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Abstract

In many video restoration/translation tasks, image pro-
cessing operations are naı̈vely extended to the video do-
main by processing each frame independently, disregard-
ing the temporal connection of the video frames. This dis-
regard for the temporal connection often leads to severe
temporal inconsistencies. State-Of-The-Art (SOTA) tech-
niques that address these inconsistencies rely on the avail-
ability of unprocessed videos to implicitly siphon and utilize
consistent video dynamics to restore the temporal consis-
tency of frame-wise processed videos which often jeopar-
dizes the translation effect. We propose a general frame-
work for this task that learns to infer and utilize consis-
tent motion dynamics from inconsistent videos to mitigate
the temporal flicker while preserving the perceptual qual-
ity for both the temporally neighboring and relatively dis-
tant frames without requiring the raw videos at test time.
The proposed framework produces SOTA results on two
benchmark datasets, DAVIS and videvo.net, processed by
numerous image processing applications. The code and
the trained models are available at https://github.
com/MKashifAli/TARONVD.

1. Introduction

Video sharing social media platforms like Snapchat and
TikTok have introduced the common populace to a plethora
of computer vision applications such as Style Transfer [9],
Colorization [43], Denoising [42], and Dehazing [38]. With
this wide-scale integration of these classical computer vi-
sion applications in such platforms, various image process-
ing operations are naı̈vely extended to videos due to scarcity
of annotated video datasets and their computational com-
plexity of video processing methodologies. This naı̈ve ex-
tension of static image processing methodologies to videos
disregards the temporal connection of the video progres-
sion and introduces severe temporal flickering in the videos.
This temporal flicker can appear for various reasons; for in-
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stance, these image processing methods can produce dras-
tically different results for temporally neighboring frames
due to slight changes in their global or local content statis-
tics, or it could also happen due to the multi-modality of the
application as there could exist a number of valid solutions
for images with similar content as highlighted in [3, 41].
Therefore, the extension of these image-to-image transla-
tion tasks to the video domain is an active area of research in
computer vision, and methods that can help extend various
image processing applications with little to no knowledge
of the operations used to create videos are quite useful.

Currently, there are several task-dependent temporal
consistency correction approaches available such as [4, 23,
34], but due to the complex nature of these applications,
only a handful of approaches have been proposed to tackle
the problem of blind temporal consistency correction. Bon-
neel et al. [3] initiated the investigation of blind temporal
consistency correction with gradient-domain minimization
of per-frame processed video with the unprocessed video
to minimize the warping error between the frames. Lai et
al. [16] extended the formulation of [3] with the help of
recurrent Convolutional Neural Networks (CNN) and intro-
duced a perceptual penalty in their formulation to restrict
the deviation of perceptual content of the restored video
from the frame-wise processed video. Deep Video Prior
(DVP) [19] extended Deep Image Prior (DIP) [35] to the
temporal dimension and proposed to formulate enforcing
temporal consistency by training a CNN to generate pro-
cessed video from the unprocessed video without utilizing
optical flow. All of these approaches rely on the availability
of unprocessed videos for implicit extraction of consistent
motion dynamics to use as a restoration guide.

Please note that all the previously proposed approaches
for this task define it with the help of unprocessed videos
(both task-specific and task-agnostic). Having access to un-
processed videos at test time helps the models in siphon-
ing and transferring consistent motion dynamics to the in-
consistent videos to decrease temporal flicker. Despite its
efficacy, this implicit definition limits the applicability of
the previously proposed approaches to only the videos for
which their unprocessed counterparts are available and also
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Key features Bonneel et al. [3] Lai et al. [16] DVP [19] Ours
Does not require raw videos × × × ✓
Explicit video dynamics design ✓ × × ✓
Faithful perceptual restoration × × × ✓
Sequential processing ✓ ✓ × ✓
Long term consistency × × ✓ ✓
Sharpness in processed videos × ✓ × ✓
High-frequency flicker removal ✓ × ✓ ✓
Test time training × × ✓ ×
Runtime (per frame avg.) 2.4635* 0.2146 3.6365 0.2236

Table 1: Key differences in available approaches. ”*” in
front of Bonnel et al. [3]’s runtime highlights environment
difference and is only presented for reference only. Please
note that the runtime is averaged over the same video se-
quence for all the methods.

introduce an inherent bias towards the unprocessed videos
which can compromise the translation effect and quality of
the processed videos (as presented in Fig. 8 ∼ 10).

In order to overcome these limitation, we aim to learn
and infer consistent motion representation solely from tem-
porally inconsistent videos. Doing so does not only alle-
viate the need for raw videos at test time, but also miti-
gates the inherent bias towards the raw videos that is com-
monly present in the currently available approaches for this
task. For the task of learning these consistent motion rep-
resentation, we fine-tune conventional optical flow estima-
tions networks like [11, 31, 33] along with the restorative
part of the network in an end-to-end manner. The proposed
model pipeline is illustrated in Fig. 1. The proposed model
achieves state-of-the-art qualitative and quantitative results.
The proposed formulation can also handle the resolution
mismatch problem in processed and raw videos and makes
it possible to extend the Single Image Super-Resolution [17]
methods to Video Super-Resolution methods without any
modification. The detailed description of our formulation is
presented in 3. We summarize our contributions as follows:
• Identify and propose tailored solutions for various chal-
lenges of naı̈ve extensions of image processing applications
to videos.
• Learn to infer consistent motion representations from tem-
porally inconsistent videos.
• Utilize the learned consistent motion representations to
propose a general framework for task agnostic temporal
consistency correction that produce SOTA results.

2. Related Work
The literature is divided into two main streams to gener-

ate visually appealing videos through image transformation
models. The first stream tackles the task of mitigating
temporal inconsistencies with the reformulation of the task
at hand. Whereas, The second stream focuses on devel-
oping post-processing models that refine the frame-wise
processed videos by penalizing the temporal deviation of
the processed video from its unprocessed counterpart. The

second stream is further divided into two sub-streams:
task-specific and task-agnostic. The following passages
summarize the details of both of the above-mentioned
streams, respectively.
Reformulation stream (video-to-video translation):
These approaches are generally termed video-to-video
translation applications. Generally, these approaches
either consider multiple frames as input and produce
multiple output frames or generate a single frame from
multiple input frames in the form of frame recurrence such
as [5, 23]. There are also cases like video style transfer
where content information is propagated to the next time
step with the help of optical flow to initiate the optimization
of the next frame. This frame-recurrent methodology
has also been proven effective in applications like video
super resolution [29]. Designing these approaches for
each task and training them from scratch is a taxing task
and data scarcity can make these formulations unfeasible.
Generally, such models often do not adapt well to different
tasks; therefore, methods that can restore the temporal
consistency of multiple frame-wise processed videos are
being actively investigated.
Post-processing methods: Bonneel et al. [3] initiated the
investigation of task agnostic temporal consistency correc-
tion using a gradient-based optimization strategy in which
temporally consistent (unprocessed) videos were used as
restoration guides for correcting the temporal inconsis-
tency of frame-wise processed videos. Their formulation
motivated various task-dependent and task-agnostic, and
temporal consistency correction approaches with slight
variations of their original objective formulation. Despite
the simplicity of their formulation, there only exist a
handful of approaches that address task-agnostic temporal
consistency correction due to the difficult nature of the task.
Yao et al. [40] proposed a key-frame strategy that accounted
for the motion of different objects in those key-frames
to handle occlusion as well as temporal consistency. Lai
et al.[16] proposed the first deep learning approach for
this task by employing ConvLSTM [30] and a perceptual
loss [13]. Lei et al. [19] proposed an extension of Deep
Image Prior [35] and demonstrated its capability to mitigate
the temporal flicker of per-frame processed videos.

Apart from these general frameworks, various task-
specific approaches have also been proposed, such as [5, 23,
34]. Defining these task-specific approaches is relatively
straightforward. These approaches define a temporal exten-
sion around a backbone method and penalize the deviation
of generated content with the help of motion information
from the unprocessed videos.

In this work, we propose a general formulation for this
task that alleviates the requirement of unprocessed videos at
test time by learning to infer a consistent motion representa-
tion from the temporally inconsistent videos. This inferred

13535



motion representation is then processed with the content of
temporally inconsistent videos in a two branched network
that restores the natural dynamics of per-frame processed
videos. Our proposed network also contains a recurrent bot-
tleneck module that helps consistent propagation of content
throughout the video sequence and produces SOTA qualita-
tive and quantitative results by only taking into account the
temporally inconsistent videos at test time.

In order to aid the readers, we provide the following ta-
ble to highlight the key differences between the currently
available approaches for this task.

3. Proposed Method

Figure 1: Model Architecture. An illustration of the pro-
posed model architecture. The proposed model consists
of a two-branch architecture that separately processes mo-
tion and content. The combined motion and content fea-
tures concatenated along the channel dimension and are
then passed through a Recurrent Bottleneck Block (RBB)
and a decoder to generate the restored frame.

In this section, we describe the details of the proposed
method. Consider a raw (temporally consistent) video {I0,
I1, I2, ..., In} with n frames and its frame-wise processed
(temporally inconsistent) video {P0, P1, P2, ..., Pn} ac-
quired by an image processing function h as {h(I0), h(I1),
h(I2), ... , h(In)}. The goal of this task is to restore the
temporal consistency of the temporally inconsistent video
and to produce a temporally consistent version {O0, O1,
O2, ..., On}. For the sake of simplicity, these notations are
chosen to be in line with the notations used in past litera-
ture [3, 16, 19].

The proposed formulation draws inspiration from the
disentanglement of a video into its base components: con-
tent and motion representations as presented in [22]. In
their work [22], they investigated the controlled genera-
tion of short length videos by mixing motion and con-

Figure 2: Temporal flicker in optical flow. An illustration
of the decomposition of optical flow generated from tem-
porally inconsistent frames to consistent optical flow and
inconsistent flicker.

tent components from various videos. In this work, we
explore a similar concept of controlled disentanglement
and re-entanglement strategy to restore natural video dy-
namics of the frame-wise processed videos. More specif-
ically, we argue that the previously proposed approaches
for this tasks implicitly employ this disentanglement and
re-entanglement in their formulation with the help of unpro-
cessed video frames. Conventionally, optical flow is used as
an inter-frame motion representations. The estimated opti-
cal flow can also be used to approximate the content of fu-
ture frames with the help of past frames provided that there
does not exist occlusion between the frames (as presented
in Eq. 1).

Ît+1 ≈ w (It, oft+1⇒t) . (1)

This interdependence of optical flow and content can
lead to inconsistent motion representation as optical flow
estimation networks are not trained explicitly to distinguish
temporally consistent content from temporal flicker. Due
to this limitation, the evaluated optical flow estimated from
temporally inconsistent frames is often compromised with
temporal flicker (as presented in Fig. 2). This compromise
of the motion information makes it challenging to separate
the consistent component of optical flow from the additive
flicker. Therefore, the currently available techniques for this
task often rely on siphoning implicit motion representations
from the raw videos and often suffer in cases where the con-
tent of both processed and raw videos deviate significantly.
Another problem with employing these implicit representa-
tions is the bias introduced due to the lack of control in mix-
ing these implicit representations to restore videos which
often leads to the mitigation of translation effect. There-
fore, if a mechanism can be developed that produces similar
motion representations from both unprocessed and frame-
wise processed videos, better and unbiased restorative ef-
fects than those produced by the previously proposed ap-
proaches can be achieved without relying on the availability
of unprocessed videos.

Please note that another observation that can be made
from Fig. 2 (right most figure) is that a significant amount
of flicker in frame-wise processed videos, generally occurs
near the motion boundaries. This observation helps us in
defining objective functions capable of localizing and tar-
geting temporal deviations as presented in Sec. 4.1.
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To overcome these problems and to learn and utilize con-
sistent motion representation, we integrate an optical flow
estimation network into the restoration network as illus-
trated in Fig. 1. A similar integration of a small-scale opti-
cal flow estimation network (SpyNet [26]) for task-oriented
flow estimation is presented in [37] for the task video de-
noising for its extremely small size. We utilize a relatively
larger network (PWC-Net [31]) in our method and provide
an ablation study on different sized optical flow models in
the accompanying supplementary text. We further extend
their idea to a two pass mechanism with an added encoder
to encourage generation of consistent dynamics. The opti-
cal flow network in the proposed methodology is finetuned
in an end-to-end manner without any special supervision.

The proposed model takes in three frames Ot−1 (Pt−1

for the first time step), Pt and Pt+1 as input. These three
frames are propagated through both the content and mo-
tion branches. The proposed model consists of a UNet [27]
like structure with multiple encoder streams and a single de-
coder stream. The decoder contains skip connections from
the content stream to encourage better reconstruction. The
bottleneck part of the model contains a recurrent bottleneck
block to transmit and manipulate the information of the
generated frames to temporally distant frames. Please note
that the multi-branch encoder(s)-bottleneck-decoder archi-
tecture used for the proposed model is employed due to its
proven efficacy in video generation, translation and restora-
tion tasks as described in [4, 8, 14, 15, 16, 23, 32, 34]. The
main difference in the proposed architecture comes from the
design of our motion branch which allows us to present a
standalone solution for this task. The motion branch com-
prises of two passes through a PWCNet [31] with shared
weights followed by a conventional encoder-like architec-
ture. An illustration of the proposed model is presented in
Fig. 1. This two-pass strategy in the motion branch along
with the attached encoder allows the proposed model in re-
gressing consistent motion dynamics from temporally in-
consistent frames. Further architectural details of the pro-
posed network are presented in the accompanying supple-
mental. Figure 3 presents conventional optical flow along
with the learned motion representation generated by the
integrated finetuned PWC-Net [31] from temporally con-
sistent (left) and inconsistent frames (right). Please note
that the ”modified” flow can differ starkly from the conven-
tional flow and can only be interpreted effectively by the
network it is trained with as described in [37]. Contrast-
ing to the conventional optical flow modified flow estimated
from both consistent and inconsistent videos is quite simi-
lar, which suggests that the network can effectively utilize
the inferred consistent motion representation to restore nat-
ural temporal dynamics in the per-frame videos by only tak-
ing into account the temporally inconsistent videos at test
time. Another benefit of this disentangled representation

Figure 3: Conventional and Modified flow like represen-
tation. Comparison of original and Modified flow evaluated
from temporally consistent (left) and inconsistent (right)
frames. The modified flow evaluated from both the tem-
porally consistent and inconsistent frames is quite similar.

is that it allows the users to further improve the level of
restored temporal consistency with the help of an iterative
arrangement; please refer to the supplemental for the de-
tails of the iterative arrangement and the results generated
with such arrangement. The objective functions used for the
end-to-end training of the proposed network are described
in detail in the next section.

4. Objective Functions
This section provides the details of the learning objec-

tives used in the training phase of the proposed network.
These objectives can be classified into two categories, lo-
cal neighborhood and long-term objectives. Both of these
optimization categories are presented below.

4.1. Local Neighborhood Losses

In this work, we aim to find a general solution for cor-
recting the temporal consistency of frame-wise processed
videos. Due to the diversity of the applications addressed, a
simplistic spatial content matching reconstruction loss can-
not justify the generation of temporally consistent frames,
as the content can vary significantly in applications like
style transfer [9] and image adjustment [38]. This discrep-
ancy in the image space of processed and raw videos hin-
ders a straightforward definition of a feasible loss function
for this task. Due to the challenging nature of this task,
we propose a flow gradient loss that provides a supervision
signal for the reconstruction of motion boundaries (where
most of the inconsistencies/flicker appear; as highlighted in
Fig. 2) with the help of optical flow acquired through the un-
processed videos. We further extend this loss to only com-
pare the gradients of the optical flow acquired through the
synthesized and raw frames. Doing so reduces the redun-
dancy present in the high dimensional optical flow which
contains a redundant global component for this task which
is only useful in applications like video stabilization [1]
as described in [39]. The proposed flow gradient loss en-
capsulates the local spatio-temporal information necessary
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to mitigate temporal flicker near the motion boundaries by
removing the unnecessary high-dimensional components
from the optical flow. Similar information bottle-necking
techniques have been discussed thoroughly in vision based
understanding and manipulation literature [7, 24]. The pro-
posed spatio-temporal loss is defined as follows:

Lfg =

T∑
t=2

∥∇ (of (Ot, Ot−1)) ,∇ (of (It, It−1))∥1 . (2)

Here, Lfg and of represents flow gradient loss and the
optical flow estimation network (FlowNet2.0 [11]) respec-
tively. Please note that any optical flow estimation net-
work (SpyNet [26], PWC-Net [31], RAFT [33], etc.) can
be used in both the motion branch and the definition of the
loss functions, we choose FlowNet2.0 [11] for its relatively
lower mean end-point-error, as the estimated optical flow
can vary significantly for small scale networks (comparison
provided in the supplementary text). In equation 2, the ∇
operator denotes the spatial gradient of the estimated op-
tical flow. A similar loss in optical flow domain has been
proposed in [21] where the raw optical flow of the gen-
erated video was compared with that of the ground truth
video. Although effective for the task of video inpainting,
the raw optical flow matching approach fails in applications
like style transfer in which the entire content of the gener-
ated video and the raw video differ greatly, i.e., contains ex-
cessive spatio-temporal variations which contribute to opti-
cal flow estimation. In our experiments, the models trained
with raw optical flow performed poorly, whereas the model
trained with flow gradients converged in a relatively shorter
time and produced sharper frames.

Please note that this optical flow-based loss by itself is
not sufficient for faithfully correcting the temporal consis-
tency, as there could exist multiple solutions for optical flow
equation, e.g., it does not take into account the appearance
of the synthesized and raw frames. In order to address this
issue and to guide the network for the generation of percep-
tually credible frames, a non-local optical flow based loss
in the image space is employed as presented below:

Lrecon =

T∑
t=2

Ct

∥∥∥Ot − Ôt

∥∥∥
1
, (3)

This warping based reconstruction loss function has been
adopted from the [4], as many variants of this objective
function with slight modifications have been proven effec-
tive for enforcing temporal smoothness in video translation
tasks in [3, 5, 16, 23, 34]. Here T represents the total num-
ber of frames in a sequence and Ôt represents the warped
frame Ot−1 (as described in Eq. 1). The working of this loss
function can be summarized as the propagation of content
from preceding frames to the subsequent frames in image
domain to ensure that the generated frames contain similar

content to the previous frames and the inter-frame motion
dynamics of the synthesized frames are similar to that of
the temporally consistent counterpart. This non-local opti-
cal flow based loss function also takes into account the oc-
clusion problem of the Eq. 1 by masking the occluded and
de-occluded content as defined below:

Ct = exp

(
−α

∥∥∥It − Ît

∥∥∥2

2

)
. (4)

The value for α = 50 is chosen according to the pre-
vious works where a similar strategy is used for evaluating
occlusion [34, 28].

An additional conventional short-term perceptual simi-
larity loss [13] was also introduced in the training phase to
minimize the deviation of the synthesized frames from the
original processed frames. This loss is defined as follows:

Lp =
∑
t

∑
l

∥ϕl (Ot)− ϕl (Pt)∥1 , (5)

Here ϕl(.) represents layers of a VGG-16 network till the
layer relu 4 3 (trained on the ImageNet dataset [6]).

4.2. Temporal Constancy Loss

The loss defined in Eq. 3 adequately defines the content
propagation from the previous frame to the current frame
but lacks the ability to enforce it in temporally distant in-
stances. For instance, consider the task of colorization
where a car appears in a portion of the frames and is as-
signed some random color, and it disappears and re-appears
in a later instance. The frame-wise colorization method can
assign it a different color in each sequence, and the loss
function defined in Eq. 3 will be sufficient to enforce the
color constancy of the car in each interval where the car is
visible. This, however, does not ensure the constancy of
the color assigned to the car in both intervals, i.e., the car
could be assigned a solid blue color in the first interval and
a solid red color in the next interval which is quite promi-
nent in methods like [16, 34]. To address this problem of
temporally distant yet similar instances, we introduce a re-
current module (ConvLSTM [30]) in our proposed model
and add explicit constraints that force the model to gener-
ate temporally consistent frames. The previously proposed
approaches for this task simply try to minimize the devia-
tion of current frames from the first frame of the sequence,
which is inadequate for videos containing largely varying
frames. This variation of the content can render this loss
ineffective, and the inconsistencies can only be weakly pe-
nalized with the help of motion dynamics siphoned from
the raw videos. Therefore, we introduce a bi-directional
penalty that enforces the temporal smoothness in both back-
ward (through the local neighborhood losses) and forward
(through the proposed long-term loss) direction. This bi-
directional optimization strategy is inspired from the ping-
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pong loss dynamic as presented in [5]. The proposed long-
term loss is termed as constancy loss and is presented be-
low:

Lconstancy =

T−2∑
p=1

T∑
t=p+2

Ct⇒p ∥Ot − w(Op, of(It−1, Ip))∥1 .

(6)
Here subscript p highlights that the preceding distant im-

ages are compared with all the subsequent frames. Unlike
the simplistic long-term temporal constraints used in [16,
34] which only penalized the deviation of content from the
first frame, this loss term takes into account the inter-frame
flicker of all the frames in a sequence and provides a strong
supervision signal capable of penalizing temporal discrep-
ancies throughout the sequence. Due to this stronger tem-
poral penalty accompanied with the proposed flow gradi-
ent loss, the proposed network learns to produce smoother
videos despite having access to only the frame-wise pro-
cessed videos at test time. The final loss for each training
sequence is given by,

Ltotal = λ1Lfg + λ2Lrecon + λ3Lp + λ4Lconstancy. (7)

The λ(s) in the equation above define the contribution
of each loss in the optimization phase. The details of these
hyperparameters are provided in the supplementary text.

5. Experiments and Results
During our experimentation phase, we tested various

optical flow estimation networks such as [11, 26, 31].
Flownet2.0 [11] has approximately 162M trainable param-
eters, and it produced relatively better results in lesser train-
ing iterations as compared to the other two variants. Having
a vast number of parameters compromises both the train-
ing and testing time. Therefore, we opted for a medium-
sized optical flow estimation network (PWC-Net [31]) and
a higher number of optimization iterations. The results
produced by both variants are discussed in the supplemen-
tary text. We also experimented with an iterative arrange-
ment of the trained models where restored videos are again
subjected to temporal consistency correction models and
evaluated that the proposed model architecture consistently
reduces warp error with every iteration (as presented in
Fig. 4). Generally, the frames subjected to a high number of
consistency correction iterations lose fine details. The gen-
erated results by various restoration iterations are provided
in the supplemental. Please note that the comparative re-
sults provided in this paper are generated through a single
restoration iteration.

The dataset for training the proposed model contains
videos from the DAVIS dataset for video segmentation [25]
and videos gathered from Videovo.net by [16]. The training
dataset contains videos processed through a diverse range

Figure 4: Temporal warp error vs. iterations. Temporal
warp error consistently decreases with a higher number of
restoration iterations.

of applications such as, Artistic Style Transfer [9, 13], Col-
orization [36, 44], Image Enhancement [10], Intrinsic Im-
age Decomposition [2], and Image-to-Image Translation
tasks [20, 44, 46]. The qualitative and quantitative results
are described below.

5.1. Quantitative Results

Task
DAVIS VIDEVO

Bonneel[3] Lai[16] Ours DVP[19]* Bonneel[3] Lai[16] Ours DVP[19]*
WCT [20]/antimono 0.0029 0.0031 0.0026 0.0022 0.0015 0.0021 0.0015 0.0017
WCT [20]/asheville 0.0047 0.0059 0.0047 – 0.0032 0.0043 0.0039 –
WCT [20]/candy 0.0034 0.0047 0.0035 – 0.0020 0.0032 0.0025 –
WCT [20]/feathers 0.0040 0.0040 0.0027 – 0.0027 0.0030 0.0021 –
WCT [20]/sketch 0.0036 0.0029 0.0021 – 0.0025 0.0022 0.0017 –
WCT [20]/wave 0.0033 0.0035 0.0027 0.0026 0.0023 0.0026 0.0021 0.0019
Fast-neural-style [13]/princess 0.0043 0.0063 0.0042 0.0038 0.0035 0.0053 0.0042 0.0046
Fast-neural-style [13]/udnie 0.0021 0.0023 0.0022 0.0022 0.0012 0.0014 0.0014 0.0022
DBL [10]/expertA 0.0017 0.0011 0.0010 0.0015 0.0014 0.0007 0.0006 0.0015
DBL [10]/expertB 0.0016 0.0010 0.0008 0.0014 0.0011 0.0006 0.0004 0.0014
IID [2]/reflectance 0.0015 0.0008 0.0007 0.0012 0.0011 0.0006 0.0006 0.0006
IID [2]/shading 0.0014 0.0008 0.0008 0.0013 0.0008 0.0004 0.0004 0.0017
CycleGAN [46]/photo2ukiyoe 0.0024 0.0019 0.0015 0.0013 0.0017 0.0013 0.0010 0.0018
CycleGAN [46]/photo2vangogh 0.0026 0.0026 0.0019 0.0014 0.0020 0.0020 0.0015 0.0020
Colorization [43] 0.0016 0.0011 0.0008 0.0013 0.0010 0.0006 0.0004 0.0012
Colorization [36] 0.0015 0.0009 0.0007 0.0013 0.0010 0.0005 0.0003 0.0012
Average 0.0027 0.0027 0.0021 0.0018* 0.0018 0.0019 0.0015 0.0018*

Table 2: Quantitative comparison of Temporal Warping
Error. The comparison presented in this table is limited to
the results produced by [3, 16] and the proposed method.
Lower warp error suggests better temporal consistency. ”*”
Indicates partially averaged results.

The quantitative results are evaluated on the basis of
temporal warp error. Tab. 2 shows the quantitative result
produced by the methods proposed in [3, 16, 19] and our
method. Please note that there are over 830 video sequences
in the evaluation datasets and over 115,000 frames. Due
to the extremely tedious and resource-intensive nature of
DVP [19], only a portion of the evaluation datasets could be
processed and the evaluated metrics in the DVP [19] column
are averaged over only the processed videos for each task.
In order to have a fair comparison, the metrics evaluated on
the videos processed with DVP [19] are excluded from the
large-scale quantitative comparison and are only presented
for reference only. Furthermore, it is also noteworthy that
in their paper [19], the authors do not evaluate the results on
the entirety of the dataset and sample tasks for comparative
results and report that their warp error is comparable to that
of Bonneel et al. [3].

The lower temporal warp error represents better temporal
consistency. The lowest temporal warp error is highlighted
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in red, and the second best is highlighted in blue. It is worth
mentioning that the temporal warp error does not take into
account the perceptual quality of the produced frames and
assigns a lower value to blurry videos (as produced by [19]).
The quality of the results produced by each of the discussed
methods can be verified through the accompanying supple-
mentary video. It is evident from Tab. 2 that the proposed
model produces state-of-the-art consistency results. Please
note that, unlike the proposed method, all of the compared
methods require the availability of raw/unprocessed videos
for restoring temporal dynamics at both the training and test
time.

We further verify the efficacy of the proposed model
through a specialized metric (as presented in [12]) for eval-
uating motion smoothness in videos, on the portion of eval-
uation datasets processed through the DVP [19] and present
our findings below.

It is worth mentioning that some attempts to judge the
perceptual quality through metrics like mean PSNR (perfor-
mance degradation [19]) have been proposed for this task.
We intentionally disregarded this metric and argue that this
metric might be helpful to evaluate the performance of suc-
cessive iterations of their prior-based method where each
iteration leads to progressively better results, but it can be
a bit misleading in judging the overall perceptual quality
of restored videos for this task. A similar phenomenon
can be observed with other local perceptual metrics such
as LPIPS [45] as it is impossible to quantize a meaningful
deviation of perceptual distance or PSNR from per-frame
processed videos due to the lack of ground truth data.

In order to be consistent with the prior works, we
nonetheless present the LPIPS [45] results in 3. The pro-
posed method performs competitively with the method pro-
posed by [16] while achieving better temporal consistency.
It is noteworthy that each of the discussed metrics does not
take into account the aspects considered by the other metric
and only provides limited insights about the results. There-
fore, to properly evaluate the models on both perceptual
quality and temporal consistency, thorough user studies are
essential and are used as the primary metric for the evalua-
tion of this task. We conducted two separate user studies to
properly evaluate all of the discussed methods and present
our findings in the next sub-section.

5.1.1 Smoothness Metric (SM)

Due to the unavailability of ground truth videos, the quan-
titative metric results presented (both in the main paper and
this supplemental) can only give us an approximate insight
towards the nature of the restored videos. In order to prop-
erly evaluate our work, we present further large-scale quan-
titative results generated on the portion of the evaluation
datasets processed through DVP [19] in this section. Fig. 5

Task
DAVIS VIDEVO

Bonneel[3] Lai[16] Ours DVP[19]* Bonneel[3] Lai[16] Ours DVP[19]*
WCT [20]/antimono 0.2166 0.0431 0.0485 0.3394 0.2180 0.0451 0.0447 0.2992
WCT [20]/asheville 0.2056 0.0373 0.0449 – 0.2680 0.0514 0.0485 –
WCT [20]/candy 0.2588 0.0435 0.0497 – 0.2175 0.0534 0.0514 –
WCT [20]/feathers 0.2096 0.0467 0.0508 – 0.1519 0.0590 0.0540 –
WCT [20]/sketch 0.1451 0.0499 0.0511 – 0.1871 0.0517 0.0496 –
WCT [20]/wave 0.1777 0.0444 0.0485 0.3423 0.2583 0.0749 0.0793 0.3451
Fast-neural-style [13]/princess 0.2238 0.0646 0.0744 0.4782 0.1610 0.0555 0.0625 0.2566
Fast-neural-style [13]/udnie 0.1473 0.0503 0.0609 0.3660 0.0800 0.0514 0.0604 0.1487
DBL [10]/expertA 0.0795 0.0379 0.0495 0.1453 0.0742 0.0504 0.0584 0.1349
DBL [10]/expertB 0.0530 0.0359 0.0481 0.1361 0.1359 0.0639 0.0578 0.1947
IID [2]/reflectance 0.1011 0.0493 0.0536 0.1389 0.0783 0.0659 0.0731 0.2635
IID [2]/shading 0.0646 0.0527 0.0643 0.1558 0.1191 0.0506 0.0592 0.2302
CycleGAN [46]/photo2ukiyoe 0.0908 0.0394 0.0502 0.2351 0.1462 0.0505 0.0575 0.2571
CycleGAN [46]/photo2vangogh 0.1230 0.0390 0.0494 0.2565 0.1224 0.0519 0.0551 0.1701
Colorization [43] 0.0616 0.0402 0.0468 0.1555 0.0867 0.0495 0.0566 0.1441
Colorization [36] 0.0329 0.0373 0.0475 0.1474 0.1317 0.0081 0.0220 0.1558
Average 0.1369 0.0445 0.0524 0.2414* 0.1523 0.0521 0.0556 0.2167*

Table 3: Quantitative comparison of LPIPS [45]. The
comparison presented in this table is limited to the results
produced by [3, 16] and the proposed method. Lower
LPIPS suggests better perceptual similarity. ”*” Indicates
partially averaged results.

Figure 5: Motion Smoothness Results. This figure
presents the quantitative results acquired through the mo-
tion smoothness metric as described above. The lower mo-
tion smoothness represents smoother transitions in the
videos.

presents the temporal smoothness results generated through
the motion smoothness metric as presented in [12]. This
metric tries to quantify the smoothness of videos over var-
ious window sizes through differential optical flow as fol-
lows:

D = (FI1→I2 − FI0→I1)− (FO1→O2
− FO0→O1

) ,

M(s) = log

(∑
d∈D

1[s,s+1) (∥d∥2)

)
− log(|D|),

(8)

Here, Fa→b denotes optical flow estimated from frame
a to frame b. The preceding I and O refers to the
raw/unprocessed and restored frames respectively. In Eq. 8,
d denotes each of the [∇u,∇v] vectors in the differential
optical flow and s represents the various window sizes for
evaluation and |D| denotes the dimensionality of the dif-
ferential optical flow. 1S(d) is the masking factor which
is equal to 1 if d belongs to the set S. The resultant M(s)
gives a measure of temporal smoothness over 3 consecu-
tive frames. Fig. 5 presents the average results on the por-
tion of evaluation datasets processed through [3, 16, 19] and
the proposed model. A lower score suggests better smooth-
ness. The proposed model again achieves SOTA results in
terms of motion smoothness even over bigger window sizes
as well.

Please note that all the presented metrics are subjective
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in nature and do not account for the overall quality and con-
sistency of the results due to the lack of ground truth; there-
fore, user studies should be considered as the main criteria
for judging the results of all the proposed approaches for
this task. We discuss the findings of the conducted user
studies below.

5.1.2 User Study

Figure 6: User Study. This donut chart highlights the user
preferences collected through the user study. A majority of
the participants preferred the results produced by the pro-
posed method.

We conducted two separate user studies; a comprehen-
sive and a factorized user study, to properly evaluate the
performance of the proposed model. The first user study
consisted of 36 participants with 150 different scenes pro-
cessed through each of the proposed models. Each partici-
pant was asked to judge 5 videos processed through each of
the proposed methods for this task. The users were shown
a randomly sampled scene from the video pool processed
through [3, 16, 19] and this work, simultaneously. The par-
ticipants were instructed to judge the videos on the basis of
naturalness, quality, consistency, content, and style preser-
vation. Figure 6 presents the findings of the first (compre-
hensive) user study. On average, 41% of the users pre-
ferred the videos restored by the proposed method. Fur-
thermore, the results generated by the method proposed in
Lai et al. [16] also received a significant preference in the
user study but it is worth noting that all the previously pro-
posed approaches require the unprocessed counterparts of
the frame-wise processed videos at test time to restore the
temporal consistency, whereas the proposed model restores
the temporal consistency by only taking into account the in-
consistent video at the test time.

5.1.3 Factorized User Study

Apart from the comprehensive user study, we also con-
ducted a secondary in-depth user study to evaluate the rea-
soning of participants and their opinion on their selections
of videos processed with all the methods on challenging
scenarios.

In this user study, each user was instructed to judge 15
randomly selected videos (5 videos from each of the ap-
plications mentioned above) processed by each of the pro-
posed models for this task. Please note that in this user
study users were also shown the per-frame processed video
in an extended window to judge the videos on content and
style preservation as well. Apart from recording their pref-
erence, the participants were also instructed to record the
reasoning for their selection. ∼ 86% of the participants
remarked that they chose the videos based on lesser flicker-
ing and better quality preservation. The results of the sec-
ond user study for each of the selected tasks are provided
in Fig. 7. On average, ∼ 47% of the users preferred the
videos processed through the proposed model for these ex-
tremely challenging tasks.

5.2. Qualitative Results

Figures 8 ∼ 10 present some of the comparative qualita-
tive results produced by the methods proposed in [3, 16, 19]
and the proposed model. The results produced by [3] fail
to retain the perceptual quality of video sequences where
occlusion and deocclusion occur. Whereas the frames
processed by DVP [19] are significantly blurry and lose
the translation effect. In contrast to the comparison with
DVP [19] and Boneel et al. [3], the comparison with the
results produced through the method proposed by Lai et
al. [16] can be a bit tricky. In order to aid the readers,
we provide an epipolar comparison between the frames re-
stored through their method and ours in Fig. 10. Due to the
implicit definition of motion dynamics in their method [16],
their method fails to faithfully retain the perceptual quality
in the restored frames and often flips the colors/appearance
of objects in the restored video according to the raw video.
This bias towards the raw videos is quite prominent in meth-
ods like DVP [19] and Lai et al. [16]. Contrasting to their
formulation, the explicit design of motion dynamics in the
proposed method mitigates the need for raw videos at test
time which consequently eliminates this bias and enables
the proposed method to faithfully restore videos. Further
qualitative comparisons and higher quality results, along
with the results on super resolution [17], inpainting [18],
and multiple restoration iterations are presented in the sup-
plemental.

6. Limitations and Future work
The proposed model has difficulties in restoring videos

with very low frame rates and in the case of style-transferred
videos, some finer inconsistencies like finer brush strokes
are lost, which makes the resulting video seem a little dull
(which is to be expected from all the proposed approaches
for this task). A good direction for future work in this field
can be the direct denoising of conventional optical flow
with deterministic warp operators. The developed consis-
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Figure 7: Factorized user study. The user preference scores for the tasks of style transfer, CycleGAN, and intrinsic image
decomposition (left to right respectively). The majority of the users preferred the videos processed through the proposed
method in each category of tasks.

Figure 8: Comparison with Bonneel et al. [3] The method
proposed by Bonneel et al. [3] has difficulty in handling
occlusion and long term consistency and produce temporal
artifacts.

Figure 9: Comparison with DVP [19] DVP [19] produces
blurry frames and compromises the translation effect. This
phenomenon is prominent in videos where new content is
generated e.g. style transfer [13], CycleGAN [46].

tent flow models can also be used for a number of video
processing applications like denoising and dehazing.

7. Conclusion
In this work, we present a task-agnostic temporal consis-

tency correction framework that restores natural video dy-
namics by inferring and utilizing consistent motion repre-

Figure 10: Comparison with Lai et al. [16] This figure
produces epipolar temporal comparison of videos restored
by Lai et al. [16] and the proposed method. The method
proposed in [16], due to its dependence on raw videos and
implicit siphoning/mixing of motion dynamics from the raw
video introduces bias towards the raw videos.

sentations from temporally inconsistent videos. The pro-
posed strategy mitigates the need for siphoning video dy-
namics from the unprocessed videos at test time conse-
quently mitigating the compromise in translation effects
that is prominant in the currently proposed approaches for
this task and expands the scope of its employ-ability to a
wider set of applications. Through extensive experimenta-
tion and user studies, we demonstrate that despite the lim-
ited access to data at test-time the proposed method com-
pares favorably to the pre-existing methods available for
this task and achieves SOTA performance.
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Temporally coherent gans for video super-resolution (teco-
gan). arXiv preprint arXiv:1811.09393, 1(2):3, 2018.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. Ieee, 2009.

[7] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. Counting out time: Class
agnostic video repetition counting in the wild. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10387–10396, 2020.

[8] Wei Gao, Yijun Li, Yihang Yin, and Ming-Hsuan Yang. Fast
video multi-style transfer. 2020 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 3211–3219,
2020.

[9] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.
A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576, 2015.
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