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Abstract

Existing datasets for autonomous driving (AD) often lack
diversity and long-range capabilities, focusing instead on
360° perception and temporal reasoning. To address this
gap, we introduce Zenseact Open Dataset (ZOD), a large-
scale and diverse multimodal dataset collected over two
years in various European countries, covering an area 9×
that of existing datasets. ZOD boasts the highest range
and resolution sensors among comparable datasets, cou-
pled with detailed keyframe annotations for 2D and 3D ob-
jects (up to 245m), road instance/semantic segmentation,
traffic sign recognition, and road classification. We believe
that this unique combination will facilitate breakthroughs in
long-range perception and multi-task learning. The dataset
is composed of Frames, Sequences, and Drives, designed
to encompass both data diversity and support for spatio-
temporal learning, sensor fusion, localization, and map-
ping. Frames consist of 100k curated camera images with
two seconds of other supporting sensor data, while the 1473
Sequences and 29 Drives include the entire sensor suite for
20 seconds and a few minutes, respectively. ZOD is the
only large-scale AD dataset released under a permissive
license, allowing for both research and commercial use.
More information, and an extensive devkit, can be found
at zod.zenseact.com.

1. Introduction
Road traffic accidents cause more than 1.3 million deaths

and many more nonfatal injuries and disabilities globally
each year [20]. Automated driving has the potential to im-
prove road safety by intervening in accident-prone situa-
tions or even controlling the entire ride from start to desti-
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Figure 1: Geographical coverage comparison with other
AD datasets using the diversity area metric defined in [25]
(top left), and geographical distribution of ZOD Frames
overlaid on the map. The numbers in the quantized regions
represent the amount of annotated frames in that geograph-
ical region. ZOD Frames contain data collected over two
years from 14 different European countries, from the north
of Sweden down to Italy.

nation. Regardless of the level of automation, autonomous
vehicles require sensors such as cameras, GNSS (Global
Navigation Satellite System), IMU (Inertial Measurement
Unit), and range sensors such as radar or LiDAR (Light
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Detection and Ranging) to perceive their surroundings ac-
curately. Moreover, they require advanced perception, fu-
sion, and planning algorithms to make use of this data ef-
ficiently. Machine learning (ML) algorithms, particularly
deep learning (DL), have been increasingly used to develop
autonomous driving (AD) software, but they require high-
quality and diverse data from real-world traffic scenarios to
achieve the necessary performance.

The development of AD systems owes much of its recent
success to the availability of large-scale image datasets [3,
8, 9, 16, 19, 34] and dedicated multimodal AD datasets [4,
6, 11, 12, 17, 25, 30, 32]. These AD datasets have em-
phasized temporal reasoning and 360° perception, as this
corresponds to a nominal self-driving setup. However, as
data from the same scene is highly correlated, this naturally
limits diversity in terms of weather or lighting conditions,
driving situations, and geographical distribution. This can
result in overly specialized solutions, which may not gen-
eralize to the full operational design domain of real-world
AD systems.

To complement existing datasets, we introduce Zenseact
Open Dataset (ZOD), Europe’s largest and most diverse
multimodal AD dataset. ZOD consists of more than 100k
traffic scenes that have been carefully curated to cover a
wide range of real-world driving scenarios. The dataset is
split into three subsets: 100k independent Frames, 1473
twenty-second Sequences, and 29 Drives lasting a few min-
utes. Frames are primarily suitable for non-temporal per-
ception tasks, Sequences are intended for spatio-temporal
learning and prediction, and Drives are aimed at longer-
term tasks such as localization, mapping, and planning.
This separation allows ZOD to cover an area 9× larger than
any other AD dataset, offering ample opportunities for de-
veloping robust algorithms that generalize well across mul-
tiple operational domains. We also facilitate research in do-
main adaptation and transfer learning by providing compre-
hensive metadata for each scene.

Robust performance in various conditions, including
high speeds, will be vital for the deployment of AD systems.
In particular, high-speed scenarios puts a hard requirement
on long-range perception, which in turn puts challenging
requirements on sensor resolution. ZOD stands out from
other AD datasets by employing high-resolution sensors,
such as an 8MP camera, rooftop LiDARs with 254k points
per scan, and a high-precision GNSS/IMU inertial naviga-
tion system with 0.01m position accuracy. Additionally, we
provide manual keyframe annotations for several perception
tasks, such as semantic and instance segmentation masks for
roads and lanes, 2D and 3D bounding boxes for static and
dynamic objects (up to 245 meters), and road condition la-
bels. We further annotate traffic signs with a rich taxonomy
of 156 classes. The 446k unique labeled instances consti-
tute the largest traffic sign dataset to date. We believe that

the combination of high-quality sensors and detailed anno-
tations in ZOD will enable breakthroughs in accurate and
long-range perception, which is crucial for high-speed driv-
ing scenarios.

ZOD’s extensive annotations for multiple perception
tasks make it an ideal dataset for multi-task learning, which
is a recent trend in computer vision and AD [26, 35, 36].
The core idea of multi-task learning is to learn a shared
representation that can benefit all tasks, resulting in im-
proved generalization and performance on individual tasks
[5]. This approach also allows models to make better use of
data and available resources, a crucial feature for real-world
applications such as AD systems as they typically operate
on embedded hardware with limited computational power.

To ensure the privacy of individuals and comply with le-
gal and regulatory requirements, we employ two approaches
to anonymize faces and license plates: blurring and replace-
ment with synthetic data. These anonymization techniques
were chosen to enable research on the impact of anonymiza-
tion techniques on learning methods, with initial results
demonstrating that none of the techniques have a negative
impact on performance.

Finally, ZOD is the first large-scale AD dataset released
under the permissive CC BY-SA 4.0 license [1]. This li-
cense allows for research and commercial use (subject to
the license terms), as well as sharing and adapting permits,
which provides an opportunity for startups and other com-
mercial entities to leverage the dataset for their projects. We
believe that this open and inclusive approach will foster in-
novation and accelerate the development of AD technology
beyond the research community. To facilitate a rapid start
with ZOD, it comes with an extensive development kit, in-
cluding multiple tutorials and examples.

In summary, our main contributions are the following:

• We release ZOD, the most diverse autonomous driving
dataset to date. The data is collected from Europe over
multiple years and is curated to contain a wide range
of traffic scenarios, weather conditions, road types, and
lighting conditions.

• The data is collected using high-resolution sensors and
coupled with detailed keyframe annotations for 2D/3D
objects, lane instances, and road segmentation, en-
abling long-range perception with annotated objects
farther away than in any other comparable AD dataset.

• The object annotations include a rich traffic sign tax-
onomy with more than twice as many unique instances
as the largest existing traffic sign dataset.

• ZOD is the first large-scale AD dataset released under
a permissive license, allowing both research and com-
mercial use.
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Dataset Locations Geo. coverage Ann. frames Sequences Size (hr) Ann. range† Avg. LiDAR points Camera Map
KITTI [11] Karlsruhe - 15k⋆ 22 1.5 91 m 120k 90◦ No
nuScenes [4] Boston, Singapore 5 km2§ 40k⋆ 1000 5.5 141 m 34k 360◦ Yes
ONCE [17] China - 16k⋆ 581 27.8 81 m 65k 360◦ No
PandaSet [32] San Francisco - 8k⋆ 103 0.2 300 m 166k 360◦ No
Waymo Open [25] 6 U.S. cities 76 km2§ 400k⋆ 2030 11.3 80 m 177k 360◦ No
A2D2 [12] 3 German cities - 12k - - 103 m 7k 360◦ No
Argoverse 2 [30] 6 U.S cities 17 km2 150k⋆ 1000 4.2 214 m 107k 360◦ Yes

ZOD Frames 14 European countries 705 km2 100k - 55.6‡ 245 m 254k 120◦ No
ZOD Sequences 6 European countries 26 km2 1473 1473 8.2 245 m 254k 120◦ No
ZOD Drives 2 European countries - - 29 1.5 - 254k 120◦ No

Table 1: Dataset comparison. Geographical coverage is computed over annotated frames, § refers to values taken from [25].
⋆Sequential annotation, allowing temporal tasks. ‡Counting each Frame as a 2-second LiDAR sequence, note that only the
center image is provided. †Showing the 99.9th percentile computed using the publicly available data.

2. Related work

Over the last decade, the development of AD datasets has
been a focus area to advance AD research and enhance road
safety. Many of these datasets have been devoted to visual
perception [3, 8, 19, 34]; However, in recent times, multi-
modal datasets have become increasingly popular as most
AD systems aim to fuse information from various onboard
sensors to generate a robust representation of the world and
make more informed decisions.

KITTI [11] is widely regarded as one of the most im-
pactful multimodal AD datasets to date. Released in 2012,
KITTI provides 22 road sequences with stereo cameras, Li-
DAR, and high-precision GNSS/IMU sensor data from real-
world driving in Karlsruhe, Germany. With 200k object
labels in the form of 3D tracklets, KITTI enabled signifi-
cant advancements in AD research, including 3D object de-
tection and tracking, visual odometry, and scene flow esti-
mation. However, as modern algorithms and AD systems
tackle more complex tasks, there is a growing demand for
larger, more diverse, and more advanced datasets.

Since the release of KITTI, the field of AD research
has seen several large-scale AD datasets striving to push
the boundaries in various aspects. Among these is the
ApolloScape dataset [29], which boasts one of the largest
publicly available collections of annotated video frames
for semantic segmentation in AD, with over 140k frames.
However, the dataset’s strong temporal connection between
frames limits the diversity of training data. The KAIST
multispectral dataset [7] draws attention for its use of ther-
mal cameras, while H3D [21] stands out as one of the first
datasets to fully annotate 3D objects in a 360° perspec-
tive. A2D2 [12] is one of the first public AD datasets al-
lowing commercial use but with restrictions on sharing the
derivates. It offers RGB images, LiDAR data, and vehicle
bus data, with 41k frames containing semantic segmenta-
tion labels and 12k frames with 3D bounding box labels for
objects visible in the front camera’s field of view. However,
A2D2 suffers from extremely sparse point clouds. Pan-

daSet [32] is also released under a permissive license, and
thanks to their multi-LiDAR setup, it offers much denser
point clouds which allow them to annotate 3D bounding
boxes up to 300m. Similar to A2D2, they also offer RGB
images and vehicle bus data, together with annotations
across their 8k frames. While being multi-modal datasets,
both A2D2 and PandaSet suffer from low annotation counts,
and similarly to H3D and KAIST, their limited size has hin-
dered widespread adoption.

NuScenes [4], released in 2019, became a significant
milestone in AD research as one of the first publicly avail-
able large-scale datasets. It provides a rich surround view
by means of comprehensive sensor data from LiDAR, six
cameras, and five radars. Additionally, the dataset includes
semantic maps of roads and sidewalks, vehicle bus data, and
GNSS information. NuScenes is organized into sequences
of 20 seconds and provides detailed temporal annotations
for 3D objects at 2Hz, making it one of the first datasets to
do so. This feature has enabled many breakthroughs in the
development of algorithms for detection, tracking, predic-
tion, and planning.

Waymo Open Dataset [25] and Argoverse 2 [30] are two
large-scale datasets that adopt the strengths of nuScenes,
while addressing many of its weaknesses. Both datasets
cover a more comprehensive range of driving scenarios and
include higher-resolution sensors. Waymo’s dataset excels
in geographical diversity, while Argoverse 2 stands out for
its long-range annotations, maps, and extensive object tax-
onomy. While these three datasets push the state-of-the-art
in AD, especially in terms of spatio-temporal reasoning and
surround vision, they do so at the cost of high sample cor-
relation.

In contrast, ZOD makes a different set of trade-offs. Our
Frames subset has nine times larger geographical coverage
than the Waymo Open Dataset, with only a quarter of the
frames. By complementing existing datasets, our goal is to
facilitate breakthroughs in long-range perception and multi-
task learning and enable the benchmarking of algorithms for
both research and commercial use.
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Sensors Details

LiDARs 1xVelodyne VLS128 rotating 3D laser scanner, HFOV* 360°, VFOV* 40° [-25°, +15°], HRES* 0.1° to 0.4°,
VRES* 0.11°, channels 128, wavelength 903 nm, range up to 245 m, and frame rate 10 Hz.
2xVelodyne VLP16, HFOV 360°, VFOV 30° [-15°, +15°], HRES 0.1° to 0.4°, VRES 2°, channels 16, wave-
length 905 nm, range up to 100 m, frame rate 10 Hz, collecting up to 0.3 million points/second.

Camera 1xRGB front-looking camera, HFOV 120°, VFOV 67°, and resolution 3848x2168 (8MP).

High precision
GNSS/IMU

1xOxTS RT3000 inertial and GNSS navigation system, six axes, L1/L2 RTK with frame rate 100 Hz, 0.01m
position accuracy, 0.03° pitch/roll and 0.1° heading accuracy.

* HFOV/VFOV and HRES/VRES represent the horizontal/vertical field of view and resolutions, respectively.

Table 2: Sensor specifications of ZOD.

Another recent trend in the AD community is to re-
lease large-scale datasets without annotations, primarily for
self-supervised learning purposes. The ONCE dataset [17]
is one such example, containing a million LiDAR scenes
and their corresponding camera images collected over three
months in various areas, lighting, and weather conditions
throughout China. However, the LiDAR point clouds in
ONCE are limited to 65k points per frame, and the dataset
lacks localization information, such as GNSS or map data.
Similarly, the Argoverse 2 Lidar [30] dataset contains a vast
number of unlabeled LiDAR sequences; however, it does
not include camera data, which is essential for many AD
tasks. To this end, ZOD includes Sequences and Drives
subsets that are mostly unlabeled and consist of diverse
traffic scenes with the camera, LiDAR, high-precision, and
consumer-grade GNSS/IMU data.

Traffic sign recognition is another essential research av-
enue for enabling AD systems, that is typically pursued sep-
arately. The German Traffic Sign Benchmark Dataset [24]
is one of the first datasets created to facilitate research on
the classification of traffic signs. Multiple regional datasets
[14, 18, 23, 37] have followed since, containing a varying
number of images, signs, and classes. The Mapillary Traf-
fic Sign Dataset (MTSD) [10] is one of the largest and most
diverse traffic sign datasets to date, containing 206k labeled
sign instances and a taxonomy of 313 classes from all over
the world. Although ZOD has a smaller taxonomy of 156
classes, it has twice the amount of labeled sign instances
(i.e., 446k) compared to MTSD.

We refer the reader to Table 1 for a comprehensive com-
parison of ZOD with other multimodal AD datasets.

3. Zenseact Open Dataset

ZOD is a multimodal dataset containing a variety of
real-world traffic scenes from highways, urban areas, and
country roads around Europe. The dataset is collected un-
der diverse weather conditions (clear, cloudy, rainy, and
snowy) and lighting conditions (day, night, and twilight)

over two years. It contains an extensive and detailed collec-
tion of fine-grained annotations for various tasks, including
semantic and instance segmentation for the road, 2D and 3D
bounding boxes for the dynamic and static objects including
traffic signs with a rich taxonomy, and road classification la-
bels.

The subsequent sections provide an elaborate description
of the sensor suite, data, and annotations, followed by a sta-
tistical analysis of the dataset in Section 4.

3.1. Sensor suite

The data collection has been conducted using several ve-
hicles with an identical sensor layout driven around Europe
over the course of two years. The cars are equipped with
a high-resolution camera, front- and side-looking LiDARs,
and high-precision GNSS/IMU sensors. Figure 2 illustrates
the sensor locations and their respective coordinate systems,
whereas Table 2 gives comprehensive sensor specifications.
LiDAR data: The LiDAR point clouds are captured at
10 Hz and stored in a standard binary file format (.npy)
per scan. Each file contains data from all three LiDAR sen-
sors (VLS128 and VLP16s), represented as a 6-dimensional
vector with the timestamp, 3D coordinates (x, y, and z), in-
tensity, and diode index. The timestamp is relative to the
frame timestamp in UTC, and the 3D coordinates are in me-
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Figure 2: Placement of sensors used by data collection ve-
hicles in ZOD and their corresponding coordinate systems.
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Figure 3: One Frame overlaid with multi-task annotations (top-left) and a zoomed-in version (bottom-left), highlighting
annotated dynamic objects and lane instances at long distances. We also show the LiDAR point cloud with annotated 3D
boxes and 200 m of future trajectory for the ego-vehicle (right) from the same Frame.

ters. Intensity is a measure of the reflection magnitude rang-
ing from 0 to 255, and the diode index specifies the emitter
that produced the point. Each LiDAR point cloud contains
around 254k points on average and can be easily read and
visualized using the provided development kit.

High-precision GNSS/IMU data: The high-precision
GNSS/IMU data is logged at 100Hz and stored as HDF5
files, including UTC timestamp in seconds, WGS84 ge-
ographic coordinates (latitude, longitude, and altitude),
ECEF Cartesian coordinates, heading, pitch, roll, velocities,
accelerations, angular rates, and satellite information. This
data can be used as ground truth for training different ML
models, such as ego-vehicle trajectory prediction. A com-
prehensive description of the fields, coordinate transforma-
tion, and visualization functionalities (like the ego-vehicle
trajectory in Figure 3) can be found in the development kit.

Camera data: The camera data is captured by high-
resolution (8MP) wide-angle fish-eye lenses. All raw cap-
tured camera data is converted to RGB images using an in-
ternal production-level image signal processor. The RGB
camera images are captured at 10Hz and saved as JPG
files for a more accessible download of ZOD. However,
we also provide lossless-PNG camera images. Consider-
ing the marginal compression impact on the learning mod-
els (see the supplementary material for empirical evidence),
we strongly suggest using JPG images for benchmark ex-
periments on ZOD.

Vehicle data: Various vehicle data are also released for Se-
quences and Drives. These include vehicle control signals
such as steering wheel angle, acceleration/brake pedal ra-
tios, and turn indicator status, as well as consumer-grade
IMU and satellite positioning data. The vehicle control
signals, IMU, and satellite positioning data are logged at
100Hz, 50Hz, and 1Hz, respectively.

3.2. Calibration and coordinate systems

To avoid drift over time and to achieve good cross-
modality data alignment, all sensors are carefully and reg-
ularly synchronized and calibrated with regard to the spec-
ified ISO-8855 reference coordinate system during the data
collection process. The origin of the reference coordinate
system is at a fixed point relative to the vehicle chassis such
that it appears in the center of the rear axle, given identical
load conditions as during calibration. Under these condi-
tions, it has the axes X-forward, Y -left, and Z-up. Indi-
vidual sensor calibrations are provided for each datapoint,
containing all the required information (e.g., intrinsic and
extrinsic calibration) to transform data between any two
sensors. Moreover, functionalities for coordinate transfor-
mations and projections are available in the development
kit.

3.3. Privacy protection

To protect the privacy of every individual in our dataset,
and to comply with privacy regulations such as the Euro-
pean Union’s General Data Protection Regulation (GDPR)
[27], we use third-party services [2] and anonymize all ob-
jects in the images that contain personally identifiable infor-
mation, i.e., human faces and vehicle license plates.

Two anonymized RGB images are provided per Frame
in ZOD, one using blurring and one using Deep Neural
Anonymization (DNAT), see Figure 3 for examples of li-
cense plate anonymization using DNAT. The latter is based
on generative AI, has minimal pixel impact, and maintains
information like the line of sight of pedestrians while pre-
serving anonymity. To the best of the authors’ knowledge,
ZOD is the only dataset that provides two anonymized ver-
sions of the original camera images, enabling an impact
study of anonymization approaches on the quality of ML

20182



models (Section 4.4) while supporting use cases such as hu-
man intent prediction in a compliant way.

3.4. Data categories

ZOD is categorized into three groups: Frames, Se-
quences, and Drives. The following subsections describe
the content of each category, and Section 3.1 gives details
per sensor data.
Frames: We carefully curate and select 100k frames
from all over Europe, representing diverse traffic, location,
weather, and lighting conditions. Each Frame scene con-
tains two anonymized versions of an RGB camera image
(i.e., blurred and DNAT), captured from a front-looking
camera mounted at the top of the windshield. We define
the camera images as keyframes, considering they are fully
annotated for different tasks (Section 3.5). Moreover, a ±1-
second sequence of LiDAR scans at 10Hz frequency is pro-
vided around each keyframe. This has been complemented
by adding high-precision GNSS/IMU data at a frequency
of 100Hz, which covers five seconds before and either 25
seconds after the keyframe or 300m ahead, whichever oc-
curs first. To facilitate the extraction of interesting custom
scenarios, a list of metadata describing the timestamp, ge-
ographical position, country code, weather conditions (e.g.,
clear, rainy, foggy, snowy), solar elevation angle, road type
(e.g., highway, city), and the total number of annotated ob-
jects (e.g., vehicles, pedestrians, vulnerable vehicles) is also
provided for each Frame.
Sequences: We select an additional 1473 varied scenes,
named Sequences, each with a duration of 20 seconds. Se-
quences can be utilized in applications that require tem-
poral reasoning, such as visual odometry and ego-vehicle
trajectory prediction. After the anonymization impact
study on Frames (Section 4.4), we release only the blurred
anonymized version of RGB camera images recorded at
10Hz for each sequence. Similar to Frames, LiDAR scans
and high-precision GNSS/IMU data are also provided per
scene, but for the entire 20 seconds. We also offer vehicle
data for each Sequence scene in ZOD. This could be of par-
ticular interest to robotics research and higher-level scene
understanding applications. Furthermore, the middle frame
in each Sequence scene is carefully annotated for different
tasks (Section 3.5), enabling spatio-temporal learning and
automatic annotation generation tasks, among others.
Drives: We provide 29 Drive scenes, spanning a few min-
utes each, from two different cities and contain the same
sensor data as the Sequence category. Drive scenes are de-
liberately chosen to capture changing road structures (e.g.,
straight, curvy, banked, T-crossings, roundabouts, splits,
merges, on-ramps, off-ramps), different road types (e.g.,
urban, suburban, highways), and various traffic scenarios
(e.g., lane changes, cut-ins) to represent real-world com-
plexities. They also encompass a couple of loop closures.

Figure 4: A random selection of cropped traffic signs, ex-
tracted from Frames. ZOD contains many difficult cases
caused by occlusion, distance, viewing angle, lighting, etc.

The Drives aim to be useful for research areas such as
visual-based localization or simultaneous localization and
mapping.

3.5. Annotations

We provide large-scale, high-quality, and detailed
ground truth labels for several AD tasks per each keyframe
in the Frame and Sequence scenes. All labels are manu-
ally created by skilled human annotators using commercial
labeling tools and further passed through quality checks.
The annotations are separated into three main categories:
1) semantic/instance segmentation masks for lane mark-
ings, road paintings, and ego road (a.k.a. driveable area),
2) 2D/3D bounding box labels for dynamic and static ob-
jects including traffic signs, and 3) classification labels for
the road surface.

The first category of annotations consists of pixel-wise
semantic segmentation labels with 15 top-level classes, see
the supplementary material for the exact taxonomy. In-
stance segmentation labels are also provided for the anno-
tated lane markings, along with additional properties such
as color and cardinality, i.e., if a lane marking is single or
part of a group of lane markings. Figure 3 illustrate exam-
ples of lane marking and ego road annotations overlaid on
the camera image.

All static and dynamic objects present in the camera im-
ages are annotated with a tightly fitting 2D bounding box in-
dicated by the pixel coordinates of its four outermost points.
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Figure 5: Distribution of weather (a), road types (b), and time of day (c) in ZOD Frames.

0 50 100 150 200 250
Range (meters)

0.000

0.005

0.010

0.015

0.020

De
ns

ity

Vehicle
nuScenes
Waymo Open
Argoverse 2
ZOD Frames

0 50 100 150 200 250
Range (meters)

0.000

0.005

0.010

0.015

0.020

0.025
De

ns
ity

Pedestrian
nuScenes
Waymo Open
Argoverse 2
ZOD Frames

0 50 100 150 200 250
Range (meters)

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

VulnerableVehicle
nuScenes
Waymo Open
Argoverse 2
ZOD Frames

Figure 6: Distribution of the distance to the ego-vehicle over all annotated objects in nuScenes, Waymo Open, Argoverse
2, and ZOD Frames. The distribution of ZOD Frames is on-par with Argoverse 2. However, the annotated objects in ZOD
Frames are less temporally correlated.

Objects visible both in the camera image and the LiDAR
point cloud are also labeled with a 9-DOF 3D bounding box,
described by the coordinate of the center of the box, length,
width, height size, and the four quaternion rotation param-
eters of the cuboid (i.e., qw, qx, qy, and qz). ZOD uses
a hierarchical taxonomy, where dynamic objects are classi-
fied into four higher-level classes, which are further broken
down into 16 subclasses. Static objects are classified into
seven higher-level classes, which are broken down into 13
subclasses. Traffic signs are treated specially and are fur-
ther labeled using an extensive taxonomy with 6 larger cat-
egories and 156 granular classes (Figure 4). By using this
hierarchical taxonomy, ZOD provides a detailed annotation
schema that enables researchers to analyze the dataset at
different levels of granularity. Furthermore, objects are as-
signed properties, some generic (e.g., occlusion rate), and
some class-specific (e.g., is electronic for traffic signs or
emergency for vehicles). Figure 3 shows examples of the
annotated dynamic and static objects.

Lastly, we also provide details of the ego road surface
condition (i.e., wet or covered with snow) as road classifi-
cation labels. Exact annotation taxonomies are detailed in
the supplementary material.

4. Dataset analysis
In the following subsections, we analyze ZOD and high-

light some key characteristics, namely its diversity (Sec-
tion 4.1) and long-range objects (Section 4.2), and com-
pare these with existing datasets. Moreover, we show the
long-tailed nature of our dataset (Section 4.3) and, lastly, we
analyze the impact that different anonymization techniques
have on downstream computer vision tasks (Section 4.4).

4.1. Diversity

Most AD datasets are collected from a handful of cities,
see Table 1. From the same table, it is also evident that most
of Europe is underrepresented. To address this lack of diver-
sity, we carefully curate data across Europe, ranging from
the snowy parts of northern Sweden to the sunny country-
side of Italy. In total, we provide data across 14 different
countries. To quantitatively evaluate the geographical diver-
sity of our dataset, we use the diversity area metric defined
in [25] as the union of all 75m (radius) diluted ego-poses in
the dataset. Using this definition, ZOD Frames obtains an
area metric of 705km2, which could be compared to 5km2,
17km2, and 76km2 for nuScenes [4], Argoverse 2 [30], and
Waymo Open [25], respectively1. Furthermore, we argue

1The geographical coverage values for the nuScenes and Waymo Open
datasets are taken from [25].
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Pipeline Mode AP AP50 AP75 APs APm APl APveh APV V APped

Faster-
RCNN

original 30.23 ± 0.09 54.79 ± 0.06 28.72 ± 0.15 7.23 ± 0.04 30.49 ± 0.14 51.23 ± 0.07 42.41 ± 0.07 25.96 ± 0.15 22.32 ± 0.04
DNAT 30.28 ± 0.03 54.86 ± 0.09 28.82 ± 0.08 7.15 ± 0.13 30.57 ± 0.06 51.31 ± 0.08 42.48 ± 0.02 25.90 ± 0.14 22.44 ± 0.03

blur 30.17 ± 0.06 54.66 ± 0.10 28.83 ± 0.08 7.24 ± 0.02 30.50 ± 0.10 51.08 ± 0.10 42.41 ± 0.04 25.87 ± 0.13 22.22 ± 0.04

YOLOv7
original 33.62 ± 0.04 62.85 ± 0.03 30.84 ± 0.11 13.39 ± 0.09 35.81 ± 0.03 47.02 ± 0.21 47.79 ± 0.02 25.51 ± 0.04 27.56 ± 0.10
DNAT 33.74 ± 0.09 62.95 ± 0.03 31.10 ± 0.11 13.54 ± 0.08 35.92 ± 0.14 47.17 ± 0.17 47.85 ± 0.11 25.67 ± 0.11 27.71 ± 0.08

blur 33.67 ± 0.01 62.91 ± 0.07 30.90 ± 0.01 13.51 ± 0.06 35.92 ± 0.03 47.03 ± 0.02 47.89 ± 0.04 25.58 ± 0.12 27.53 ± 0.05

Table 3: Impact of image anonymization. We report AP (computed according to the COCO evaluation protocol [16]) when
training image-based object detectors on images anonymized using three separate methods: None (original), DNAT, and
blurring, while evaluation is done using the original images. The results show the mean and standard deviation across three
separate runs. APveh, APV V , and APped refer to AP for the vehicle, vulnerable vehicle, and pedestrian classes, respectively.

that – as our sensors and annotations range way beyond
75m – we can alter the definition to include the union of
all 150m radius circles around the ego-poses, in which case
ZOD Frames spans an area of 2039km2 which is 26× the
area covered in [25]. Importantly, we only include anno-
tated frames when computing these metrics. We also show
the entire geographical distribution of ZOD Frames in Fig-
ure 1.

To further illustrate the diversity of ZOD, we analyze the
distribution of Frames across different weather conditions,
road types, and times of day. As shown in Figure 5, our
dataset includes frames captured in various weather con-
ditions, including clear, cloudy, rainy, foggy, and snowy
conditions. Moreover, our dataset covers different road
types, including highways, urban roads, rural roads, and
city streets, enabling the development and evaluation of
models that can operate in different driving scenarios. Fi-
nally, we note that our dataset includes frames captured dur-
ing different times of day, including almost 20k nighttime
scenes, providing a comprehensive representation of real-
world driving scenarios. By considering these diverse at-
tributes during curation, we ensure that our dataset covers
a broad range of driving conditions, enabling the develop-
ment and evaluation of robust AD systems.

4.2. Long-range perception

As explained in Section 4.1, ZOD is a highly diverse
dataset containing data from various driving conditions,
ranging from slow-moving city driving to high-speed high-
way driving. To operate a vehicle safely when driving at
speeds up to 130km/h (maximum ego-vehicle speed in ZOD
is 133km/h), it is crucial to detect objects not only in your
vicinity, but also at longer distances. To accurately perceive
the environment at distances required for high-speed driv-
ing, the ego-vehicle has to be equipped with sensors with
sufficient resolution to enable long-range perception. In
ZOD, we have an 8MP front-looking camera coupled with
high-resolution LiDAR sensors, allowing annotation of ob-
jects up to 245 meters away. This is – to the best of the
authors’ knowledge – farther than any other publicly avail-

Table 4: 3D object detection performance by range.

0-150m 0-50m 50-100m 100-150m 150-250m
mAP 0.25 0.33 0.19 0.06 0.01
CDS 0.46 0.62 0.33 0.08 0.02

Table 5: Traffic sign classification metrics [%].

Fmacro
1 Fmicro

1 Acc↑10avg Acc↓10avg
78.5 95.4 93.4 65.4

able AD dataset of comparable size. In Figure 6, we show
the distribution of the distance to the annotated 3D objects
for three top-level classes, namely vehicles, vulnerable ve-
hicles, and pedestrians. Note that the classes of the other
datasets have been mapped to these three top-level classes.
In particular, ZOD exhibits a range distribution similar to
the Argoverse 2 dataset, with the exception of having a
longer tail for vehicles and a lower density for distant vul-
nerable vehicles.

We also aim to characterize the difficulty of 3D object
detection on Frames by employing the widely used Center-
Point [33]. We trained CenterPoint and evaluated its perfor-
mance across various range bins using the mAP and CDS
metrics, as outlined in [30]2. A comprehensive breakdown
of the results is presented in Table 4. Our findings indicate
that the detector struggles significantly at extended ranges,
emphasizing the need for improved detectors and/or more
relevant metrics. These challenges can be addressed using
ZOD.

4.3. Long-tail perception

A critical dimension of autonomous driving is manag-
ing infrequent and challenging situations, including the pre-
cise detection of uncommon objects like wheelchairs and
strollers. In examining this, we evaluate CenterPoint’s per-
formance across an extensive array of classes over the full
250m distance, as illustrated in Figure 7. While cars are

2The 0-150m bin corresponds to Argoverse 2’s evaluation range, where
CenterPoint achieves mAP=0.18, compared to mAP=0.25 on ZOD
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Figure 7: 3D object detection AP per class (0-250m).

consistently detected, nearly half of the analyzed classes
register an AP score of under 10%.

In the realm of traffic sign recognition (TSR), a sig-
nificant challenge emerges from the marked class imbal-
ance between commonly recognized, universal signs (e.g.,
pedestrian crossing) and those specific to rare scenarios
(e.g., warning for polar bears). We implement a simple
ResNet-50-based classification baseline for TSR on ZOD
and report the results in Table 5. We exclude classes with
less than 10 signs in the validation set. Common signs
are classified very well, as shown by high F1-micro score,
whereas the class-balanced F1-macro score is significantly
lower. We also show accuracy for the 10 most common and
10 least common classes, which further highlight the differ-
ence in performance on common vs. rare classes. Jointly,
these results warrants further investigation into long-tailed
tasks to enhance the reliability of autonomous systems.

4.4. Anonymization

To analyze the effects that anonymization has on down-
stream computer vision tasks, we train two image-based ob-
ject detectors on three different versions of the images: the
original, blurred, and DNAT images. Training is done on
each of the anonymized image sets separately, while the
evaluation is performed on the original images. We train
on the three classes for which anonymization is relevant,
namely vehicles, vulnerable vehicles (bicycles, motorcy-
cles, wheelchairs, etc.), and pedestrians. The first detec-
tion pipeline is a Faster-RCNN [22], coupled with a feature
pyramid network [15] and a Resnet-50 [13] backbone – im-
plemented in the Detectron2 [31] framework – while the
second pipeline is YOLOv7 [28]. The results are computed
according to the COCO evaluation protocol [16] and pre-
sented in Table 3 (more comprehensive results are available
in the supplementary material). The results show no statis-
tically significant performance degradation when training
with anonymized images over the original setting. More-
over, these results act as a baseline for image-based object
detection on ZOD Frames.

5. Conclusion

We present ZOD, a diverse multimodal dataset for au-
tonomous driving. ZOD contains data collected, with high-

resolution sensors, from 14 European countries, thereby ad-
dressing the lack of European data in publicly available AD
datasets. With this geographical diversity we are able to
provide a wide range of driving scenarios, covering snowy
country roads in northern Sweden, rainy highways in Ger-
many, busy downtown traffic in France, and sunny suburban
roads in Italy. We supply a comprehensive set of dense an-
notations, including semantic/instance segmentation masks
for lane markings, road paintings, and ego road, 2D/3D
bounding boxes for objects, and classification labels of the
road surface condition. Notably, the 3D object annotations
range up to 245 meters, which is farther than any compara-
ble AD dataset. Additionally, ZOD boasts a comprehensive
traffic sign taxonomy, with a greater number of unique in-
stances than any other comparable datasets. In terms of fu-
ture work, we will add temporal-consistent annotations for
the entire duration of the sequences in ZOD Sequences, two
seconds of supporting camera frames for all ZOD Frames,
and more Sequences and Drives with supporting high def-
inition maps. We hope our diverse dataset can inspire re-
search that drives the field even further toward robust and
safe AD.

6. Limitations
While we are excited about ZOD’s potential, it’s crucial

to acknowledge its constraints. The dataset currently offers
keyframe annotations, suitable for various tasks (including
tasks that require spatiotemporal reasoning) but lacks sup-
port for consistent object tracking over time. We plan to
enhance this with full sequence annotations. While we’ve
analyzed the effect of anonymization on 2D object detection
in ZOD, the impact on other tasks remains unexplored. Our
3D annotations reach up to 250 meters, but their quality and
recall wane at these distances. This gap is bridged some-
what by our 2D annotations, which extend much further.
Finally, annotations for traffic signs and ego-road are un-
available for some Frames. We look forward to improving
ZOD with future updates and encourage community feed-
back.
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