making them important for personalized chat agents
to generate. In the past, gesture generation models assumed
that data for each speaker is available all at once, and in
large amounts. However in practical scenarios, speaker data
comes sequentially and in small amounts as the agent per-
sonalizes with more speakers, akin to a continual learning
paradigm. While more recent works have shown progress
in adapting to low-resource data, they catastrophically for-
get the gesture styles of initial speakers they were trained
on. Also, prior generative continual learning works are not
multimodal, making this space less studied. In this paper,
we explore this new paradigm and propose C-DiffGAN: an
approach that continually learns new speaker gesture styles
with only a few minutes of per-speaker data, while retaining
previously learnt styles. Inspired by prior continual learning
works, C-DiffGAN encourages knowledge retention by 1)
generating reminiscences of previous low-resource speaker
data, then 2) crossmodally aligning to them to mitigate catas-
trophic forgetting. We quantitatively demonstrate improved
performance and reduced forgetting over strong baselines
through standard continual learning measures, reinforced by
a qualitative user study that shows that our method produces
more natural, style-preserving gestures. Code and videos
can be found at https://chahuja.com/cdiffgan

1. Introduction

Human communication technologies for both verbal (e.g.
spoken language) and nonverbal (e.g. co-speech gestures)
have seen significant improvements which have made gen-
erative models for human communication more natural and
semantically relevant [32]. Advancements in speech-based
personal assistants such as Cortana, Alexa, Siri, and more re-
cently in text based conversational agents such as chatGPT1

[34], Meena [1], and Xiaoice [48] have paved the way for
embodied personal assistants. As embodied agents have both

1https://openai.com/blog/chatgpt

Figure 1: Overview of the continual learning paradigm of co-
speech gesture personalization task. We start with a source
model G1 pre-trained on a source speaker. We personalize
G1 to target models G2, G3 and so on in a sequential manner
using low-resource data (∼10 minutes) for each of the target
speaker.

verbal and nonverbal communicative channels, one techni-
cal challenge is to be able to generate personalized visual
co-speech gestures (i.e. nonverbal) using spoken language
(i.e. verbal) [46, 2]. Previous works in co-speech gesture
generation learn unique speaker styles in a static paradigm,
where training is done on a fixed dataset consisting of data
for all speakers available all at once. However, in practical
scenarios of embodied agents learning in the wild, the agent
would receive small amounts of training data sequentially -
also known as a continual learning paradigm. The main goal
of the paper is to learn a unified co-speech gesture genera-
tion model with the ability to generate gestures in multiple
different styles (see Figure 1). This goal is achieved in a
challenging and practical continual learning setting where
the model only has access to limited training data.

This problem setting brings a unique technical challenge,
typically not studied in generative continual learning settings:
crossmodal catastrophic forgetting. Due to the crossmodal
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nature of our task, crossmodal catastrophic forgetting refers
to the forgetting of the crossmodal grounding relationships
between input spoken language modalities and output ges-
ture modality of speakers that the model interacted with
earlier. For example, consider a virtual agent that has the
knowledge of generating gestures for one speaker. As it
starts to interact with the new speakers in the world, it ex-
periences new crossmodal grounding relationships between
gestures and spoken language. While the gestures are heav-
ily dependent on the spoken language, they are also heavily
influenced by the new speakers’ idiosyncrasies. A practi-
cal challenge here is that these interactions are often short,
hence creating a low-resource setting for this agent. Another
challenge is that the agent sequentially receives new data
as it interacts with multiple new speakers over time. The
goal of this virtual agent is to learn to generate personalized
gestures for many different speakers without forgetting the
crossmodal grounding of the speakers that it interacted with
earlier in its life. The agent should be able to achieve these
goals with the practical constraints of low-resource data,
limited storage space, and faster training.

In this paper, we propose an approach, named C-
DiffGAN, that can efficiently personalize co-speech gesture
generation models from a high-resource source speaker to
multiple low-resource target speakers. To the best of our
knowledge, this is the first approach that is able to learn
a personalized model for multiple speakers with only 2-
10 minutes each of speaker data (i.e. as opposed to 10
hours [11, 2, 20, 14]) in a continual learning setting. Our
C-DiffGAN approach requires access to only 2-10 minutes
of the input data (i.e. language and speech) for the prior
speakers and 2-10 minutes of paired data (i.e. language,
speech, and gestures) for the new speaker. For continually
learning new speakers’ behaviors while not forgetting the
prior speakers’, C-DiffGAN follows two steps: First, it di-
rectly identifies shifts in crossmodal grounding relationships
along with the shifts in the output domain from the pretrained
source model. Based on these identified distribution shifts,
C-DiffGAN updates a few necessary parameters in a single
layer of the source model, allowing efficient adaptation with
low resources. Second, it utilizes the low-resource input data
of prior speakers in tandem to prevent the model from drift-
ing from the prior speakers’ crossmodal grounding, hence
preventing crossmodal catastrophic forgetting. This is done
via a novel proposed objective term Lccf . Our experiments
study the effectiveness of our C-DiffGAN approach on a di-
verse publicly available dataset and is substantiated through
a myriad of quantitative and qualitative studies, which show
that our proposed methodology significantly outperforms
prior approaches for low resource continual learning of non-
verbal grounding and personalization of gesture generation
models.

2. Related Work

Co-speech gesture generation Gesture generation is the
task of imbibing nonverbal communicative behaviors that
humans use [12, 21] into virtual agents, making them more
engaging and informative [18]. Co-speech gesture gener-
ation [33, 24] involves generating gestures accompanying
speech utterances. Data-driven approaches [8, 19] here have
shown to produce more diverse and natural gestures [33]
than rule-based techniques [26, 37]. Prior work that posits
that co-speech gestures are idiosyncratic [28, 45] has moti-
vated gesture synthesis conditioned on speaker-specific style.
Ginosar et al. [11] trains speaker-specific models that ad-
versarially discriminate to produce style-consistent gestures.
Ahuja et al. [4] generates speaker-specific gestures by learn-
ing style embeddings. Most of these works, however, require
large amounts (5-10 hrs) of initial training data.

Gesture generation with low-resource speaker data It is
practically infeasible to collect hours of multimodal speaker
data, making the low-resource setting crucial to gesture
generation. Prior works focus primarily on low-resource
adaptation, where a previously trained model transfers to
the style of low-resourced new speaker data. Methods in-
clude: 1) pre-training with high resource data, then a cross-
modally grounded adaptation phase on low-resource data
[3], 2) data augmentation [43], 3) zero-shot style adaptation
via a learnt style encoder [7]. While effective in creating a
speaker-specific model, these models catastrophically for-
get [27, 36, 9] the source speakers’ style, and only generate
gestures of the target style post adaptation. In contrast, we
investigate the scenario of low-resource continual learn-
ing, where the aim is to incorporate the new speaker styles
without forgetting previously learnt styles. Recent works in
zero-shot style control [10] cannot incrementally incorporate
new speaker information, making them strongly dependent
on the diversity (number of speaker styles) and quality of
source training data. In our paper, we learn new styles even
when source training data is of a single speaker’s style.

Continual Learning for Generative Settings Continual
learning previously has been mainly applied for discrimina-
tive tasks [23, 25]. The aim is to learn classification tasks
sequentially, without degrading earlier task performance
[27, 36, 9]. Generative continual learning involves incremen-
tal class-conditional generation [35], where different classes
of, say images (e.g. classes are digits 0-9 for MNIST [22], or
locations for LSUN [47]) are sequentially trained on, and the
model must finally be able to conditionally generate images
of all classes. Prior works in generative continual learning
involve using “replay", where a buffer of datapoints of previ-
ous classes are stored [6] or generated [39, 44] to augment
the current training sequence. Other techniques use elastic
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Figure 2: C-DiffGAN: Overview of the key components. (a) and (b) constitute the steps in mitigating crossmodal catastrophic
forgetting in Sec. 4.1, and (c) refers to the low-resource adaptation in Sec. 4.2.

weight consolidation [17] on GANs to slow down gradient
updates that cause forgetting [38]. However, these works
are largely unimodal. To our knowledge, we are the first to
tackle continual learning of gesture synthesis.

Prior works similary focus on pre-training a source model
on large source data, then adapting it to a low-resource
setting. [30, 41] introduce new parameters in the model,
whereas [16, 42] fine-tunes the complete model on the target
data or to specific layers or modules are applied [31, 29].
wang2020minegan, Li2020FewshotIG utilize importance
sampling to transform the original latent space of the source
to a space which is more relevant to the target. While this
approach can be effective when the source distribution and
the target distributions share support, it may not be well-
generalizable when their supports are disjoint. To address
this concern, ojha2021few introduces a contrastive learning
approach to preserve the similarities and differences in the
source, and then adapting to the target domain. These meth-
ods focus on adapting only the output domain of unimodal
generative models (i.e. generate one modality with noise or
a small set of discrete classes as the input). However, we
believe that for crossmodal generative modeling tasks, we
need to explicitly model complex relationships between the
input modalities and the generated output modality, both of
which have a spatial and/or temporal structure.

3. Problem Statement
We are given a set of training datasets for each

speaker (or experiences) S = {S1,S2, . . . ,SM}. Here
Sj = {(j,Xj

i ,Y
j
i )}N

j

i=1 is paired data of input lan-
guage and speech Xj

i and output sequence of body
poses Yj

i for speaker j. A goal here is to learn a
sequence of gesture generation models, represented as
Generator-Discriminator pairs [13], that are adapted through

(G1, D1) → (G2, D2) → . . . → (GM , DM ) by sequen-
tially training on speakers 1 through M in a continual learn-
ing setting. Here Gj is a model that is able to generate
personalized gestures of speakers 1 through j that are driven
by both language and speech. Dj is a model that can distin-
guish between real and fake sequence of gestures for the jth
experience. In addition to sequential training, the number
of training samples N j is often small in practical scenarios
which emulates a low-resource continual learning setting.
In this setup, only the final version of the model GM is
deployed.

4. Continual-DiffGAN

We propose a new approach, Continual-DiffGAN (or C-
DiffGAN), that learns a target model Gj for speaker (or
experience) j while not forgetting the crossmodal grounding
knowledge of speakers 1 through j − 1 via the low-resource
adaptation from the source model Gj−1. This approach is se-
quential and applies for speakers 1 through M . C-DiffGAN
has three components: (1) Generative Modeling (Section
4.3) which learns to generate gestures that are driven by input
spoken language along with personalizing to multiple speak-
ers through a loss function Lgen, (2) Crossmodal Adaptation
(Section 4.2) which learns to adapt from a source model to a
target model through a loss function Ldiffgan, and (3) Cross-
modal Catastrophic Forgetting (Section 4.1) that prevents
the new target model Gj from catastrophically forgetting
the crossmodal grounding knowledge earlier speakers (i.e. 1
through j − 1) through a loss function Lccf . Optimization
of the combined loss function describes the complete model,

G∗
j = ESexp

j
argmin
Gj−1

max
Dj−1

Lgen + Ldiffgan + Lccf (1)
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where Sexp
j is a low-resource training dataset through the

jth experience. A diagram of the model is shown in Fig. 2.

4.1. Crossmodal Catastrophic Forgetting

A key technical challenge in continual learning paradigms
is the phenomenon of catastrophic forgetting. Neural net-
works typically forget previously learnt domain knowledge
when they are fine-tuned on new experiences [27, 36, 9].
This challenge becomes even more complex as our task is
generative crossmodal, which means that both input and out-
put modalities are part of a large and continuous representa-
tion space. To tackle this crossmodal catastrophic forgetting
challenge, one possible approach is to fine-tune the source
model with previous experiences’ training data [35] along
with the new experience’s training data. But this approach is
not scalable, as the memory and computational footprint of
the continual learning models will linearly increase with the
number of experiences. To mitigate the scalability challenge
along with crossmodal catastrophic forgetting, we propose
a two step approach: (1) Reminiscence and (2) Crossmodal
Alignment.

Low-resource Reminiscences We leverage the source
model Gj−1 to create an extended dataset that contains both
real training data of the jth experience as well as memory
reminiscences of the previous experiences. It is defined as
Sexp
j = Sj ∪ S̃1:j−1, where S̃1:j−1 =

⋃j−1
e=1 S̃e. The set S̃e

for a given experience e is constructed using input examples
of all previous experiences and the generated gestures by
source model Gj−1 as

⋃Ne

i=1{(e,Xe
i , Gj−1(X

e
i , j))}. Due

to the low-resource and crossmodal nature of this task, Nj

is typically quite small ranging from 2-10 minutes of lan-
guage and speech inputs. This makes the utilization of mem-
ory reminiscences especially challenging when compared to
memory replays [44] where unlimited amount of replay data
can be generated due to the unimodal nature of the tasks.
With the constructed memory reminiscence, the target model
Gj now has access to the previous experiences.

Crossmodal Alignment These previous experiences are
essential to providing the the target model Gj with informa-
tion on crossmodal relationships between spoken language
and gestures for speakers 1 through j − 1, hence prevent-
ing catastrophic forgetting. We propose an approach where
the target model is encouraged to remember this knowledge
explicitly through the loss function Lccf defined as follows:

Lccf = E(k,X̃,Ỹ)∈S̃1:j−1
∥Ỹ −Gj−1(X̃, k)∥2 (2)

This loss function is part of the overall loss function defined
in Equation 1 which can be optimized by adapting the source
model Gj−1. This constraint preserves the model’s ability
to generate gestures in the style of earlier speakers while

leaving room to support the generation of gestures in the
style of a new speaker. Furthermore, this loss also acts in a
regularization capacity reducing the need of a larger dataset
for learning to generate gestures of new speaker.

4.2. Low-resource Crossmodal Adaptation

A practical challenge in the continual learning paradigm
is availability of training data for new experiences, often
making it a low-resource paradigm. While the Crossmodal
Alignment loss (Lccf ) acts as a regularizer, learning a cross-
modal generative model is still quite challenging in a low-
resource setting. It is achievable if we learn a target model
Gj for the new experience by drawing on from the knowl-
edge of a source model Gj−1 that is well trained on high-
resource data. We adopt the two step approach for low-
resource crossmodal adaptation from [3]. First, the model
learns to identify the crossmodal grounding shifts through
a loss function Ldiff and low-resource target data. Second,
the target model is encouraged to shift the output domain
distribution to be closer to that of the targets’ through the
use of a loss function Lshift. The combined loss function
Ldiffgan = Ldiff + Lshift encourages low-resource cross-
modal adaptation of our C-DiffGAN model.

This low-resource crossmodal adaptation in tandem with
the mitigation of crossmodal catastrophic forgetting allows
us to learn a well-trained target model Gj that is able to
generate gestures of speakers from the first j experiences.
Now, the role of Gj switches to a well-trained source model
which can now be used to learn the new target model Gj+1

with a new experience, continuing the training cycle.

4.3. Generative Modeling

The final challenge is to generate plausible gestures that
correspond to the input spoken language for multiple speak-
ers. As a first step we encourage the model to generate
correct gestures via a reconstruction loss for every experi-
ence j,

Lrec = E(e,X,Y)∈Sj
∥Y −Gj−1(X, e)∥1 (3)

To alleviate the challenge of overly smooth generation
caused by L1 reconstruction in Equation 3, we use the gen-
erated pose sequence Ŷ = Gj−1(X, j) as a signal for the
adversarial discriminator Dj−1. The discriminator tries to
classify the true pose Y from the generated pose Ŷ, while
the generator Gj−1 is encouraged to fool the discriminator
by generating realistic poses. The adversarial loss is written
as [13],

Ladv = E(e,X,Y)∈Sj
logDj−1 (Y)+log (1−Dj−1 (Gj−1 (X, e)))

(4)
In order to handle multiple modes, we explicitly learn

multiple sub-generators as part of the main generator, follow-
ing from Mix-StAGE [4]. We use two losses from this prior
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Accuracy Forgetting
Model FID↓ PCK↑ FID↓ PCK↓

C-DiffGAN (Ours) 56.2 0.35 13.2 0.01↰

w/o Lccf 242.7 0.25 258.5 0.12↰

w/o Ldiffgan 70.8 0.34 14.0 0.01

MixSTAGe
(Low Resource) [4] 323.7 0.27 - -

MixStAGe [4] 22.0 0.40 - -

Table 1: Ablations to our C-DiffGAN model, compared with
joint training MixSTAGe baselines.

work, Lmix and Lid, the former mitigating mode collapse
and the latter to handle style disentanglement.

The combination of the loss functions in this section is de-
fined as the generative modeling loss Lgen = Lrec+Ladv +
Lmix + Lid, which is trained together with the crossmodal
adaptation and crossmodal catastrophic forgetting losses in
Equation 1.

5. Experiments
Dataset: We use the PATS dataset [2, 4, 11] as the bench-
mark to measure performance. It consists of around 10 hours
of aligned body pose, audio and transcripts for each of the 25
speakers. For all experiments we use a sequence of five ran-
domly chosen speakers (oliver, maher, chemistry,
ytch_prof and lec_evol) that have visually different
gesture styles and diverse linguistic content for our exper-
iments. Unless specified otherwise, we start with a Mix-
StAGE model trained on a high-resource dataset of the
speaker oliver. For speakers in the subsequent experi-
ences, we limit the training data to 2 or 10 minutes2 of to
simulate a low-resource continual learning setting.

Baseline Models: To the best of our knowledge, this cross-
modal continual low-resource generative modeling task has
not been explored before, hence there are no baselines that
are directly associated with this task. We use a family of
strong baselines most relevant to the challenges posed by
this task: DiffGAN [3] performs adaptation from a high-
resource trained source model to a target model in a low-
resource co-speech gesture generation setting. MeRGAN-
JTR and MeRGAN-RA [44] performs continual learning
(or CL) for unimodal generative modeling in a high-resource
setting without the need to explicitly store training exam-
ples of the previous experiences. We modify it to work in
our crossmodal task in a low-resource setting. Buffer Re-
play explicitly saves training examples from the previous

2We achieve similar baseline results over both training data sizes, shown
in the supplementary, and show mainly results for 10 minutes here.

experiences in a buffer, which becomes a part of the sub-
sequent training cycles. This strong baseline requires extra
storage memory and training time making it less scalable.
MixStAGe [4] learns a common model for multiple speaker
styles by jointly training (or JT) for multiple speakers in a
high-resource setting. A relevant baseline arises from jointly
training MixStAGe in a low-resource setting. Additionally,
we ablate the different component losses of C-DiffGAN.

Quantitative Measures: In a continual learning setting
we typically measure two performance criteria [44]. (1)
Average Final Accuracy measures the average metrics of the
final model over the examples of all the experiences and is
defined as

Accuracy(R,M) =
1

M

M∑
j=1

RM,j , (5)

where RM,j is a metric R measured on a model at experience
M on data from experience j, and M is the total number
of experiences. It is a measure of the average performance
of the final model GM over all 1 through M experiences.
A goal of this task is to be able to consistently generate
relevant and diverse gestures corresponding to the input
spoken language for all speakers the model was exposed
to. (2) Average Forgetting measures the extent to which the
final model has forgotten about the prior experiences and is
defined as:

Forgetting(R,M) =
δ

M − 1

M−1∑
j=1

max
j≤e≤M−1

Re,j −RM,j ,

(6)
where δ = +1 if a higher value of metric R denotes better
performance and δ = −1 if a lower value of metric R de-
notes better performance. A model is said to perform better
in a continual learning setting when the Average Forgetting
is lower. A goal of this task is to be able to retain the
knowledge of generating both relevant and diverse gestures
corresponding to the input spoken language, especially for
speakers that were seen earlier in the training cycle.

Metrics: We use two metrics that are useful to measure
performance for co-speech gesture generation tasks: (a)
Probability of Correct Keypoints (PCK) [5, 40] measures
relevance and timing of gestures with respect to spoken lan-
guage. Here the PCK values are averaged over α = 0.1, 0.2
as suggested in [11]. (2) Fréchet Inception Distance (FID)
is the distance between distributions of generated and ground
truth poses [15, 2] which is used to measure the diversity in
the generated gestures.

Qualitative Study: We conduct a human perceptual study
on Amazon Mechanical Turk (AMT) that judges the model
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Average Final
Accuracy

Average
ForgettingAmount

of Data
(minutes)

Training Buffer
Memory Models FID↓ PCK↑ FID↓ PCK↓

CL ✗ DiffGAN [3] 613.6 0.16 674.5 0.18
CL ✗ MeRGAN-JTR [44] 316.9 0.24 355.0 0.13
CL ✗ MeRGAN-RA [44] 494.1 0.23 561.1 0.15
CL ✗ C-DiffGAN (Ours) 56.2 0.35 13.2 0.01

10

CL ✓ Buffer Replay 61.6 0.37 2.2 0.01

Full JT ✓ MixStAGe [4] 22.0 0.40 - -

Table 2: Comparison of our C-DiffGAN with prior work for low-resource continual learning (CL) and joint training (JT)
for crossmodal generative modeling. We use the Average Final Accuracy and Average Forgetting as the continual learning
metrics for FID and PCK. Buffer Memory indicates if the method requires additional storage memory.

Figure 3: Comparing our C-DiffGAN with baselines on the measure of forgetting across number of experiences with 10
minutes of training data for each speaker. We plot (1-Forgetting)% for PCK for all speakers. Hence higher is better. The
sudden dips of the measures for the older speakers indicate catastrophic forgetting and can be observed clearly in DiffGAN [2],
MeRGAN-JTR [44] and MeRGAN-RA [44]. On the other hand, C-DiffGAN retains the performance over all the 5 experiences.

outputs on 5 criterion: Timing, Expressivity, Relevance,
Naturalness, and Style with design principles adopted from
[3]. More details of the study can be found in the supple-
mentary section.

Implementation Details: For our pretrained source mod-
els, we use publicly available models by Ahuja et al. [2] for
all experiments. We implement the continual learning base-
lines atop these source models. We trained all the baselines
with the reported hyperparameters. All our models were
trained for 4000 iterations with a batch size of 32. Either 2
minutes or 10 minutes of video recordings were used as the
target data. To alleviate sample bias, each model was trained
over three such randomly chosen target sets and quantitative
metrics were averaged across these runs. We refer the read-
ers to the supplementary materials for more implementation
details.

6. Results and Discussion
In this section, we discuss both qualitative and quantita-

tive experiments. To get a better idea of the generated videos,
we refer the readers to the supplementary section.

Effective Crossmodal Adaptation With just 10 minutes
of data per speaker, our C-DiffGAN model achieves signifi-
cantly better PCK and FID Average Final Accuracy scores
of 55.6 and 0.35 (Table 2), stark improvements over Diff-
GAN and MeRGAN baselines. We also yield a better FID
score compared to Buffer Replay (61.6). This is indicative
of the positive impact of crossmodal adaptation in learning
new speaker personalizations in a continual learning setting.
These results are consistent, irrespective of speaker sequence
order (details in supplementary).

Reduced Catastrophic Forgetting Compared to the
DiffGAN and MeRGAN baselines, C-DiffGAN reduces
Average Forgetting by more than 15x for both PCK and
FID; from around 400 and 0.15 to 12.7 and 0.01 (Table 2).
This reinforces the benefit of low-resource reminiscences
in retaining old speakers personalizations. In Figure 3, we
observe that DiffGAN [3], MerGAN-JTR and MerGAN-
RA [44] forget the crossmodal grounding relationships (i.e.
PCK) by significant amounts over 1-2 new experiences. This
is unlike our C-DiffGAN model which is completely able
to retain the crossmodal grounding information in Figure
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(a) DiffGAN [3] (b) Buffer Replay

(c) MeRGAN-RA [44] (d) C-DiffGAN (Ours)

Figure 4: Visual Histograms of generated gestures visually describe the distribution of hand gestures in space. Red and blue colors denote the left and right
arms respectively. Each row represents the gesture distribution at the end of each continual learning experience. The final row denotes the true distribution of
gestures for each speaker. The columns represent the speakers in the order they were exposed to the model in the continual learning paradigm. As we go
from top to bottom in each column, we can see how the distribution of each speaker changes over the number of experiences. In Fig. (a) the baseline model
DiffGAN [3] forgets the distribution of gestures for all the older speakers, while just retaining the information of the newest speaker. On the other hand, for
our C-DiffGAN model in Fig. (d), we see that the model remembers the distribution of gestures for all the speakers through all the training experiences
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Model Timing Expressivity Relevance Naturalness Style

MixSTAGe (Low Resource) [4] 13.3 ± 3.4 14.4 ± 4.6 11.0 ± 3.1 12.3 ± 3.0 20.8 ± 4.8
DiffGAN [3] 15.6 ± 3.6 25.8 ± 3.0 14.8 ± 5.1 11.9 ± 2.9 30.6 ± 3.7
MeRGAN-JTR [44] 17.9 ± 3.8 29.8 ± 4.8 17.5 ± 3.1 14.0 ± 3.2 42.3 ± 3.3
MeRGAN-RA [44] 14.4 ± 4.6 24.8 ± 3.5 15.4 ± 3.9 10.2 ± 2.9 35.4 ± 3.3
C-DiffGAN (Ours) 23.1 ± 4.0 22.9 ± 3.2 19.6 ± 3.2 18.5 ± 4.2 49.2 ± 3.2

Buffer Replay 15.8 ± 3.7 19.6 ± 4.1 17.5 ± 3.4 14.0 ± 2.7 42.5 ± 4.7

Table 3: Human perceptual study comparing our model with prior work over five criterion measuring Timing, Expressivity,
Relevance, Naturalness and Style. The preference scores along with 90% confidence intervals are reported for each model as
compared to the ground truth gestures. Higher is better with 50% being the best possible score.

Figure 5: Trends of Average Final Accuracy (FID and PCK)
vs Amount of Training Data for our C-DiffGAN when com-
pared to other baselines. Lower is better for FID and higher
is better for PCK.

3. The amount of knowledge lost could potentially be at-
tributed to crossmodal grounding being a harder challenge
and could benefit from more examples. This trend is qual-
itatively corroborated in the visual pose histograms of the
last two rows of Figure 4d. Here, in row 5, DiffGAN [3]
(Fig 4a) and MeRGAN-RA [44] (Fig 4c) forget the gesture
styles of previous speakers. The red and blue hand gesture
maps drift to the left which is characteristic of the newest
speaker’s (lec_evol) ground truth style, indicating that
knowledge about previous experiences gets overwritten by
new speaker data. C-DiffGAN (Fig 4d), however, is able
to recreate the true distribution of the body poses for all 5
speakers through all the training experiences.

Style Preservation and Gesture Naturalness Table 3
shows results of the user study. Our C-DiffGAN model re-
ceived the best scores for all factors except Expressivity com-
pared to the other baseline models. For Style, C-DiffGAN

scored 49.2, at least 14 points more than DiffGAN and MeR-
GAN, and 7 points more than Buffer Replay. In terms of
Naturalness, our model scored 18.5, at least 4 points more
than the next best baseline. This reinforces how well our
model preserves style across speakers, and generates the
most natural gestures.

Impact of Lccf on Accuracy and Forgetting Table 1 in-
dicates that crossmodal catastrophic forgetting loss Lccf has
a significant effect on this continual learning setting, without
which we observe a severe degradation in FID and PCK
scores. FID Accuracy degrades from 56.2 to 242.7 (lower
the better), a 4x degradation. Notably, forgetting becomes
much worse, with FID Forgetting worsening from 13.2 to
258.5 (lower the better), and PCK Forgetting worsening ten-
fold from 0.01 to 0.12 (lower the better). This effect is also
comparable to the overfitting of a jointly trained MixSTAGe
in a low-resource data which has similar performance to a
model without Lccf ’s regularization effect.

Impact of Ldiffgan on Accuracy and Forgetting In table
1, we observe that learning without Ldiffgan degrades both
crossmodal grounding (PCK) and output domain (FID), par-
ticularly worsening FID Accuracy from 56.2 to 70.8 (lower
the better). This indicates that its impact is complimentary
to the challenge of Crossmodal Catastrophic forgetting. No-
tably, degradation of Forgetting isn’t as severe as for Lccf ,
emphasizing the respective roles that these losses have.

Impact of number of training examples on model gesture
style and grounding As the amount of data increases, we
observe in Figure 5 that our C-DiffGAN is able to model
the output domain (FID) comparably much better before
plateauing. The crossmodal grounding (PCK) remains fairly
stable even with an increase in training data. In contrast,
we observe an opposite effect for DiffGAN [3], MeRGAN-
JTR and MeRGAN-RA [44] where the modeling ability
of output domain (FID) and crossmodal grounding (PCK)
consistently gets worse. This is indicative of these baselines
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easily learning to personalize to new speakers and just as
easily forgetting old speakers. Adding more examples to the
training experiences only speeds up this process.

Reminiscence vs Buffer Replay vs Joint Training trade-
off Buffer Replay is not scalable in long-term continual
learning settings. Instead, we use Reminiscences to recon-
struct data for older experiences, bypassing the need for extra
storage and compute. While this is successful in preventing
catastrophic forgetting, explicitly storing examples in the
buffer also can boost performance (Table 2). The extreme
case of storing examples of all the speakers in the buffer
(i.e. Joint Training for MixStAGe [4] in Table 2) can further
boost the performance. The trade-off here is the need for
extra storage, computational resources and training time for
better performance. We advise readers to be aware of the
trade-off and choose the methodology that better fits their
scenario.

7. Conclusions

We studied the paradigm of low-resource gesture generation
in a continual learning setting. We proposed C-DiffGAN,
that efficiently leverages the continually arriving data to per-
sonalize the grounding and gesture style of the model to that
of the new speakers. By generating low-resource reminis-
cences and a crossmodal catastrophic forgetting loss, the
model is able to retain the grounding and style knowledge
of the older speakers, the effectiveness of which we sub-
stantiate on a large scale publicly available dataset through
quantitative and qualitative studies.
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