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Abstract

Online Action Detection (OAD) is the task of identifying
actions in streaming videos without access to future frames.
Much effort has been devoted to effectively capturing long-
range dependencies, with transformers receiving the spot-
light for their ability to capture long-range temporal struc-
tures. In contrast, RNNs have received less attention lately,
due to their lower performance compared to recent methods
that utilize transformers. In this paper, we investigate the
underlying reasons for the inferior performance of RNNs
compared to transformer-based algorithms. Our findings
indicate that the discrepancy between training and infer-
ence is the primary hindrance to the effective training of
RNNs. To address this, we propose applying non-uniform
weights to the loss computed at each time step, which al-
lows the RNN model to learn from the predictions made in
an environment that better resembles the inference stage.
Extensive experiments on three benchmark datasets, THU-
MOS, TVSeries, and FineAction demonstrate that a minimal
RNN-based model trained with the proposed methodology
performs equally or better than the existing best methods
with a significant increase in efficiency. The code is avail-
able at https://github.com/jbistanbul/MiniROAD.

1. Introduction

Online Action Detection (OAD) is a challenging task
that involves identifying actions taking place in a stream-
ing video without access to future frames. Since its intro-
duction [7], OAD has gained great attention in research cir-
cles, as it has numerous real-world applications, such as au-
tonomous driving [20], smart surveillance systems [26, 27],
and anomaly detection [31]. These applications require the
ability to process streaming videos in real-time, making
OAD an essential component of many advanced systems.
As a result, there has been a growing interest in developing
more accurate and efficient methods for performing OAD.

To address the challenges of OAD, recent efforts have
focused on developing novel models for analyzing stream-
ing videos in real-time. The conventional process of OAD
consists of two stages. In the first stage, frames are con-
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Figure 1: Performance of recent OAD methods with respect
to GFLOPs and the model’s size.

verted into a sequence of features by a feature extractor.
In the second stage, the extracted features are processed
to capture the temporal information required for perform-
ing OAD. Much attention on OAD research has been paid
to this second stage where the two mainstream models are
RNNs [11, 30, 18, 5] and Transformers [9, 10, 33].

Each model has its strengths and weaknesses. RNNs
can capture temporal transitions effectively by modeling se-
quences recurrently but are known for their training diffi-
culties [23, 30]. Transformers can capture long-term de-
pendencies through self-attention, however, attention com-
putation is computationally expensive. Although recent re-
search has shifted towards using Transformer models, our
paper revisits RNN, which has been overlooked in recent
studies.

In this work, we show that RNN’s intrinsic inductive
bias—prioritizing the current input while preserving mean-
ingful temporal information from the histories—makes
them well-suited for OAD. Unlike in natural language pro-
cessing, where a distant word can significantly affect the
next sequence prediction, we observe that in OAD, the cur-
rent and its neighboring frames have a dominant influence
on the current prediction. In addition, RNN is efficient,
as it requires a small computational overhead compared to
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the transformer models, making them well-suited for online
tasks that require running in real-time.

Despite its architecture being well-suited for the OAD
task, RNN has been recently overlooked due to the promis-
ing results shown by transformer-based models. The pre-
vailing reasoning behind the lower performance of RNN
based method was the difficulty of learning long-range
dependencies [37, 23]. In this paper, we find that it is
the training-inference discrepancy that hinders the effective
training of RNNs.

During inference, the video is processed frame-by-frame
in a streaming fashion. During training, however, the video
is divided into multiple clips, which are then fed to the
model, as illustrated in Figure 2. This creates a significant
discrepancy between the two phases since videos are usu-
ally much longer than the training clips. Consequently, the
clips provide limited temporal information, leading to a re-
stricted view of the video during training. This limitation
is not as problematic for recent OAD models using trans-
formers as it is for models using RNNs. This is because
recent transformer models utilize the temporal information
between clips using explicit long-term memory even during
training. At the same time, RNNs do not since they receive
a non-informative hidden state initialized as zero at the be-
ginning of the clip. As a result, RNNs make most predic-
tions during training with the hidden state that lacks tempo-
ral information, whereas it makes most predictions during
inference with the hidden state accumulated with sufficient
temporal information.

We demonstrate that addressing the training and infer-
ence discrepancy in RNNs alone can significantly improve
their performance without requiring any changes to their
architecture. Specifically, we find that introducing non-
uniform weights to losses at different time steps can al-
leviate this discrepancy, which is a primary factor con-
tributing to RNN’s suboptimal performance. This ap-
proach differs from the conventional assumption of aver-
aging the loss over the joint prediction, as we demonstrate
that non-uniform weights to the loss are essential for effec-
tively training the model. We demonstrate the effectiveness
of our methodology using Minimal Recurrent neural net-
work for Online Action Detection (MiniROAD), which is a
lightweight GRU based model. Figure 1 shows the compar-
ison of our model with other recent models in terms of the
model’s performance, GFLOPs, and size. It shows that our
method with only ∼ 0.4% computational power needed for
the previous state-of-the-art, is able to achieve better perfor-
mance.

Our model is evaluated on conventional OAD bench-
mark datasets, including THUMOS’14 and TVSeries, as
well as on the recently introduced FineAction dataset. As
conventional datasets used for benchmarking OAD tasks are
relatively small, the much larger FineAction dataset offers

a more challenging testbed that better depicts real-life sce-
narios. Larger datasets like FineAction open up more pos-
sibilities for future work on OAD and hence our results can
serve as a strong baseline. Our experiments show that our
proposed methodologies achieve on-par or better results on
the benchmarked dataset with significant improvements in
efficiency.

The main contributions of this work are:
• We revisit the potential of RNNs and identify the

training-inference discrepancy as a primary cause of
their lower performance. To address this issue, we pro-
pose a simple yet effective method that makes RNN
both effective and efficient in capturing the essential
temporal information for online action detection.

• Extensive experimental results show that the pro-
posed method performs favorably against the state-
of-the-art with high efficiency; our model with only
∼ 0.4% computational overhead compared to the ex-
isting methods, achieves on par or better performance
on a challenging benchmark dataset, with ∼17% per-
formance improvement over the state-of-the-art in a
large-scale dataset.

• We expand our methodology and carry out perfor-
mance evaluation on Action Anticipation and show the
applicability of our method on other online tasks.

2. Related Work

2.1. Online Action Detection

The Online Action Detection task [7] involves detect-
ing actions in the current frame online, using information
from the past up to the present. Earlier approaches to On-
line Action Detection relied on recurrent models. Geest et
al. propose a two-stream feedback network [8], utilizing
LSTM [18] where one stream focus on feature representa-
tion and the other on temporal patterns. RED [14] takes
advantage of reinforcement learning to make action predic-
tions as early as possible. Recent works using RNNs focus
on designing more effective RNN cells. TRN [39] models a
greater temporal context by having the LSTM cell [18] an-
ticipate the future. IDN [12] uses the GRU cell [4] to explic-
itly differentiate relevant information for ongoing actions.
In [21], FATSnet employs GRU to perform future antici-
pation and temporal smoothing for more effective current
prediction. On the other hand, WOAD [15] introduces a
method for weakly supervised online action detection. Ex-
isting RNN-based models mainly concentrate on develop-
ing more powerful RNN architectures to handle the task.

Transformers have also been used for the OAD task.
OadTR [36] introduces a transformer encoder-decoder ar-
chitecture for capturing long-term relations through self-
attention. In [40], LSTR achieves significant performance
improvements by employing a two-stage memory compres-
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Figure 2: Illustration of Training and Inference Discrepancy. During the inference stage (top), frames are fed to the model
sequentially in a streaming fashion. The hidden state evolves across the entire video, progressively incorporating accumulated
temporal context (depicted as darkening over time). In the training stage (bottom), the video is divided into shorter clips of
length L, serving as model inputs. Here, the model solely relies on temporal information within each clip, lacking inter-clip
associations. This yields dominant predictions constrained by clip-specific information.

sion design with transformers, allowing for capturing long-
term temporal and short-term context through self-attention.
This two-stage memory design has been further advanced
in subsequent works. GateHUB [3] improves the two-stage
architecture with a Gated History Unit to address the limita-
tions of prior cross-attention methods. This avoids incorrect
current frame predictions by appropriately weighting infor-
mative and uninformative frames. Recently, TeSTra [43]
extends the LSTR architecture by introducing two temporal
smoothing kernels to reduce inference computation cost.

Although these transformer models have achieved state-
of-the-art results, the attention computation involved in en-
coding long-term and short-term memory is computation-
ally expensive. In this work, we show that RNNs, without
modifying the internals of the architecture, can be just as
effective in processing streaming videos with the proposed
methodology alone.

2.2. Sequence Modeling

As many real-world applications involve processing
time-series data, sequential modeling has been a topic of on-
going research. Recurrent Neural Networks (RNNs) are one
of the most commonly used models for sequence modeling,
with popular variants including [18] and [5]. These vari-
ants introduce mechanisms within the RNN cell to improve
its memory capacity while attending to important parts of
the sequential data. 1D CNNs [22] incorporate convolution
operations to capture the temporal structure of time-series
data. Recent advances have been made using transform-
ers [33] that incorporate attention mechanisms for capturing
short and long-term dependencies. Ever since its success in
the language domain, its use has been widespread in various
fields [10, 9, 1, 38].

There have been ongoing efforts on exploring non-
transformer architectures. Gu et al. [16] introduces the State
Space Model (SSM) in tackling sequence data, proving its
efficacy in effectively handling long sequences. A recent
work [25] demonstrates that RNNs can match the perfor-
mance and training speed of SSMs by applying techniques
such as linearizing and diagonalizing the recurrence, along
with better parameterizations and initializations. Recently,
there has been a notable surge in interest surrounding a
novel variant of RNN called RWKV [28]. This architecture
is the first non-transformer model to be successfully scaled
to tens of billions of parameters, bringing together the effi-
cient parallelizable training of transformers with the infer-
ence efficiency of RNNs. Our research aligns with these
works in resurrecting RNNs in the transformer era.

3. Methodology

Provided a live streaming video, our objective is to rec-
ognize actions in the current frame based on past observa-
tions up to the current time. Since vt1, a streaming video
from the start until the current time t only provides obser-
vations {v1, ..., vt} for the past t frames, it is not possible
to access any information beyond vt. In this setting, the
task is to use vt1 to predict ŷt ∈ {0, 1, ...,K} where K is
the number of action classes and index 0 is the background
class. During training, the video is divided into clips, each
of length L, and hence clips of vtt−L are given as input. Fol-
lowing the convention, we suppose that a pre-trained feature
extractor is available which can convert each frame vt into
a feature vector ft ∈ RC . Our method employs the feature
vector ft as the input at current time t to predict ŷt.
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3.1. Overview

Our method is developed based on the observation that
a discrepancy exists between the training and the inference
stages, which hinders the effective training of sequence-to-
sequence models. Figure 2 illustrates this training-inference
discrepancy in more detail. While during inference the
model receives temporal information from the beginning of
the video to the current time step t, in training, the model is
provided with temporal information from t − L to t. Con-
sequently, for each video, clips make predictions using the
hidden state that lacks temporal information, which criti-
cally affects the losses associated with the early predictions.
However, we observe that the conventional approach un-
knowingly assigns the same uniform weight to all losses
for each time step. Our proposed method applies different
weights to losses at different time steps, resulting in better
training convergence and improved model performance.

3.2. Alleviating Training-Inference Discrepancy

The conventional loss calculation for OAD follows the
following cross-entropy calculation:

−
L∑

t=1

K∑
k=0

αtŷt,k log(ŝt,k), (1)

where ŷt,k and ŝt,k represent the ground truth and predicted
logit at time t, αt ∈ {α1, α2, ..., αL} is the weight applied
to the loss at each time step, and K and L are the num-
ber of classes and the length of the clip, respectively. We
pay attention to the fact that the conventional approach has
been unknowingly setting the weight αt uniformly for ev-
ery time-step in the clip, resulting in αt = 1/L. However,
we show that setting weights uniformly like this, equivalent
to using the joint prediction of all time steps, hinders the
RNN from being effectively trained as it does not resemble
the inference stage.

Our goal is to alleviate the problem caused by the dis-
crepancy between the training and inference stages. To do
so, we first pay careful attention to what is happening in the
inference stage where RNN’s temporal capacity plays an
important role. During the inference stage, temporal infor-
mation can accumulate as much as the length of the whole
video. Although sequence-to-sequence modeling, in the-
ory, can have an unlimited continuous context length, it is
known to have a limited temporal capacity [30], the maxi-
mum amount of information in which the RNN can retain.
For the task of handling streaming videos, as the videos are
long, most predictions are made utilizing the information
within its limited capacity. This means that RNN uses the
temporal information within RNN’s temporal capacity for
most predictions during inference.
Selected Weights. From the above reasons, we choose to
apply the weights that enable the RNN to utilize its maxi-

mum temporal capacity. The weight αt is set as:

αt =

{
1 if t = L

0 Otherwise
, (2)

which is a step function that equals putting masks on all the
loss except for the loss at the very last time step in the clip.
Applying weights like this during training allows us to 1)
disregard the dominant predictions made by using an unin-
formative hidden state and 2) train the RNN using predic-
tions made by the RNN’s sufficient temporal capacity, both
of which better reflect the inference stage. As long as the
length of the clip L is reasonable enough to exploit RNN’s
full potential, the prediction made at the end of the clip is
more representative of what is actually happening in the in-
ference stage. The choice of L, the length of the clip which
directly affects the receptive field of RNN during training,
is further experimented with in Section 5.2.

While the concept is very simple, its impact on the
performance is substantial. By addressing the training-
inference discrepancy, the model is able to learn more effec-
tively. Section 5.3 provides further experiments on various
weight choices that support the choice of our weights.

4. Experimental Setup
4.1. Dataset

Similar to prior works on online action detection, we
evaluate MiniROAD on two publicly-available datasets:
THUMOS’14 and TVSeries. In addition, we use a large
FineAction dataset for performance evaluation.
THUMOS’14 [19] comprises over 20 hours of sports video,
e.g. baseball pitch, each annotated with 20 actions. Follow-
ing the prior works [3, 43], we train on the validation set
(200 untrimmed videos) and evaluate on the test set (213
untrimmed videos).
TVSeries [7] consists of 27 episodes of six popular TV
shows, spanning 16 hours. It is annotated with 30 real-life
everyday actions like opening doors, running, and drinking.
It proposes unique challenges as it has a diverse viewpoint,
heavy occlusion, and a large portion of background frames.
FineAction [24] is a large dataset introduced for Temporal
Action Detection with more detailed activity descriptions
with varying difficulties. It consists of 16,732 untrimmed
videos spanning 705 video hours with 103,324 temporal in-
stances of 106 action categories.

4.2. Setting

Feature Extraction. As the selection of a feature extrac-
tor is an important factor that directly affects the perfor-
mance, we follow the experimental settings of the state-of-
the-art methods [43, 3, 40]. For THUMOS and TVSeries,
we first sample the videos into 24 FPS and feed non-
overlapping snippets to the feature extractor. The snippet
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size is set to 6 and TSN [34] is adopted as the feature ex-
tractor. We employ implementation and checkpoints from
MMACTION [6] and experiment with feature extractors
pretrained on Kinetics-400 [2] and Activitynet1.3 [17]. For
FineAction Dataset, we use the officially available features
extracted using a Two-Stream architecture [32]. This archi-
tecture feeds non-overlapping snippets of 16 RGB or opti-
cal flow frames to two separate I3D [2] models that were
pretrained with Kinetics. Since the officially available fea-
ture is too condensed (16 frames being converted into one
feature) and causes overlooking of the fine-grained action
instances, we linearly interpolate the temporal resolution of
the feature sequence by a factor of four. For all experiments,
the visual and motion features are concatenated along the
channel dimension before feeding into the model.
Implementation Details. To substantiate our claim that
mitigating the training-inference discrepancy leads to more
effective training of RNN models, we adopt a minimalist
approach in designing our model. Our model comprises an
embedding layer, a GRU, and a classification layer. Despite
its simplicity, our model achieves comparable or even better
performance to the state-of-the-art methods thanks to max-
imizing RNN’s potential with our proposed methodology,
while its lightweight property makes it highly efficient.

Implementation details can be found in the officially
available code. Experiments are conducted using Nvidia
RTX3090 Graphics cards.

4.3. Evaluation Metrics

To evaluate the performance of our methodology, we fol-
low prior works and report per-frame mean Average Pre-
cision (mAP) on the THUMOS’14 dataset and per-frame
mean calibrated Average Precision (mcAP) on the TVSeries
dataset. Per-frame mAP is adopted for the FineAction
Dataset as well. For measuring mAP, we collect all the
classification scores for each frame and calculate the pre-
cision and recall based on the sorted results. We then calcu-
late the Average Precision for each class using the precision
and recall values and average the results over all classes
to obtain the mAP. The mcAP, introduced by [7] with the
TVSeries dataset, was proposed to address the imbalance
between positive and negative samples. Calibrated average
precision (cAP) is calculated using the formula

cAP =

∑
i cPrec(i) · I(i)∑

i I(i)
, (3)

where I(i) is 1 if the frame i is a true positive and cPrec is
calculated by

cPrec =
w · TP

w · TP + FP
. (4)

where w is the ratio between negative and positive samples.

Method Backbone Parameters GFLOPs mAP (%)
TRN[39]

TSN
(Kinetics)

402.9M 1.46 62.1
OadTR[36] 75.8M 2.54 65.2
LSTR[40] 58.0M 7.53 69.5

GateHUB[3] 45.2M 6.98 70.7
TeSTra[43] 58.9M 4.37 71.2

MiniROAD (Ours) 15.8M 0.0158 71.8

Table 1: Comparison to other recent OAD methods in terms
of parameter count, GFLOPs, and mAP on THUMOS’14
dataset using the Kinetics pretrained feature extractor.

5. Results and Analysis

5.1. Comparisons with State of the Art

THUMOS’14. Table 1 presents a comparison of
MiniROAD with recent methods on THUMOS’14, using
features extracted by the Kinetics-pretrained TSN back-
bone. We measured the parameter count and GFLOPs of
TeSTra and ours by ourselves, and the other numbers are
from [3]. We can see that MiniROAD outperforms state-of-
the-art methods on THUMOS’14 by 0.6 % in mAP while
requiring only 0.4 % GFLOPs and 27% parameters. There
is a significant gain in efficiency thanks to the RNN archi-
tecture. RNN’s advantage in efficiency can be also seen
by TRN. Despite its large number of parameters, TRN re-
quires the least number of computations compared to the
recent works as recent works employ transformer architec-
ture that needs a lot more computation overhead for cal-
culating attention. These large gains in efficiency suggest
that RNNs have a significant advantage in online settings,
specifically for those that require real-time processing. To
validate the generalization of our method, we also evalu-
ate the same dataset using the feature extractor pretrained
with Activitynet. The results are shown in Table 2a and our
method achieves the best results in this setting as well.

TVSeries. Table 2b shows the comparison of our method
with the other methods using the features extracted by Ki-
netics and Activitynet pretrained features. Our method is
able to achieve comparable or better performance to the
state-of-the-art in this dataset as well.

FineAction. Table 3 compares the performance of our ap-
proach and recent methods on the FineAction Dataset. As
we are the first to evaluate this dataset for the OAD task,
we reproduced all the results in Table 3 using the publicly
available code. Our model outperforms the recent meth-
ods, achieving a 17% performance gain over the next best-
performing method. This dataset is much larger and con-
tains activities of varying difficulties, in contrast to previ-
ously tested datasets that had limited action instances of
similar categories. Thus, it provides a more realistic set-
ting and can serve as a valuable benchmark for future OAD
research.
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Method mAP (%)
Anet Kinetics

RED [14] 45.3 -
IDN [12] 50.0 60.3
FATS [21] 51.6 59.0
TRN [39] 47.2 62.1
LAP [29] 53.3 -
TFN [13] 55.7 -

OadTR [36] 58.3 65.2
LSTR [40] 65.3 69.5

GateHUB [3] 69.1 70.7
TeSTra [43] 68.2 71.2

Ours 69.3 71.8

(a)

Method mcAP (%)
Anet Kinetics

RED[14] 79.2 -
FATS[21] 81.7 84.6
IDN[12] 84.7 86.1
TRN[39] 83.7 86.2
TFN[13] 85.0 -
LAP[29] 85.3 -
PKD[42] - 86.4

OadTR[36] 85.4 87.2
LSTR[40] 88.1 89.1

GateHUB[3] 88.4 89.6
Ours 88.5 89.6

(b)

Table 2: Comparison to other OAD methods on (a) THU-
MOS’14 [19] dataset and (b) TVSeries dataset [7]. Results
using the backbone pre-trained using Activitynet [17] and
Kinetics [2] are shown.

Method mAP (%)

OadTR[36] 31.8
LSTR[40] 31.6
TeSTra[43] 31.2

Ours 37.1

Table 3: Comparison to other OAD methods on FineAction
dataset [24].
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Figure 3: Attention heatmap (top) and its specific values
(bottom) of the transformer encoders in OadTR [36]. For
the heatmap calculation, all the attention values in the en-
coder (of every layer and head) are collected for the entire
test set input which are then averaged out over the heads.
The above shows the collected values after normalization.

5.2. Why is RNN adequate for the task?

The prevailing reasoning behind the lower performance
of RNNs is that they struggle with learning long-range de-
pendencies. This is often attributed to training difficulties
such as gradient vanishing that can arise when processing
prolonged sequences. Therefore, recent works have been
using transformers for OAD as they are particularly profi-
cient at capturing long-term dependencies. However, it is
worth asking how much temporal information is actually
needed for OAD.

What do Transformers Actually See? Inspired by the
recent success of transformer models in OAD, we analyzed
the attention weights within the transformer multi-head at-
tention to gain insights into the model’s decision-making
process. The visualization results are presented in Figure 3.
As evident from the heat map and the graph, the transformer
model predominantly focuses on the recent and neighboring
frames, indicating the recent input’s dominant influence on
the prediction. Surprisingly, despite the transformer’s in-
tended capability of capturing long-term dependencies, the
model mainly relies on the recent frames for making the cur-
rent frame prediction. Our analysis reinforces the argument
that RNN’s inductive bias, which prioritizes the current in-
put while retaining meaningful temporal information from
the past, is well suited for the task.

Optimal Length of Temporal Information. Figure 4
shows the performance of our model with varying clip
lengths using the proposed methodology. As our method-
ology trains the model with the loss computed at the end of
the clip, the graph shows the trade-off between providing
more temporal information and ignoring the supervision of
the earlier steps. The figure shows that a saturation point is
reached at 32 seconds and providing more information than
32 seconds does not improve the performance. To the com-
monly held belief that the RNN does not benefit from pro-
longed sequence length, there exists a model’s maximum
capacity. It is important to note, however, that RNN’s ca-
pacity is already enough to perform well on the OAD task,
validated by the promising performances shown in Section
5.1. A slight drop in performance after 32 seconds is a result
of RNN not being able to use temporal information beyond
a certain point and much supervision lost during training.

5.3. What is the optimal weight?

Our work shows that the uniform weights put on com-
puted loss at each time-step hinders the effective training of
the RNNs. To make the most use of the finding, we exper-
imented with varying weight choices αt in (1) at each time
step. Different choices of weights including uniform, lin-
early increasing, exponentially increasing, learnable, and
step function, are experimented. The results are shown
in Table 4a. The results indicate that assigning uniform
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Figure 4: Effect of varying the length of the clip L during
training.

weights to the loss computed at each time-step results in
the worst performance, which is consistent with the find-
ings discussed in the paper that this conventional approach
impedes the effective training of the model. Applying lin-
early increasing weights performs better than assigning uni-
form weights because it places less emphasis on early-stage
predictions. The next best performing choice is exponen-
tially increasing weights, which heavily emphasizes the loss
computed at later stages. The next best performing weight
choice is learnable weights. For this experimental setup,
learnable embeddings of size L (length of the clip) were
trained. When computing the loss, we apply softmax acti-
vation to the learnable weights, which are then multiplied
by their corresponding loss at their time steps. This ap-
proach shows even better performance than exponentially
increasing weights. The best-performing choice of weight
is step-function which uses only the loss computed at the
end. This results in the best performance as the loss asso-
ciated with predictions using the informative hidden state
best resemble the dominant predictions made at the infer-
ence stage.

5.4. Effectiveness of the method

Table 4b shows the result of our model with and with-
out the proposed non-uniform weights. We can observe that
there is a 5 % mAP increase by using our proposed method-
ology. In addition, we also experiment with our proposed
methodology using the transformer architecture. For the
experiment, we adopt the transformer encoder from OadTR
and set the encoding layers to 3 and the number of heads
to 8 which is the default setting in the publicly available
code. We observe that the performance increases from 63.0
to 64.9 % mAP with a 1.9 % mAP increase using our pro-
posed methodology.

Weight Type mAP (%)

Uniform 66.4
Linear 68.6

Exponential 69.8
Learnable 70.8

Step-Function 71.8

(a)

Method
Transformer MiniROAD

Uniform
Weight 63.0 66.4

Proposed 64.9 71.8

(b)

Table 4: (a) Result of applying different weights αt in (1).
Otherwise stated, Step-Function is the default choice in our
paper which only uses the loss computed at the end of the
clip. (b) Result of applying the proposed weights on the
transformer-based model and on our model.

Method
OF.

Comp.
RGB
Feat.

OF.
Feat.

Model
FPS

Overall
FPS

mAP
(%)

TRN

28.8 383 219

143 20.5 62.1
OadTR 145 20.5 65.2
LSTR 187 21.2 69.5
TeSTra 169 20.9 71.2
Ours 37300 23.8 71.8

Table 5: Runtime Comparison of OAD methods on THU-
MOS’14 dataset with flow features extracted using TV-L1
[41] algorithm. OF. Comp., RGB Feat., and OF. Feat. are
the speed of extracting optical flows, rgb features, and opti-
cal flow features respectively, measured in FPS.

5.5. Runtime

Efficiency is a critical aspect of the online nature of the
OAD task. To assess efficiency, we compare MiniROAD’s
runtime with recent methods in frames per second (FPS) us-
ing videos from the THUMOS’14 dataset on a system with
a single RTX3090 GPU. The results in Table 5 demonstrate
that our model’s lightweight RNN architecture is very ef-
ficient, running about 200 times faster than previous meth-
ods. However, it is worth noting that the model’s speed is
not the final speed, as the input of the OAD model requires
the extraction of visual and motion features. As illustrated
in Table 5, computing optical flow accounts for the major-
ity of the computation time. The end-to-end speed, which
encompasses the speed after computing optical flows, ex-
tracting visual and motion features, and passing through the
model, is reported as Overall FPS in the table. Although
extracting optical flow acts as a bottleneck, the efficiency
of our model yields 2.9 gains in FPS overall. These gains
in overall speed are further improved when a faster optical
flow computing algorithm is used. To demonstrate the effi-
cacy of this approach, we also test using the NVIDIA Op-
tical Flow SDK1 (NVOFA) for faster optical flow computa-

1https://developer.nvidia.com/opticalflow-sdk
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Method Pre-Train mAP@τo Average0.25 0.5 0.75 1 1.25 1.5 1.75 2
RED [14]

ANet1.3

45.3 42.1 39.6 37.5 35.8 34.4 33.2 32.1 37.5
TRN [39] 45.1 42.4 40.7 39.1 37.7 36.4 35.3 34.3 38.9
TTM [35] 45.9 43.7 42.4 41.0 39.9 39.4 37.9 37.3 40.9

LAP-Net [29] 49.0 47.4 45.3 43.2 41.3 39.7 38.3 37.0 42.6
OadTR [36] 50.2 49.3 48.1 46.8 45.3 43.9 42.4 41.1 45.9
LSTR [40] - - - - - - - - 50.1

GateHUB [3] - - - - - - - - 54.2
TeSTra [43] 64.7 61.8 58.7 55.7 53.2 51.1 49.2 47.8 55.3

Ours 65.4 63.3 60.5 57.4 54.8 51.9 49.7 47.7 56.3
TTM [35]

K400

46.8 45.5 44.6 43.6 41.9 41.1 40.4 38.7 42.8
LSTR [36] 60.4 58.6 56.0 53.3 50.9 48.9 47.1 45.7 52.6
OadTR [36] 59.8 58.5 56.6 54.6 52.6 50.5 48.6 46.8 53.5
TeSTra [43] 66.2 63.5 60.5 57.4 54.8 52.6 50.5 48.9 56.8

Ours 68.5 66.3 63.5 60.7 57.9 55.6 53.5 51.4 59.7

Table 6: Action Anticipation Results on THUMOS’14 dataset with feature extractor pretrained with Activitynet (top) and
Kinetics (bottom).

Method
OF.

Comp.
RGB
Feat.

OF.
Feat.

Model
FPS

Overall
FPS

mAP
(%)

TRN†

1K 383 219

143 66.0 61.6
OadTR† 145 66.3 63.3
LSTR† 187 73.8 67.1
TeSTra 169 70.9 67.3
Ours 37300 122 68.4

Table 7: Comparison to other OAD methods on THU-
MOS’14 dataset with flow features extracted using NVIDIA
OPTICAL FLOW. † was reproduced by us. All the values
indicate the speed measured in FPS.

tion, which runs at around 1K FPS. By utilizing the faster
flow algorithm, our model runs at 122 FPS which is 1.72
times faster than the state-of-the-art model. Although there
is a degradation in the final performance compared to the
traditionally used flow algorithm, this highlights the avail-
ability of an alternative approach that can deliver faster end-
to-end speed while balancing performance and speed trade-
offs. The significant increase in end-to-end speed when us-
ing the faster optical flow algorithm indicates that additional
increases can be gained with RGB-only inputs, leaving open
opportunities for future work.

5.6. Action Anticipation

As our methodology is also applicable to other online
tasks, we extend our method to Action Anticipation, which
is a task of anticipating upcoming actions using the histo-
ries. Instead of predicting the current time frame, the model
is trained to predict the next upcoming actions every 0.25
seconds up to 2 seconds. Table 6 shows the results of pre-
dictions at each of that time-step. It shows that our method
performs favorably to the other methods with 1 % mAP gain
using activitynet pretrained backbone and 2.9% mAP gain
using kinetics pretrained backbone over the previous state-

of-the-art. While our methodology was initially designed
for OAD, its applicability extends beyond OAD and can be
used for other similar tasks.

6. Conclusion
We revisit RNN for online action detection and show its

potential in dealing with the task. We identify the training-
inference discrepancy as a primary cause of the lower per-
formance of RNNs and address the issue by introducing
non-uniform weights to the loss computed at each time-
steps. We demonstrate the effectiveness of our proposed
method using MiniROAD, a minimal RNN-based OAD
model. MiniROAD achieves equal or better accuracy than
the existing best method on challenging datasets, with a
significant increase in efficiency. With the faster NVOFA,
MiniROAD runs at an impressive 122 FPS.

We note that recent OAD methods rely heavily on optical
flows, which impede end-to-end speed. While faster optical
flow algorithms like NVOFA can mitigate this issue, flow-
free OAD remains an open yet challenging problem. By
highlighting the suitability of RNNs for processing stream-
ing videos, we hope to pave the way for further advance-
ments and shed light on developing more efficient models.
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