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Figure 1. VidStyleODE provides a spatiotemporal video representation in which motion and content info are disentangled, making it
ideal for: (a) animating images, (b) consistent video appearance manipulation based on text, (c) body part motion transfer ([blue] boxes)
from a co-driving video while preserving remaining driving video dynamics ([orange] boxes) intact, (d) temporal interpolation, and (e)
extrapolation. Zoom in for better viewing.

Abstract

We propose VidStyleODE , a spatiotemporally continuous
disentangled video representation based upon StyleGAN and
Neural-ODEs. Effective traversal of the latent space learned
by Generative Adversarial Networks (GANs) has been the
basis for recent breakthroughs in image editing. However,
the applicability of such advancements to the video domain
has been hindered by the difficulty of representing and con-
trolling videos in the latent space of GANs. In particular,
videos are composed of content (i.e., appearance) and com-
plex motion components that require a special mechanism to
disentangle and control. To achieve this, VidStyleODE en-

codes the video content in a pre-trained StyleGAN W+ space
and benefits from a latent ODE component to summarize
the spatiotemporal dynamics of the input video. Our novel
continuous video generation process then combines the two
to generate high-quality and temporally consistent videos
with varying frame rates. We show that our proposed method
enables a variety of applications on real videos: text-guided
appearance manipulation, motion manipulation, image ani-
mation, and video interpolation and extrapolation. Project
website: https://cyberiada.github.io/VidStyleODE

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

Semantic image editing is revolutionizing the visual de-
sign industry by enabling users to perform accurate edits
in a fast and intuitive manner. Arguably, this is achieved
by carrying out the image manipulation process with the
guidance of a variety of inputs, including text [4, 24, 32, 54],
audio [23, 25], or scene graphs [8]. Meanwhile, the visual
characteristics of real scenes are constantly changing over
time due to various sources of motion, such as articulation,
deformation, or movement of the observer. Hence, it is desir-
able to adapt the capabilities of image editing to videos. Yet,
training generative models for high-res videos is challeng-
ing due to the lack of large-scale, high-res video datasets
and the limited capacity of current generative models (e.g.
GANs) to process complex domains. This is why the recent
attempts [33, 56] are limited to low-res videos. Approaches
that treat videos as a discrete sequence of frames and utilize
image-based methods (e.g. [19, 47, 58]) also suffer from im-
portant limitations such as a lack of temporal coherency and
cross-sequence generalization.

To overcome these limitations, we set out to learn spatio-
temporal video representations suitable for both generation
and manipulation with the aim of providing several desir-
able properties. First, representations should express high-
res videos accurately, even when trained on low-scale low-
resolution datasets. Second, representations should be robust
to irregular motion patterns such as velocity variations or lo-
cal differences in dynamics, i.e. deformations of articulated
objects. Third, it should naturally allow for control and ma-
nipulation of appearance and motion, where manipulating
one does not harm the other e.g. manipulating motion should
not affect the face identity. We further desire to learn these
representations efficiently on extremely sparse videos (3-5
frames) of arbitrary lengths. To this end, we introduce Vid-
StyleODE , a principled approach that learns disentangled,
spatio-temporal, and continuous motion-content representa-
tions, which possesses all the above attractive properties.

Similar to recent successful works [2, 19, 47, 58], we
regard an input video as a composition of a fixed appearance,
often referred to as video content, with a motion component
capturing the underlying dynamics. Respecting the nature of
editing, we propose to model latent changes (residuals) re-
quired for taking the source image or video towards a target
video, specified by an external style input and/or co-driving
videos. For this purpose, VidStyleODE first disentangles the
content and dynamics of the input video. We model content
as a global code in the W+ space of a pre-trained Style-
GAN generator and regard dynamics as a continuous signal
encoded by a latent ordinary differential equation (ODE)
[3, 7, 38], ensuring temporal smoothness in the latent space.
VidStyleODE then explains all the video frames in the latent
space as offsets from the single global code summarizing
the video content. These offsets are computed by solving

the latent ODE until the desired timestamp, followed by
subsequent self- and cross-attention operations interacting
with the dynamics, content, and style code specified by the
textual guidance. To achieve effective training, we omit ad-
versarial training that is commonly used in the literature and
instead introduce a novel temporal consistency loss (Sec. 3.1)
based on CLIP [34]. We show that it surpasses conventional
consistency objectives and exhibits higher training stability.

Overall, our contributions are:
1. We build a novel framework, VidStyleODE , disentan-

gling content, style, and motion representations using
StyleGAN2 and latent ODEs.

2. By using latent directions with respect to a global latent
code instead of per-frame codes, VidStyleODE enables
external conditioning, such as text, leading to a simpler
and more interpretable approach to manipulating videos.

3. We introduce a new non-adversarial video consistency
loss that outperforms prior consistency losses, which
mostly employ conv3D features, at a lower training cost.

4. We demonstrate that despite being trained on low-
resolution videos, our representation permits a wide range
of applications on high-resolution videos, including ap-
pearance manipulation, motion transfer, image animation,
video interpolation, and extrapolation (cf . Fig. 1).

2. Related Work

GANs. Since their introduction, GANs [14, 21] have
achieved great success in synthesizing photorealistic im-
ages. Recent methods [36, 37, 44] obtain the latent codes of
real images in StyleGAN’s latent space and modify them to
achieve guided manipulation considering the task at hand
[32,53,54]. Despite their ability to generate high-res images,
GANs are deemed challenging to train on complex distri-
butions such as full-body images [11, 12] or videos. Earlier
attempts [27, 39, 42, 45] modified GAN architecture to ef-
fectively synthesize videos based on sampled content and
motion codes. Most notably, StyleGAN-V [42] recently mod-
ified StyleGAN2 to synthesize long videos while requiring a
similar training cost. However, these methods are bounded
by the resolution of the training data and are impractical for
complex domains and motion patterns. Our work leverages
the expressiveness of a pre-trained StyleGAN2 generator to
encode input videos as trajectories in the latent space and
extends image-based editing strategies to enable consistent
text-guided video appearance manipulation.

Video generation. Recent works focused on using a pre-
trained image generation as a video generation backbone.
MoCoGAN-HD [43] and StyleVideoGAN [10] synthesize
videos from an autoregressively sampled sequence of la-
tent codes. InMoDeGAN [51] decomposes the latent space
into semantic linear sub-spaces to form a motion dictionary.
Other methods [1, 33] decompose pose from identity in the
latent space of pre-trained StyleGAN3, enabling talking-
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head animation from a driving video. StyleHeat [59] warps
intermediate pre-trained StyleGAN2 features with predicted
flow fields for video/audio-driven reenactment. [41, 52] ani-
mate images based on a driving video following optical-flow-
based methods in the pixel [41] or latent [52] space. Despite
their success, these methods are limited to unconditional
video synthesis [10, 43], are restricted to a single domain
[1, 33, 59], designed for a single purpose [1, 33, 41, 52, 59],
and/or incapable to effectively generate high-res videos [42].
We present a domain-invariant framework to learn disen-
tangled representations of content and motion, enabling a
range of applications on high-res videos. In contrast to all
of the aforementioned methods except MRAA [41], we also
do not use adversarial training. With the motivation of han-
dling irregularly sampled frames and continuous-time video
generation, some previous works also incorporated latent
ODEs [7] for unconditional video generation [28], future
prediction from single frame [18], or modeling uncertainty
in videos [60]. Despite being limited to low-res videos, these
methods showed the potential of latent ODEs in video inter-
polation and extrapolation. VidStyleODE further extends
them by showing the effectiveness of latent ODEs in high-res
video interpolation and extrapolation.

Semantic video manipulation. Applying image-level edit-
ing to individual video frames often leads to temporal inco-
herence. To alleviate this problem, Latent Transformer [58]
uses a shared latent mapper to the latent codes of the input
frames in a pre-trained StyleGAN2 latent space. Alaluf et
al. [2] propose a consistent video inversion/editing pipeline
for StyleGAN3. STIT [47] fine-tunes a StyleGAN2 gen-
erator on the input video and moves along a single latent
direction to realize the target edit. These methods still fail
to achieve temporally consistent manipulation due to the
entanglement between appearance and video dynamics in
the StyleGAN space, defying their presumption of temporal
independence between video frames. As a remedy, DiCoMo-
GAN [19] encodes video dynamics with a neural ODE [7],
and learns a generator that manipulates input frames based on
the learned motion dynamics and a target textual description.
StyleGAN-V [42] enables video manipulation by projecting
real videos onto a learned content and motion space, en-
abling appearance manipulation via the modification of the
content code following image-based methods [32, 53]. In-
stead of directly modifying content code, our model achieves
guided manipulation by discovering spatio-temporal latent
directions conditioned on the target description and the video
dynamics. This allows for greater flexibility regarding the
appearance-motion entanglement of StyleGAN space. Vid-
StyleODE also encodes video dynamics with a latent ODE
that encourages a smooth latent trajectory, thus enhancing
temporal consistency.

3. Method
We consider an input video V = {Xi ∈ RM×N×3}Ki=1

consisting of K RGB frames along with an associated textual
description DSRC. Our goal is to explain V by learning an ex-
plicitly manipulable continuous representation conditioned
on an external style input. As manipulation is inherently re-
lated to making changes [53], VidStyleODE achieves this
goal via a deep neural architecture, modeling the changes
through disentangled content1, style2 and dynamics3. To this
end, VidStyleODE first uses a pre-trained spacetime encoder
fC : V → zC to summarize the information content of the
input video frames or individual images as a global latent
code. Our key idea is to explain individual video frames with
respect to the global code as translations along the latent
dimensions of a pre-trained high-res image generator G(·):

Xt = G (znew = zC +∆zt) (1)

To find these latent directions ∆zt that entangle dynamics
and style, we (i) continuously model latent representation of
dynamics zdt, which can be queried at arbitrary timesteps;
(ii) learn to predict these directions by interacting with the
global code zC and the predicted dynamics zdt, conditioned
on the target style zS , while preserving the content. There
are multiple ways to get zS , but in this work, we choose
to extract it based on target and source textual descriptions
(DSRC,DTGT). We first describe the method design for each
of these components, depicted in Fig. 2, followed by imple-
mentation and architectural details in Sec. 3.1.
Spatiotemporal encoding fC . To encode the entire video
into a global code, we seek a permutation-invariant represen-
tation of the input video, factoring out the temporal informa-
tion. To this end, we first project all the frames in V onto the
W+ space of StyleGAN2 [21] by using an inversion [55]
to obtain a set of local latent codes Z := {zli ∈ W+}Ki=1.
We then apply a symmetric pooling function to obtain the
order-free global video content code: zC = E [Z].
Continuous dynamics representation. Inspired by [29, 35],
to model the spatiotemporal input, i.e., to compute rep-
resentations for unobserved timesteps at arbitrary space-
time resolutions, we opt for learning a latent subspace
zd0 ∈ RD, that is used to initialize an autonomous latent
ODE dzdt

dt = fθ(zdt), which can be advected in the latent
space rather than physical space:

zdT = ϕT (zd0) = zd0 +

∫ T

0

fθ(zdt, t) dt (2)

where θ denotes the learnable parameters of the model fθ.
This (1) enables learning a space best suited to modeling the
dynamics of the observed data and (2) improves scalability
1set of attributes fixed along the temporal dimension [19, 43, 45]
2attributes of interest subject to change
3an intrinsic force producing change
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Figure 2. VidStyleODE overview. We encode video dynamics and process them using a ConvGRU layer to obtain a dynamic latent
representation Zd0 used to initialize a latent ODE of the motion (bottom). We also encode the video in W+ space to obtain a global latent
code ZC (middle). We combine the two with an external style cue through an attention mechanism to condition the AdaIN layer that predicts
the directions to the latent codes of the frames in the target video (top). Modules in gray are pre-trained and frozen during training.

due to the fixed feature size. Due to the time-independence
of fθ, advecting zdt=0 forward in time by solving this ODE
until t = T ≥ 1 yields a representation that can explain
latent variations in video content. To learn the initial code
zd0, we encode each frame individually by a spatial encoder
fD : Xi → Rmd×nd×64. Resulting tensors are fed into
a ConvGRU: Rmd×nd×64×K → Rmode×node×512 [3, 29]
in reverse order so that the final code seen by the model
corresponds to the first frame.

The use of a Neural ODE here provides several bene-
fits over other approaches such as an LSTM (see Tab. 4).
One especially important benefit is the ability to handle
irregularly sampled frames during training, which allows
for scaling to longer videos while keeping memory costs
constant. Additionally, the ODE allows for extrapolation
into unseen timesteps, due to this irregular training. Finally,
Neural ODEs are able to better learn the geometry of the
dynamic latent space, providing a meaningful space due to
the powerful regularization that ODEs impose.
Conditional generative model fG. As illustrated in Fig. 3,
to synthesize high-quality video frames that adhere to the tar-
get style zS , VidStyleODE generatively models the desired
output at time t as an explicit function of content, dynamics
and style:

Xt = G (zt) , zt = fG(zc, zd | zS) = zC +∆zt, (3)

where the latent direction ∆zt depicts the residual required
to realize the desired edits and is computed by a series of self-
attention (SA) [49], cross-attention (CA) [49] and adaptive
instance normalization (AdaIN) [16] operators:

∆zt = AdaIn (CA(SA(zdt), zS), zC) (4)

Modeling the change in this manner rather than the target
latents themselves is significantly less complex and allows
for manipulating the given video in relation to its global code.
As such, and as we demonstrate experimentally, it offers
significant advantages of fidelity and manipulation-ability.
We implement G(·) as a pre-trained StyleGAN2 generator.
Obtaining the text-driven style zS . We model the change in
source and target descriptions as a style direction ∆z

Style =
CLIP(DTGT)−CLIP(DSRC) in the CLIP latent space [32,
34]. We then move towards this direction in the CLIP space
to obtain the text conditioning code:

zS = CLIP(Xi) + α∆Style
z (5)

AdaIN

∆!"#$

DSRC DTGT

+

+

CLIP(Xi) + α(CLIP(DTGT)

− CLIP(DSRC))

Self-Attention
C
ross-Attention

×m

×nzs

Figure 3. Proposed attention scheme utilized in VidStyleODE.
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where α is a user-controllable parameter determining the
scale of the manipulation.

3.1. Training and Network Architectures

We train VidStyleODE by minimizing a multi-task loss
L over the text-video pairs to find the best parameters of dy-
namics encoder fD as well as fG while keeping the content
encoder and the image generator frozen:

L = λCLC + λALA + λSLS + λDLD + λLLL (6)

where λ∗ depicts the corresponding regularization coeffi-
cients. We next detail each of these terms, which are consis-
tency, appearance reconstruction, structure reconstruction,
CLIP directional loss, and latent direction regularization.

CLIP consistency loss. DietNeRF [17] shows that the CLIP
[34] image similarity score is more sensitive to changes in
appearance, compared to those caused by varying viewpoints.
This led the authors to propose a new consistency loss as
the pair-wise CLIP dissimilarity between images rendered
from different viewpoints in order to guide the reconstruc-
tion of 3D NeRF representation. We observe that CLIP is
also more sensitive to changes in appearance than to changes
in dynamics Thus, we propose to replace the expensive tem-
poral discriminator used in the literature [43, 45, 50], with a
CLIP consistency loss along the temporal dimension. Specif-
ically, we sample NC frames from the generated video and
minimize the pair-wise dissimilarity between them.

LC(V) =
NC∑
i=1

NC∑
j≥i

1− (CLIPI(Xi)
TCLIPI(Xj)) (7)

where Xi is the ith sampled frame from the generated video,
and CLIPI is the CLIP image encoder.

Appearance and structure reconstruction loss. To learn
the video dynamics, previous work [1, 19, 33, 59] commonly
used a VGG perceptual loss and L2 loss, which reconstructs
both the structure and appearance of the input video. This in-
herently requires the image generator to be fine-tuned on the
input video dataset. Considering that most available video
datasets are of a low resolution and low diversity, fine-tuning
the image generator on these datasets would greatly affect
the model’s capability to generate diverse and high-quality
videos. Therefore, we propose to use a disentangled struc-
ture/appearance reconstruction loss to guide learning the dy-
namic representation. In particular, we employ the Splicing-
ViT [46] appearance loss to encourage the appearance of
the generated video to match the appearance represented
in the global code zC . Additionally, as motion dynamics
are closely related to the change in structure [57], we uti-
lize Splicing-ViT structural loss to encourage the dynamics
of the generated video to follow the dynamics of the input

video.

LA =
∑N

i=1 ||V iTA(G(zC))− V iTA(G(zti))|| (8)

LS =
∑N

i=1 ||V iTS(Xi)− V iTS(G(zti))|| (9)

where V iTA, and V iTS are the latent features in DINO-ViT
[5] corresponding to appearance and structure, respectively,
as described in [46]. This way, we can disentangle learning
appearance and dynamic representation completely, enabling
diverse high-res video generation via low-res video datasets.
CLIP video directional loss. Given source and target de-
scriptions, and a reference image, [13] proposes to guide the
appearance manipulation in the generated image by encour-
aging the change of the images in the CLIP space to be in
the same direction as the change in descriptions. We adapted
this loss to the video domain using:

∆T = CLIPT (Tdesc)− CLIPT (Sdesc) (10)

∆V =
∑N

1 CLIPI(Xi)−CLIPI(G(zti
))

N

LD = 1−∆V ∆T / |∆V ||∆T |

where CLIPT , and CLIPI correspond to the CLIP text and
image encoder, respectively, and N refers to the number of
sampled frames from the generated video. During training,
we sample three frames per video.
Latent direction loss. We regularize the norm of the latent
directions ∆z to prevent the model from following directions
with large magnitudes: LL = E[||∆zti ||]i. We observed that
this loss also helped in making the model converge faster.
Network architectures. We used a ResNet architecture
adapted from [31] as our dynamic encoder fD. Addition-
ally, we used Vid-ODE ConvGRU network [30] to obtain the
dynamic representation zd before utilizing the Dopri5 [6]
method to solve the first-order ODE. We apply self-attention
and cross-attention over zd by dividing the input tensor into
patches and treating them as separate tokens, following [9].
Additionally, we used a pSp encoder to obtain zi, and a
StyleGAN2 generator [21] for G(·), pre-trained on Stylish-
Humans-HQ Dataset [12] for fashion video experiments, and
on FFHQ [20] for face video experiments.
Training details. Thanks to our choice of modeling dynam-
ics as a latent ODE, we are able to train on irregularly sam-
pled frames. Specifically, for every training step, we sample
k different frames from each input video and a target descrip-
tion from other videos in the batch. We use those to compute
the aforementioned losses. Details about hyperparameters
can be found in the supp. materials.

4. Experimental Analysis

Datasets and prepossessing.. We evaluated our method
mainly on the recent dataset of Fashion Videos [19] com-
posed of 3178 videos of fashion models and RAVDESS
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dataset [26], containing 2, 452 videos of 24 different actors
speaking with different facial expressions. We split each
dataset randomly into 80% train and 20% test data. More-
over, we aligned their video frames following [12, 21], and
downsampled the input videos during training to 128× 96
for Fashion 128×128 for RAVDESS. Additionally, we anno-
tated each actor in RAVDESS according to gender, hairstyle,
hair color, and eye color, and procedurally generated target
descriptions based on these attributes.

Evaluation metrics. To assess the performance of the mod-
els, we use the following metrics. Frechet Video Distance
(FVD) [48] measures the difference in the distribution be-
tween ground truth (GT) videos and generated ones. In-
ception Score (IS) [40] and Frechet Inception Distance
(FID) [15] measures the diversity and perceptual quality
of the generated frames. Manipulation Accuracy quantifies
the agreement of the edited video with the target text, relative
to a GT video description. Warping error [22] measures the
temporal appearance consistency. Average key-point distance
(AKD) assesses the structural similarity between the gener-
ated and driving videos. Average Euclidean distance (AED)
evaluates identity preservation in reconstructed videos.

Baselines. We compare our method against the state-of-the-
art text-guided video manipulation and image animation
approaches, namely Latent Transformer (LT) [58], DiCoMo-
GAN [19], STIT [47], StyleGAN-V [42], and MRAA [41].
As LT requires separate training for each target attribute,
we trained it to manipulate only the sleeve length on Fash-
ion Videos and averaged its performance for RAVDESS on
gender, hair, and eye color. Additionally, we trained DiCo-
MoGAN and StyleGAN-V on the face and fashion datasets
using the same alignment process in our method. STIT fine-
tunes the generator using PTI [37] for each input video,
taking 10 minutes for a 1-minute video on NVIDIA RTX
2080, and further uses image-based manipulation methods.
We employed StyleCLIP global directions. StyleGAN-V
achieves text-guided manipulation by performing test-time
optimization of projected latent codes with CLIP. We also
considered HairCLIP [53] and StyleCLIP [32] as baselines
for frame-by-frame manipulation of the video. Lastly, we
train MRAA [41] and adapt StyleGAN-V code to evalu-
ate same-identity and cross-identity image animation. (cf .
supplementary materials).

4.1. Results

Semantic video editing. Our method allows for text-guided
video editing by conditioning the prediction of the latent
direction on the manipulation direction specified by the tar-
get and source descriptions. Fig. 4 shows that our method
accurately manipulates the color, clothing style, and sleeve
length in a temporally-consistent way on several sample
video frames. VidStyleODE can also handle target descrip-
tions that consider either single or multiple attributes without

Woman wearing
sleeveless T-shirt

Woman wearing
blue hoodie

Woman wearing
long-sleeves blue 
shirt

Long-sleeves

Figure 4. Text-guided editing results. VidStyleODE lets the
users manipulate a frame based on a text prompt, and transfer
manipulated attributes to other videos in a consistent way. Source
frames are shown at the top left corner along with the target texts.

introducing artifacts. Fig. 5 compares our method against the
state-of-the-art. As seen, LT [58] and the frame-level Hair-
CLIP [53] fail to preserve temporal consistency, especially
with respect to the identity. DiCoMoGAN [19] and STIT [47]
perform poorly in applying meaningful and consistent ma-
nipulations. In particular, DiCoMoGAN fails to perform the
necessary manipulations in the text-relevant parts such as
the sleeves, and produces artifacts in the text-irrelevant parts.
STIT applies the same latent direction to all of the video
frames in the StyleGAN2 W+ space. We show that this is
prohibitive, as the relative edits of the manipulated parts,
such as the sleeves’ length, change as the body moves.

These observations are also reflected in the results re-
ported in Tab. 1. As LT cannot jointly manipulate multiple
attributes with the same model, we consider a relatively sim-
ple setup where we only manipulate the length of the sleeves
of the source garments for a fair comparison. STIT, which
performs instance-level optimization, gives the best FVD,
yet its manipulation accuracy is significantly inferior to ours.
Although HairCLIP achieves the best accuracy metric, its
performance is the worst in terms of (temporal) video quality
as measured by FVD. Our VidStyleODE method achieves
an FVD close to STIT, and a manipulation accuracy close
to HairCLIP. In general, it is the only method that produce
smooth and temporally-consistent videos with high fidelity
to the target attributes. It also preserves the identity of the
person while making the target garment edits.

Fig. 6 shows further manipulation results on the
RAVDESS dataset. We observe that existing models exhibit
similar limitations observed in the Fashion Videos dataset
but at a lower degree. We hypothesize that this is mainly due
to StyleGAN2 learning a more disentangled and expressive
latent space on a simple dataset containing face images.
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Method Fashion Videos RAVDESS
FVD ↓ IS ↑ FID ↓ Acc. ↑ Werror ↓ FVD ↓ IS ↑ FID ↓ Acc. ↑ Werror ↓

HairCLIP [53] 548.09 2.56 65.57 0.92 0.0152 218.70 1.33 31.47 0.83 0.0136
STIT [47] 126.04 3.08 33.24 0.72 0.0089 226.31 1.33 32.89 0.71 0.0088
LT [58] 262.17 3.08 39.06 0.24 0.0095 339.48 1.35 37.05 0.43 0.0192
DiCoMoGAN [19] 324.30 2.50 103.62 0.51 0.0151 121.92 1.40 16.38 0.38 0.0086
StyleGAN-V [42] 988.96 2.30 135.49 0.71 0.0384 487.91 1.28 66.89 0.87 0.0307
Ours 157.48 3.25 26.28 0.87 0.0075 273.10 1.33 34.92 0.83 0.0076

Table 1. Quantitative comparison on the Fashion and RAVDESS datasets. We report the performances using metrics for evaluating
photorealism (FVD, IS, and FID), manipulation accuracy (Acc.), and temporal coherency (Werror). While the scores in bold highlight the
best performance, the underlined ones show the second best. Overall, our VidStyleODE method is the only approach that gives photorealistic
and temporally consistent results with accurate edits of the garment attributes.

Original STIT OursLT DICoMOGANHairCLIP StyleGAN-VOriginal HairCLIP STIT StyleGAN-VDiCoMoGAN OursLT

tim
e

Figure 5. Qualitative comparison against the state-of-the-art.
VidStyleODE produces more realistic results than existing seman-
tic video methods when changing sleeve length from short to long,
with improved visual quality and manipulation accuracy. HairCLIP,
a frame-level method, lacks temporal coherence.

In summary, we conclude that auto-encoder-based ap-
proaches such as [19] are able to faithfully reconstruct the
text-irrelevant parts such as the face identity but lack the ca-
pability of performing meaningful manipulations, resulting
in artifacts and unnatural-looking videos. StyleGAN2-based
approaches [47, 53] achieve good semantic manipulation
but lack the ability to keep a consistent appearance in the

Original StyleCLIP OursDICoMoGAN STIT StyleGAN-VOriginal StyleCLIP STIT StyleGAN-VDiCoMoGAN Ours

tim
e

Figure 6. Facial attribute manipulation. Target Description: a
photo of a man with green eyes. VidStyleODE gives a temporally
consistent output when manipulating source face video, unlike other
methods which show inconsistencies in hairline, nose, or identity,
or fails to make the proper edits.

generated video. VidStyleODE benefits from a pre-trained
StyleGAN2 generator to perform meaningful semantic ma-
nipulations while producing smooth and consistent videos.

Image animation and video interpolation/extrapolation.
Our model is able to learn a disentangled representation of
content and motion, allowing for animating the content ex-
tracted from a still image using the motion dynamics coming
from a driving video. In Fig. 7 and Fig. 8, we show some sam-
ple results of this process. Since our framework is equipped
with a latent ODE, we can use our method to perform inter-
polation between selected video frames. Moreover, we are
able to extrapolate the motion dynamics to future timesteps
not seen in the original driving video. Fig. 9 further shows
the ability of our method in controlling the motion dynamics
in a disentangled manner. As seen, we can obtain diverse ani-
mations of a given source image by transferring motion from
different driving videos. Our method generates a consistent
appearance for the person across different videos (Table 2).
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Interpolated frames Extrapolated framesStill Image

Figure 7. Animating a still image. Our method animates input
images using motion dynamics from a driving video. With a learned
continuous representation of motion dynamics via a latent ODE, it
can also generate realistic frames via interpolation or extrapolation.
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Figure 8. High-resolution results on RAVDESS. VidStyleODE
maintains the perceptual quality of the pre-trained and frozen Style-
GAN2 Generator (col. 1), while enabling temporal interpolation
(col. 4) and extrapolation (col. 6), and image animation (last row).

Method Fashion Videos RAVDESS
AKDC ↓ AKDS ↓ AEDS ↓ AKDC ↓ AKDS ↓ AEDS ↓

StyleGAN-V [42] 12.76 10.24 0.29 3.36 2.17 0.16
MRAA [41] 10.67 2.46 0.25 2.65 1.08 0.12
Ours 6.15 5.46 0.22 2.86 2.12 0.16

Table 2. Quantitative comparison on cross-identity (C) and same-
identity (S) image animation. Our method achieves competitive
results to SOTA image animation approaches as a byproduct of
encoding video dynamics with Latent-ODEs.

Controlling local motion dynamics.. We observed a local
correspondence between VidStyleODE dynamic latent rep-
resentation and video motion dynamics, allowing for trans-
ferring local motion of body parts between different videos.
In particular, given zdA

∈ R8×8 and zdB
∈ R8×8 corre-

sponding to videos A and B respectively, we follow a blend-
ing operation to obtain a new dynamic latent code zdnew

as zdnew
= mzdA

+ (1 −m)zdB
where m ∈ {0, 1}8×8 is

Figure 9. Diverse animation results achieved by VidStyleODE .
Each example shows a separate driving video (top-left corner) and
the corresponding animations. Our method provides disentangled
motion control while keeping the source content information intact.

Content
Motion
Code

C
o-

dr
iv

in
g

V
id

eo
 A

C
o-

dr
iv

in
g

V
id

eo
 B

En
ta

ng
le

d
V

id
eo

 G
en

er
at

io
n

Figure 10. Local motion dynamics control. VidStyleODE can
blend motion from two co-driving videos A and B, whose dynam-
ics are depicted in first two rows. The last two rows show Vid-
StyleODE ’s ability to transfer dynamics from these driving videos
in a local manner. The [red] and the [blue] boxes encode spatial
regions where the motion dynamics are extracted and transferred.

a spatial mask. In Fig. 10, we show an example of trans-
ferring different body part movements (right hand or left
leg) from different videos. To the best of our knowledge, we
are the first that manage to control local motion dynamics.
Additional results can be found in the supplementary.
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Model Details FVD ↓ Werror ↓
VidStyleODE 157.48 0.0075

w/o LC 191.08 0.0095
w/o LC , w/ SD 229.87 0.0084
w/o LC , w/ MD 245.04 0.0115
w/o LC , latent residuals 222.76 0.0097
w/o LA, LS , and LC 244.49 0.0125

Table 3. Ablation analysis of losses on Fashion Videos. MD refers
to the temporal discriminator introduced in MoCoGAN-HD [43]
and SD refers to the temporal discriminator from StyleGAN-V [42].

Ablation study. We split the ablation into two parts, focus-
ing on different aspects of our approach.

Tab. 3 shows the contribution of each loss to the overall
performance where we remove each one at a time and report
how the metrics are affected. Omitting the CLIP consistency
loss LC causes an increase in both warping error and the
FVD score. Replacing the CLIP consistency loss with either
a StyleGAN-V or MoCoGAN-HD temporal discriminator
also leads to a worse performance in both metrics. Moreover,
eliminating the prediction of latent residuals ∆zt and instead
computing the final vector zt directly causes a considerable
drop in the FVD score. Replacing the appearance loss LA

and structure loss LS with a VGG perceptual loss produces
more temporally inconsistent video.

Moreover, Tab. 4 focuses on evaluating the components of
our approach. In particular, we test replacing the Neural ODE
with an LSTM, removing the self-attention layer entirely,
and replacing the cross-attention layer with a concatenation
of between zc, zS , and the output of the self-attention layer.
We observe that both the self- and cross-attention layers are
essential for the realism of the video, as indicated by the
relatively worse FVD and IS scores. Moreover, replacing
the ODE with a two-layer LSTM leads to a significant drop
in the performance across all metrics. We also found that
the LSTM-based approach results in an ≈ 74% increase
in training time and restricts the number of frames during
training to 30 frames on a single V100, as opposed to the
irregular sampling in the ODE which allows for handling
longer videos.

5. Conclusion

We have presented VidStyleODE, a novel method to dis-
entangle the content and motion of a video by modeling
changes in the StyleGAN latent space. To the best of our
knowledge, it is the first method using a Neural ODE to
represent motion in conjunction with StyleGAN, leading
to a well-formed latent space for dynamics. By modifying
content-dynamics combinations in different ways, we en-
able various applications. We have also introduced a novel
consistency loss using CLIP that improves the temporal con-
sistency without requiring adversarial training.

Model Details FVD ↓ IS ↑ Acc. ↑ Werror ↓ AKDS ↓
VidStyleODE 157.48 3.25 0.87 0.0075 5.03

w/o ODE (w/ LSTM) 350.95 2.81 0.81 0.0095 6.00
w/o Self-Attn 256.30 2.80 0.98 0.0067 5.21
w/o Cross-Attn (w/ Concat) 240.21 2.89 0.96 0.0068 5.33

Table 4. Ablation of different model components on Fashion
Videos. Removing the self-attention or cross-attention layers yields
substantially worse FVD and IS scores, while providing only minor
improvements in other metrics. Additionally, replacing the ODE
component with an LSTM yield worse performance across all
metrics.

Limitations & future work. While we freeze the pre-trained
StyleGAN generator to prevent any perceptual quality degra-
dation, it may lead to an identity shift in the generated videos
and less consistent appearance due to the limited expressive-
ness of the generator. Fine-tuning the generator and the inver-
sion network on the video dataset can reduce this problem as
discussed in the supplementary materials. Albeit omitted, a
future work may benefit from task-driven test-time training
to resolve the aforementioned problems without affecting
the perceptual quality. Additionally, we noticed an over-
smoothed motion on the datasets with periodic motion, such
as RAVDESS. This is a limitation of autonomous first-order
ODEs, which struggle with forming closed-loop solutions
on periodic dynamics due to the uniqueness theorem. Future
work may employ higher-order ODEs to enhance the dynam-
ics representation on such datasets. Moreover, we invite the
community to explore text-guided editing of local dynamics
in the future.
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Lähdesmäki. Ode2vae: Deep generative second order
odes with bayesian neural networks, 2019. 3

7534


