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Face + Sketch Face to Dog

- Sketch + PixarDog to Face

Figure 1: Smooth cross-domain image morphing. Morphing in the space of generator weights could be successfully combined
with morphing using StyleDomain directions, i.e. directions in the StyleSpace that can adapt the generator to new domains
(see Section 4).

Abstract

Domain adaptation of GANs is a problem of fine-tuning
GAN models pretrained on a large dataset (e.g. StyleGAN)
to a specific domain with few samples (e.g. painting faces,
sketches, etc.). While there are many methods that tackle
this problem in different ways, there are still many impor-
tant questions that remain unanswered. In this paper, we
provide a systematic and in-depth analysis of the domain
adaptation problem of GANs, focusing on the StyleGAN
model. We perform a detailed exploration of the most im-
portant parts of StyleGAN that are responsible for adapting
the generator to a new domain depending on the similarity
between the source and target domains. As a result of this
study, we propose new efficient and lightweight parameter-
izations of StyleGAN for domain adaptation. Particularly,
we show that there exist directions in StyleSpace (StyleDo-
main directions) that are sufficient for adapting to similar
domains. For dissimilar domains, we propose Affine+ and
AffineLight+ parameterizations that allows us to outper-
form existing baselines in few-shot adaptation while having
significantly less training parameters. Finally, we exam-
ine StyleDomain directions and discover their many sur-
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prising properties that we apply for domain mixing and
cross-domain image morphing. Source code can be found
at https://github.com/AIRI-Institute/StyleDomain.

1. Introduction
Recent years GANs [12, 20, 21, 19, 5] have shown im-

pressive results in image synthesis and offered many ways
to control the generated data. In particular, the state-of-the-
art StyleGAN models [20, 21, 19] have many practical ap-
plications such as image enhancement [46, 24, 6, 41], image
editing [17, 35, 14, 37, 1, 43, 29], image-to-image trans-
lation [31, 16, 36, 11] thanks to their high-quality image
generation and their latent representation that has rich se-
mantics and disentangled controls for localized meaningful
image manipulations. However, it comes at a price, as the
training of StyleGAN requires a large, high-quality dataset
that significantly limits its applicability because many real-
world domains are represented by few images. The standard
approach to deal with this problem is transfer learning, i.e.
fine-tuning the model pretrained on the source domain A to
the target domain B.

There are many domain adaptation methods for Style-
GAN [18, 39, 50, 52, 23, 45, 28, 31, 4, 11, 55, 44] that
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tackle this problem in different ways depending on the num-
ber of available images (e.g., one-shot/few-shot) from the
target domain B and the similarity between the source A
and target B domains (e.g., faces → sketches, artistic por-
traits, or faces → dogs, cats). Most of these works implic-
itly assume that StyleGAN can be adapted to a new do-
main only if we fine-tune almost all its weights, even for
similar domains. However, this common wisdom is poorly
investigated and verified and there is a lack of analysis of
which parts of StyleGAN are important depending on dif-
ferent data regimes and the similarity between domains.

In this work, we aim to provide a systematic and com-
prehensive analysis of this question. Our investigation of
the properties of the aligned StyleGAN models consists of
several parts. First, in Section 3, we identify what parts of
the StyleGAN are sufficient for its adaptation depending on
the similarity between the source A and target B domains.
We discover that fine-tuning the whole synthesis convolu-
tional network is not always necessary. In the case of sim-
ilar A and B domains, the affine layers are sufficient for
the adaptation. For more distant domains, we should opti-
mize more parameters, however not the whole network. It
suggests investigating new more efficient and lightweight
parameterizations of StyleGAN to utilize them for domain
adaptation.

In the second part of our analysis, we propose two new
parameterizations of StyleGAN. For similar domains, we
consider the latent space that is formed by the output of
affine layers, i.e. StyleSpace [43]. We show that we can
directly optimize directions in this space that can adapt to
similar target domains with the same quality as fine-tuning
all weights of StyleGAN (we call such directions as Style-
Domain directions). Further, we explore that we can zero
out 80% of StyleDomain direction coordinates without a
quality degradation that gives even more lightweight param-
eterization (StyleSpaceSparse). For more distant domains,
we propose a new parameterization Affine+ that consists
of affine layers and only one convolutional block from the
synthesis network. It reduces the number of trainable pa-
rameters by 6 times and achieves the same quality. Then,
we further improve Affine+ parameterization by utilizing
low-rank decomposition for weights of affine layers and
obtain AffineLight+ parameterization. It allows us to opti-
mize by two orders less parameters compared to training the
whole StyleGAN. These parameterizations show the state-
of-the-art performance for few-shot adaptation for dissimi-
lar domains outperforming more complicated and expensive
baselines.

Additionally, in Section 4, we inspect StyleDomain di-
rections and discover their surprising properties. The first
one is mixability, i.e. we can sum up these directions to ob-
tain a new mixed domain (e.g., see Figure 6 as a mix of the
Joker style, Pixar style and the style from the image). The

second impressive property is transferability, i.e. the same
StyleDomain directions can be applied to StyleGAN mod-
els that were fine-tuned to other domains (e.g., see Figure 5
where we apply directions found for faces to dogs, cats and
churches). We apply these findings to standard computer
vision tasks such as image-to-image translation and cross-
domain morphing.

2. Related Work
Latent Spaces of StyleGAN. After recent remarkable

success of GANs [12, 20, 21, 19, 5] in image synthesis,
many works appeared that explore their latent representa-
tion for controllable image manipulation. In particular, the
latent space of StyleGAN [20, 21, 19] has attracted con-
siderable attention. It consists of three levels: (i) the first
latent space, Z , is raw random noise (typically Gaussian);
(ii) the intermediate latent spaces W,W+ [1] are formed
by the output of the mapping network; (iii) the last level
is StyleSpace, S , [43] that is spanned by the channel-wise
style parameters after affine layers. It has been shown that
these latent spaces have rich semantics [20, 21], and es-
pecially the StyleSpace that demonstrates the most disen-
tangled and localized semantical directions [43]. In recent
years many works have proposed to utilize such appealing
properties of the StyleGAN latent spaces for image edit-
ing tasks [17, 35, 14, 37, 1, 43, 29]. To apply these meth-
ods for real images it is necessary to inverse them into one
of the latent space of StyleGAN which is another task that
draws significant attention [1, 21, 13, 30, 33, 38, 54, 53].
We should note that all mentioned methods for image ma-
nipulation by controlling StyleGAN latent space allow only
in-domain editing. In this paper, we show that in StyleSpace
there exist such directions that can change the domain of
images.

Domain Adaptation of StyleGAN. Recent years the
problem of fine-tuning StyleGAN has generated a great deal
of interest as it allows training the state-of-the-art gener-
ative model for a domain with few samples. There have
appeared many works that tackle this problem in different
ways depending on how similar the target domain is to the
source one. Roughly, these methods can be divided into two
groups. The first one deals with the case when the target and
source domains are dissimilar (e.g. faces ! cats, churches,
etc.). In contrast, the second group considers the setting
of similar domains (e.g. faces ! stylized faces, painting
faces, sketches, etc.). Methods from the first group typi-
cally require hundreds or thousands of samples from a new
domain to adapt faithfully and they leverage data augmenta-
tions [18, 39, 50, 52], or freeze some layers of the discrim-
inator to prevent overfitting [25], or train the discrimina-
tor with auxiliary losses to match the data more accurately
[23, 45].

In the setting of the second group it is sufficient to have
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Figure 2: StyleGAN2 architecture. We introduce new latent space S+ for the for domain adaptation that combines StyleSpace
and weight offsets for one block from the synthesis network.

only several samples (up to dozens) from the target domain
for the successful adaptation and such approaches utilize
another techniques. In particular, they introduce additional
regularization terms [40, 22], preserve pairwise distances
between instances in the source domain via cross-domain
consistency loss [28], mix weights of the fine-tuned and the
base generators [31], use an auxiliary small network to en-
hance the training [42]. More advanced methods [11, 55,
4] utilize the pretrained CLIP model [32] as the vision-
language supervision for the text-based adaptation [11, 4]
or the one-shot image-based adaptation [7, 55, 9, 49, 48, 4].

Recent work [51] analyzes the performance of meth-
ods from the second group for dissimilar domains in the
low data regime. It was shown that those methods have
a significant quality degradation in the few-shot regime.
However, it can be partially mitigated by constraining
model parameters. There are also approaches that introduce
more lightweight parameterizations for domain adaptation
[27, 34, 7, 4], however they work only for similar domains.
In our paper, we propose efficient and highly lightweight
parameterizations for both similar and dissimilar domains
and show that they can achieve results on par with the state-
of-the-art methods that optimize all weights of StyleGAN.

There are few works that analyze the domain adapta-
tion process of StyleGAN thoroughly. The paper [44] is
the first attempt to perform such an in-depth study. In par-
ticular, they explore which parts of StyleGAN are mostly
changed during fine-tuning and the transferability of the la-
tent semantics after domain adaptation. However, this work
does not analyze which parts of StyleGAN are sufficient for
adapting depending on the similarity between source and
target domains. In our paper, we provide a more systematic
and comprehensive analysis that completes and improves

the results from [44].

3. Importance of Each Part of the StyleGAN
In this section, our goal is to analyze what parts of Style-

GAN are important for domain adaptation. Similarly to
previous works, we specifically focus on the state-of-the-
art GAN architecture, StyleGAN2 [21]. For the source do-
main, we consider FFHQ [20] as it is the large high-quality
dataset that is suitable for training StyleGAN2 from scratch.
For the target one, we test a wide range of different domains
that we will describe further.

StyleGAN2 structure and its main components. We
provide a diagram description of the StyleGAN2 architec-
ture in Figure 2. It consists of three parts:

• mapping network fM that transforms the input noise
z 2 Z (typically Gaussian) to the intermediate latent
vector w 2 W;

• affine layers fA
1 , . . . , fA

N , each of them takes as input
the vector w and maps it to corresponding style vector
s1 = fA

1 (w), . . . , sN = fA
N (w). The concatenation

of these vectors form the vector from the StyleSpace:
s = (s1, . . . , sN ) 2 S;

• synthesis network that is a composition of modulated
convolutions. The weights of each convolution are
modulated by the input style vector si and applied to
the input feature maps. The synthesis network also has
tRGB convolutional layers that transform feature maps
to RGB images and they also are modulated by corre-
sponding style vectors.

Accordingly, the StyleGAN2 G✓ generates from the in-
put noise z the output image I = G✓(s(z)) where ✓ are
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weights of the synthesis network, s(z) = fA(fM (z)),
fA = {fA

1 , . . . , fA
N} .

We will analyze these three components of StyleGAN2
and their impact on the domain adaptation process. It is
common wisdom that the most important part for adapta-
tion is the synthesis network, while the mapping network
and affine layers are mostly responsible for the semantic
manipulations within the source domain [44]. We aim to
verify whether such a conception is correct.

In our experiments, we additionally consider the impact
of the combination of affine layers and one convolutional
block from the synthesis network on domain adaptation. It
is a way to probe the intermediate case between affine layers
and the synthesis network.

Method to analyze the impact of each component.
The paper [44] has proposed to analyze the impact of each
component by resetting its weights in the fine-tuned gener-
ator to their pretrained values and assessing the quality of
the generated images. In our work, we propose another ap-
proach: to directly fine-tune only one of these components
to explore which ones are sufficient for domain adaptation.

Let us describe our method in more detail. The opti-
mization process for the problem of domain adaptation is
the following

LD

⇣
{G✓(s(zi))}Ki=1

⌘
! min, (1)

where LD is domain adaptation loss that depends on the
domain D (we discuss it further) and the samples from the
generator {G✓(s(zi))}Ki=1, z1, . . . , zK 2 Z are sampled
noises.

Typically the generator G✓ is optimized with respect to
all components, i.e.

LD

⇣
{G✓(s(zi))}Ki=1

⌘
! min

✓,fA,fM
. (2)

We propose to investigate settings when we optimize
with respect to only one these components. We denote
each parameter space as: {✓} – SyntConv parameterization,
{fA} – Affine parameterization, {fM} – Mapping param-
eterization. The case we fine-tune all components of the
StyleGAN2 we call Full parameterization.

Domain adaptation settings. In our study, we consider
two settings: one-shot and few-shot. For each data regime,
we use different domains depending on their similarity to
the source domain of realistic faces from FFHQ:

• one-shot domains: for this setting, we consider only
similar domains. It is the case when the target do-
main has the same geometry of faces and it preserves
the identity of the person. It alters only the style of
the image. In this regime, we consider not only one-
shot image-based adaptation with the reference styl-
ized face but additionally text-based adaptation with

the text description of the target style (e.g., ”Photo in
the style of anime (pixar, sketch, etc.)”). See examples
of such domains in Figure 3.

• few-shot domains: for this regime, we examine more
distant domains that have a face-like form but change
the face geometry and identity in a stronger manner.
As examples, we consider AFHQ dogs faces and cats
faces [8].

Depending on the data regime, we use different domain
loss function LD. For one-shot domain adaptation, we ap-
ply the optimization loss from StyleGAN-NADA [11] in the
case of text-based adaptation and another loss from DiFa
[48] for one-shot image-based adaptation. For few-shot do-
main adaptation, we utilize the fine-tuning procedure from
StyleGAN-ADA [18]. For more details about domain adap-
tation loss functions see Appendix A.1.

To obtain quantitative comparisons in the case of a one-
shot setting, we use Quality and Diversity metrics that were
proposed in the HyperDomainNet paper [4]. For few-shot
adaptation, we compute FID metric [15] using the standard
protocol from [18].

Analysis for one-shot domains. For the analysis, we
choose different text-based and one-shot image-based do-
mains (see Appendix A.2 for the full list and more de-
tails). In experiments, we consider the four parameteri-
zations (Full, SyntConv, Affine, Mapping) we discussed
above.

We provide qualitative results in Figure 3 with quantita-
tive ones in Table 1. More results see in Appendix A.2.

We observe that all three parameterizations, Full, Synt-
Conv and Affine, show comparable performance in terms of
both visual quality and objective metrics. The fact that the
synthesis network is sufficient for similar domains was clear
from the previous work [44]. However, our finding that the
affine part is also sufficient is a new and surprising result. It
means that we can change the domain of generated images
without fine-tuning the synthesis network but just passing
the modified style vector that comes from the affine part.
Also, we observe that the mapping network shows poor vi-

Figure 3: Text-based and image-based adaptation for differ-
ent parameterizations. Affine, StyleSpace and StyleSpaceS-
parse parameterizations yield performance comparable with
Full one. This style image is called ”Disney”.
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Table 1: Quality and Diversity metrics [4] for text-based and one-shot image-based domain adaptations with different param-
eterizations. Affine, StyleSpace and StyleSpaceSparse parameterizations achieve results comparable with the Full one.

Botero Sketch Disney (image) Titan Erwin (image)
Parameter Space Size Quality Diversity Quality Diversity Quality Diversity Quality Diversity

Full 30.3M 0.312 0.228 0.208 0.296 0.713 0.247 0.760 0.194
SyntConv 23.6M 0.311 0.224 0.191 0.292 0.711 0.259 0.741 0.217
Affine 4.6M 0.298 0.221 0.194 0.296 0.565 0.359 0.650 0.314
Mapping 2.1M 0.226 0.115 0.182 0.143 0.717 0.080 0.645 0.102

StyleSpace 6.0K 0.309 0.23 0.193 0.306 0.627 0.308 0.672 0.296
StyleSpaceSparse 1.2K 0.322 0.213 0.201 0.269 0.617 0.304 0.659 0.303

sual quality and low diversity in the generated images when
considering Diversity metric. It indicates that for successful
adaptation it is important to update the style vector from S
rather than the intermediate latent vector from W space.

Analysis for few-shot domains. For this setting, as we
discussed above, we consider two datasets, AFHQ Dogs
and Cats [8], and the results are provided in Figure 4 and
in Table 2. See more results in Appendix A.3.

We observe that results for Dogs and Cats are different
compared to similar domains. In particular, we see that
the Affine parameterization does not demonstrate the same
quality as the Full parameterization. It can be seen from
the degraded visual quality and visible gap in FID metric.
However, it is still surprising that the generated images after
adaptation have an adequate visual appearance considering
that we do not fine-tune the synthesis network at all. Synt-
Conv expectedly achieves results comparable with Full pa-
rameterization, and Mapping conversely shows poor quality
on all datasets.

Table 2: FID scores for domain adaptation with different
parameterizations. We observe a significant gap between
Affine and Full parametrizations that, however, can be dras-
tically reduced by introducing Affine+ parameterization.

Domains
Parameter Space Size Dog Cat

Full 30.3M 20.3 7.1
SyntConv 23.6M 19.7 7.2
Affine 4.6M 70.1 27.6
Mapping 2.1M 208.2 226.1

Affine+ 5.1M 18.6 7.0
AffineLight+ 0.6M 20.6 8.9
StyleSpace 6.0K 75.8 22.0

4. Efficient and lightweight parameterizations
of StyleGAN

StyleSpace and StyleSpaceSparse. Our findings from
the previous section suggest that we can change the do-
main of generated images by modifying the style vector
in the StyleSpace S . To check this hypothesis, we will
adapt StyleGAN2 by directly optimizing the direction in S ,
i.e. during fine-tuning of StyleGAN we will optimize only
�sD:

LD

⇣
{G✓(s(zi) +�s)}Ki=1

⌘
! min

�s
, (3)

where �s = (�s1, . . . ,�sN ) 2 S is the optimized direc-
tion in the S for adapting the generator G✓ to the domain
D. We call such directions �s as StyleDomain directions.

Further, we explore that we can zero out most of the co-
ordinates of StyleDomain directions without quality degra-
dation. We use standard prunning technique when we leave
20% of the largest absolute values in the StyleDomain vec-
tor and set the rest to zero. We call such parameterization
as StyleSpaceSparse. We examine different prunning rates
and its performance in Appendix A.4.

We apply these parameterizations to one-shot and few-
shot domains and obtain the following results.

For one-shot adaptation, we provide results in Figure 3
and in Table 1 (see more results in Appendix A.4). We
observe that optimizing the StyleDomain direction �sD

Figure 4: Domain adaptation for dissimilar domains.
Affine+ parameterization produces results on par with the
Full one.
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achieves the same results both visually and quantitatively
as the Full parameterization. It is new and important obser-
vation that StyleSpace allows not only image editing within
domain but also generating samples from out-of domain of
realistic human faces.

For few-shot domains, we observe that StyleSpace is not
sufficient, which is expressed by the same significant qual-
ity degradation as for Affine parameterization. Further, we
introduce a new parameterization that is efficient for more
distant domains.

Affine+ and AffineLight+. We aim to improve Affine
parameterization for successfully adapting to dissimilar do-
mains such as Dogs and Cats. We propose to extend it by
adding one block from synthesis layer with specified spatial
resolution. Such block has two convolutional layers with
weights ✓1, ✓2 2 R512⇥512⇥3⇥3. Instead of fine-tuning all
these weights we introduce more compact parameterization
as offsets �✓1,�✓2 to these weights that are same across
spatial dimensions, i.e. �✓1,�✓2 2 R512⇥512⇥1⇥1 (we
observe that such reduction in size does affect the perfor-
mance). In addition to �✓1,�✓2 we introduce the offsets
to the weights ✓tRGB 2 R3⇥512⇥3⇥3 of the tRGB convo-
lutional layer of the same block with similar parameteriza-
tion �✓tRGB 2 R3⇥512⇥1⇥1. Further, we omit such de-
tail about tRGB part in the sake of brevity. So, for this pa-
rameterization the optimization procedure has the following
form:

LD

⇣
{G✓,�✓1,�✓2(s(zi))}

K
i=1

⌘
! min

�✓1,�✓2,fA
, (4)

where G�✓1,�✓2 is the generator with weight offsets
�✓1,�✓2 for the one block from the synthesis network.

We call such parameter space as Affine+. We examine all
blocks of the synthesis network to choose for this parame-
terization. We end up with the block with 64⇥64 resolution

Figure 5: StyleSpace directions transfer from text-based
and image-based domain adaptation to other fine-tuned
models. We can successfully transfer style while preserv-
ing image content.

as it shows the best performance (see results of this analysis
in Appendix A.4).

While Affine+ has already had 6 times less parameters
than Full parameterization, we further reduce its size by ap-
plying low-rank decomposition to the weights of affine lay-
ers. We denote this parameterization as AffineLight+. It
gives us by two orders less parameters than Full parame-
terization with insignificant degradation in quality. We will
show in Section 5 that in low data regimes, this parame-
terization achieves comparable performance as Affine+ and
outperforms other baselines. More details about applied
low-rank decomposition can be found in Appendix A.4.

We apply these two parameterizations to few-shot do-
mains and obtain the following results.

We provide results in Figure 4 and in Table 2 (see more
results in Appendix A.4). We see that Affine+ parameter-
ization allows us removing the performance gap from the
Full parameterization both qualitatively and quantitatively.
While the number of parameters for the additional block
in Affine+ accounts for only 2 % of the synthesis network
size. It shows that the style vector allows adapting the gen-
erator even to more distant domains if we just add a small
part of the synthesis network.

We observe that AffineLight+ still shows adequate per-
formance, except it has 100 times less parameters than the
Full parameterization. We should notice that this parame-
terization is more suitable for low data regimes than those
that we consider in Section 5.

Properties of the StyleDomain directions. We investi-
gate StyleDomain directions that adapt the generator to sim-
ilar domains and explore surprising properties. The first one
is mixability, i.e. we discover that StyleDomain directions
can be combined with each other. In particular, we can con-
sider several directions that correspond to different similar
domains and take their sum. The resulting direction will
adapt the generator to the semantically mixed domain. We
provide different examples of such combinations in Figure 6

Figure 6: Example of mixing StyleDomain directions. We
can combine different directions in order to perform adap-
tation into a semantically mixed domain.
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Figure 7: Comparison with baselines for one-shot image-based domain adaptation. StyleSpace and StyleSpaceSparse param-
eterizations achieve comparable quality as other methods while having much less trainable parameters.

(see more results in Appendix A.5).

The second property is transferability, i.e. we can trans-
fer StyleDomain directions between different StyleGAN2
models. In particular, let us consider the base generator G✓

pretrained on realistic faces and the generator GDog
✓ fine-

tuned to domain of dogs in the Full parameterization. We
verify that we can apply StyleDomain directions to GDog

✓
which were optimized for G✓. Specifically, we take Style-
Domain directions that were optimized for G✓ to adapt it
to different text-based and one-shot image-based domains
(e.g. Pixar, Disney, etc.). Next, we apply these directions to
generators that were fine-tuned from G✓ to other domains
(e.g. Dogs, Cats). We provide results of this experiment in
Figure 5 (see more results in Appendix A.5).

Finally, we check that StyleDomain directions can be
successfully combined with latent controls for image edit-
ing. For a more detailed exploration of this property, see in
Appendix A.5.

5. Experiments

One-shot domain adaptation. For image-based one-
shot adaptation, we consider the main baselines: Target-
CLIP [7], JoJoGAN [9], MTG [55], GOSA [49], DiFa [48],
DomMod [4]. We apply our parameterizations StyleSpace
and StyleSpaceSparse to DiFa model because this configu-
ration achieves the highest performance (experiments with
other base models can be found in Appendix A.6). Sim-
ilarly, we apply DomMod parameterization to the DiFa
model. We use StyleGAN2 as the GAN architecture and
FFHQ as the source domain. For fair comparison, we
strictly follow baseline default configurations in the choice
of source-target adaptation setups and hyper-parameters.
As target domain we use a wide range of different style im-
ages from baseline works. The full list of target images can
be found in Appendix A.6.

We provide both quantitative and qualitative results in
Table 3 and Figure 7, correspondingly. More results and

Table 3: Quality and Diversity metrics [4] for one-shot image-based domain adaptations with different methods. Memory
denotes the memory needed for keeping adapted generators for all 12 domains for each method. StyleSpace and StyleSpaceS-
parse parameterizations achieve results comparable to other baselines while having much less trainable parameters.

Titan Erwin Disney Across 12 domains
Method Size Memory Quality Diversity Quality Diversity Quality Diversity

JoJoGAN [9] 30M 1.80GB 0.572 0.292 0.591 0.260 0.590± 0.048 0.257± 0.025
MTG [55] 30M 1.80GB 0.607 0.269 0.509 0.234 0.586± 0.054 0.263± 0.028
GOSA [49] 30M 1.80GB 0.547 0.283 0.617 0.216 0.584± 0.034 0.252± 0.030
DiFa [48] 30M 1.80GB 0.719 0.226 0.699 0.263 0.734± 0.047 0.215± 0.038
TargetCLIP [7] 9.0K 420KB 0.474 0.306 0.502 0.333 0.491± 0.043 0.322± 0.015
DomMod (DiFa) [4] 6.0K 280KB 0.705 0.250 0.625 0.294 0.679± 0.049 0.253± 0.037

StyleSpace (DiFa) 6.0K 280KB 0.672 0.296 0.627 0.308 0.644± 0.041 0.298± 0.025
StyleSpaceSparse (DiFa) 1.2K 56.4KB 0.659 0.303 0.617 0.304 0.638± 0.046 0.299± 0.026
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samples can be found in Appendix A.6. We observe that the
DiFa model achieves the best Quality metric but has low Di-
versity compared to other methods. Our parameterizations
applied to the DiFa model balance its performance in terms
of these metrics. So, StyleSpace (DiFa) and StyleSpaceS-
parse (DiFa) achieves uniformly better results than JoJo-
GAN, MTG, GOSA baselines. DomMod parameterization
also show good performance, but it is comparable with our
StyleSpaceSparse parameterization that has 5 times less pa-
rameters. We also report the overall memory needed for
keeping adapted generators for 12 domains. We observe
that StyleSpaceSparse requires significantly less space than
other models. It will be especially important if we scale
the number of target domains to thousands and more. We
note that TargetCLIP that also has small number of trainable
parameters show very poor results visually and in terms of
Quality metric. It has a high Diversity only because its gen-
erated images are very close to the original ones. To provide
more comprehensive comparison we additionally conduct
user studies and present results in Appendix A.6.4.

Few-shot domain adaptation. As main baselines for
this task, we consider the vanilla StyleGAN-ADA [18] (we
will denote it as ADA), CDC [28] and recent SOTA method
AdAM [51]. We compare our parameterizations Affine+
and AffineLight+ applied to ADA with these baselines on
two datasets: Dogs and Cats [8]. We study the efficiency
of these methods with different numbers of available tar-
get samples. For fair comparison, we rigorously follow
the training setups of all baselines. We note that we use
the same number of training iterations and the same batch
size for all methods. We observe that in the AdAM paper
[51] the number of training iterations is set to a small value
(less than 10K) and it causes underfitting of the vanilla ADA
method. Therefore, we increase this number for all meth-
ods to 50K and use the same batch size of 4. Then, for each
method, we report the best FID value that it obtains during

Figure 8: Few-shot training results for different number of
shots. Proposed ADA (Affine+) and ADA (AffineLight+)
show uniformly better performance than baselines.

Table 4: Results for few-shot training with 10-shots. Pro-
posed ADA (Affine+) and ADA (AffineLight+) achieve
better performance.

Domains (10-shots)
Method Size Cat Dog

CDC [28] 30M 66.24 184.56
AdAM [51] 19M 47.05 119.61
ADA (Full) [18] 30M 51.38 100.25

ADA (Affine+) 5.1M 38.40 96.38
ADA (AffineLight+) 0.6M 43.91 101.31

training. See more details about training in Appendix A.7.
We report results for few-shot training for different num-

bers of shots in Figure 8 and separately for 10 shots in
Table 4. More results and samples can be found in Ap-
pendix A.7. Firstly, we observe that the AdAM method
shows results not better than the vanilla ADA (Full) when
trained for sufficient number of iterations. Secondly, we
see that ADA (Affine+) and ADA (AffineLight+) based on
our parameterizations achieve better results uniformly for
all numbers of shots. It shows that these parameterizations
is especially suitable for low data regimes.

Cross-domain image translation. We consider two se-
tups of standard image-to-image problem. In the first one,
we translate images from the source domain to the target
domain unconditionally. In the second setup, we perform a
reference-based translation, where the resulting image com-
bines the pose and the shape of the source image with the
style from a reference image. Details of these experiments
can be found in Appendix A.9.

Cross-domain image morphing. Cross-domain morph-
ing is a smooth transition between two images from dif-
ferent domains. This task is known as challenging [3, 10]
and it is successfully tackled in the work [44] using aligned
StyleGAN2 models. The idea is to interpolate between
aligned generator weights to obtain a smooth transition be-
tween domains. We propose more complex image morph-
ing by utilizing the transferability of StyleDomain direc-
tions. For example, we can apply a direction that stands for
Sketch or Pixar style to Dogs domain to obtain a smooth
transition between sketchy and pixar-like dog (see Fig-
ure 1). See many examples of such complex cross-domain
morphing in Appendix A.10.

6. Conclusion
In this paper, we provide an extensive analysis of the pro-

cess of StyleGAN domain adaptation. We reveal the suffi-
cient components of the generator for successful adaptation
depending on the similarity between the source and target
domains. We discover the ability of StyleSpace to change
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the domain of generated images by StyleDomain directions.
We also propose new efficient parameterizations Affine+
and AffineLight+ for few-shot adaptation that outperform
existing baselines. Further, we explore and leverage the
properties of StyleDomain directions. We believe that our
investigation can attract more attention to the exploration of
new and interesting properties of StyleSpace.
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