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Abstract

The recent interest in the edge-to-cloud continuum
paradigm has emphasized the need for simple and scalable
architectures to deliver optimal performance on computa-
tionally constrained devices. However, resource-efficient
neural networks usually optimize for parameter count
and thus use operators such as depthwise convolutions,
which do not maximally exploit the efficiency of resource-
constrained devices. In this article, we propose XiNet, a
novel convolutional neural architecture that targets edge
devices. We derived the XiNet architecture from an exten-
sive real-world efficiency analysis of various neural net-
work operators (e.g., standard, depthwise, and pointwise
convolutions). Compared to other mobile architectures,
our approach substantially improves the performance-
complexity trade-off by optimizing the number of opera-
tions, parameters, and working memory (RAM). Moreover,
we show how XiNet can be easily adapted to different de-
vices thanks to Hardware Aware Scaling (HAS), which en-
ables disjoint optimization of RAM, FLASH, and operations
count. We analyze the scaling properties of our architecture
under different hardware constraints and validate it on the
image classification task. Finally, we evaluate the perfor-
mance of XiNet for object detection on the MS-COCO and
VOC-2012 benchmarks and compare it with state-of-the-art
mobile neural networks, achieving a 70% reduction in en-
ergy requirements with similar performance.

1. Introduction
Designing and scaling convolutional neural networks

(ConvNets) for mobile and embedded inference is challeng-
ing. Approaches like Xception [1], MobileNetv2 [16], Ef-
ficientNet [17], and ShuffleNet [6] aim at optimizing the
trade-off between computational cost and performance. The
design of these architectures relies on the common assump-

*These authors contributed equally to this research.
This work has been supported by the European Union’s Horizon 2020 re-
search and innovation program under grant agreement no. 957337 (MAR-
VEL project).

Figure 1. Our proposed architecture allows for a 9× reduction in
RAM and a 2× reduction in operations compared to other tinyML
approaches for the same level of performance. Circle size is pro-
portional to the number of operations.

tion that indirect metrics (usually the number of multiply-
accumulate operations - MAC) can accurately express the
overall efficiency of the ConvNet when deployed on a mo-
bile device. However, this is usually not the case, as demon-
strated in many works [16, 18] that analyze the practical ef-
ficiency of different operators when deployed on hardware
platforms. Factors such as memory accesses, Arithmetic In-
tensity [4], and RAM usage are crucial in the efficiency of
the inference and thus should be considered in the develop-
ment of resource-efficient ConvNets.

Other studies [12, 11] consider these factors and specif-
ically focus on neural network deployment on microcon-
troller units (MCUs). Nonetheless, these works rely on cus-
tom hardware accelerators, and compilers [12, 11] to op-
timize the inference step; thus, they can not quickly scale
to the variety of embedded platforms available on the mar-
ket. Another limiting factor of these approaches is the
effort required to adapt the neural networks to new tasks
and devices with different computational constraints since
the architecture design results from a Neural Architecture
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Search (NAS) approach. In [15], the authors propose a
novel scaling paradigm to optimize neural networks given
the changing hardware requirements by independently tun-
ing the amount of RAM, FLASH, and energy required.

Based on the conclusions of [15], we set out to study the
direct cost of the most common neural operators used as
building blocks of ConvNets. Accordingly, we use the pre-
sented results to guide the development of a novel family of
convolutional neural networks called XiNets. We demon-
strate their state-of-the-art performance-complexity trade-
off. Figure 1 summarizes one of the results of XiNet: a
significant reduction in RAM usage by almost one order of
magnitude compared to other similarly performing detec-
tors.

The contribution of our paper is three-fold and can be
summarized in the following bullet points:

• we propose the use of direct metrics to guide the design
of neural networks for edge processing after highlight-
ing the main drawbacks of current operators - Sections
2 and 3;

• we derive a novel convolutional block from the effi-
ciency analysis and exploit it to design a novel neural
architecture that maximizes the performance-energy
trade-off - Sections 4, 5, and 6;

• we validate the proposed approach on object detec-
tion and image classification on a Raspberry Pi 4 sin-
gle board computer and an STM32H7 microcontroller
(MCU) - Section 7.

2. Direct metrics for efficiency estimation

As already anticipated in Section 1, the number of
multiply-adds (MACs) is not a good estimator of inference
efficiency. The tendency to optimize towards these indi-
rect metrics yielded a set of networks [1, 16, 17, 6], which
use depthwise convolutions (DWConvs) as basic building
blocks. While these networks achieve low MACs and pa-
rameter counts, their latency and thus, energy consumption,
could be optimized. The optimization margin results from
the inefficiency of indirect metrics, which do not consider
important factors such as memory accesses. For this reason,
we propose to use direct metrics to guide the design of neu-
ral architectures for the edge. Following is a description of
the direct metrics we considered in our benchmarking and
how they transfer to inference on edge devices.

RAM usage is one of the most constraining factors when
deploying neural networks on edge devices. It directly re-
lates to the size of the largest tensors required for opera-
tions within the network’s inference step. It also depends on
the chosen inference engine. Nonetheless, relative improve-
ments in RAM usage considering a fixed inference engine

remain significant; thus, also the comparison between oper-
ators is valid and generalizes among engines.

Parameter count, similarly to RAM usage, poses a hard
constraint on which platforms can host a specific neural net-
work, as this directly correlates to the amount of FLASH
memory used.

Arithmetic intensity [4] is a metric that measures
the average number of arithmetic operations executed per
each byte loaded in a CPU registry. For a fixed amount
of computing, higher arithmetic intensity corresponds to
lower memory access costs, thus making the operation less
memory-bound and, finally, more efficient.

To better understand why depthwise convolutions (DW-
Convs) are not - directly - the best option for edge infer-
ence, we hereafter analyze the cost of using DWConvs,
especially in ConvNets based on inverted residual blocks.
During the inference step of an inverted residual block that
processes tensors of size W ×H ×C (width, height, chan-
nels), after the expansion convolution, the RAM contains
a W × H × Ct tensor - where t is the expansion factor -
and another W ×H ×C tensor for the skip connection. To
put this in perspective, let us consider an application that
requires deploying an inverted residual block with an ex-
pansion factor t = 6 on a high-end MCU (e.g., STM32F7),
with R = 320KB of RAM. If we consider an input tensor
with a spatial resolution W,H = 128, the RAM constraints
of the device impose a maximum of CDW

max feature channels
that can be stored in memory, where:

CDW
max = ⌊ R

W ×H × (t+ 1)
⌋ = 3. (1)

In contrast, for a standard convolutional block, the required
RAM only depends on the input tensor size. Therefore,
in the same experimental conditions, it leads to a maxi-
mum number of feature channels for a standard convolution
(CS

max) being

CS
max = ⌊ R

W ×H × 2
⌋ = 10. (2)

Therefore, for a fixed amount of RAM, the standard con-
volutional block allows for a significant increase in output
channels.

Another crucial shortcoming of DWConvs is highlighted
when considering the memory accesses, as executing a DW-
Convs requires many more load and store operations than
arithmetic operations, as also demonstrated in [26]. Run-
ning a DWConv on a SIMD-equipped ARM core, with in-
ference in uint8, requires that for each multiply-add op-
eration correspond three SIMD load operations (for input,
kernel, and output) and one SIMD store operation (for the
output). As the registers can not maintain the kernel loaded,
due to it being different for each channel, this process leads
to inefficiency. In fact, new values will need to be loaded for
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the next channel, leading to a low arithmetic intensity and
a memory-bound inference rate. On the other hand, higher
feature reuse in standard and pointwise convolutions leads
to higher arithmetic intensity, thanks to the fewer memory
accesses of these operators for a similar number of opera-
tions.

Despite the possible issues of DWConvs, when consid-
ering the RAM usage and arithmetic intensity, they ben-
efit from significantly reducing the number of parameters
required to store the kernel compared to a standard con-
volution. In fact, a standard convolution with kernel size
K × K and C input and output channels requires K2C2

parameters, whereas a depthwise convolution with the ex-
act specifications requires only K2C parameters. However,
DWConvs are generally used in inverted residual blocks,
thus preceded by a pointwise convolution with an expan-
sion factor t and followed by the corresponding projection
convolution. In this design, an inverted residual block with
C = 32 channels, expansion factor t = 6, and a kernel size
K = 3 results in an increased parameters (P ) count of:

PDW+2PW

PS
=

2tC +K2

K2C
≈ 1.4 (3)

Finally, we demonstrated how using depthwise convolu-
tions in inverted residual blocks is not the Pareto-optimal
solution to the performance-energy and, thus performance-
complexity trade-offs. A direct assessment of the efficiency
metrics might guide novel, more efficient ConvNets.

3. Energy requirements for common operators

When optimizing the performance-complexity trade-off
with indirect complexity metrics, DWConvs are usually the
best choice. However, as we have thoroughly demonstrated
in Section 2, it does not imply that the energy efficiency
of such operators is optimal. In this section, we propose
an efficiency metric, η, that enables a direct comparison of
neural operators in different experimental setups.

3.1. Efficiency metric

To measure the actual energy efficiency of different op-
erators directly on devices with low computational capa-
bilities, we benchmarked different operators by analyzing
the power consumption, latency, number of clock cycles,
and energy required on seven devices, ranging from low-
power microcontrollers (e.g., STM32 Cortex-M series of
processors) to higher-performance platforms (e.g., Rasp-
berry Pi, with Cortex-A processor series). We also in-
cluded in our analysis a processor equipped with a Tensor-
Processing Unit (TPU) and a 9-core-32bit RISC V ultra-low
power microcontroller. We assessed the actual efficiency of
each operator (ηop) by calculating the ratio between the en-
ergy needed for a standard convolution (ES) and the energy

of the chosen operator (Eop) to perform an equivalent num-
ber of MACs.

ηop =
ES

Eop
(4)

In particular, this means that the higher the efficiency of
an operator, the less power it requires for the same amount
of MACs at inference time. This allows us to compare the
efficiency of different operators while taking into account
the variability of runtimes and different hardware platforms.
To establish a baseline, we used standard convolutions as
the reference operator, as it is the most commonly optimized
operator on hardware platforms. While our efficiency met-
ric was specifically designed for edge devices, the results
can also be generalized to architectures such as GP-GPUs.

3.2. Operator efficiency

Following is an analysis of the efficiency of neural op-
erators identified among those used in different ConvNets
that target diverse tasks, ranging from image classifica-
tion to image generation. In particular, we tested standard,
pointwise, depthwise, and grouped convolutions as candi-
dates for the convolutional block’s operators. Moreover, we
benchmarked transposed convolutions, nearest-neighbour,
bilinear, and depth-to-space interpolation as upsampling op-
erators. The latter is characteristic of generative models and
used in upsampling necks for object detection. More de-
tails on the experimental choices are in the supplementary
material, Section 4.

Figure 2 shows that the standard convolution operator
is, as expected, the most efficient on average. Pointwise
convolutions, being a specific case of the standard convolu-
tion, are similarly efficient. However, depthwise convolu-
tions and convolutions based on groups or patches require
approximately three times the energy needed for an equiv-
alent standard convolution. The high efficiency of grouped
convolutions on Greenwaves’ GAP8 is due to the proces-
sor being optimized for parallel execution. However, since
we aim to propose a general approach applicable to most
embedded systems, we consider GAP8 as an outlier for this
particular operator to avoid losing generality on other plat-
forms.

We also evaluated the efficiency of different downsam-
pling techniques (convolutions with stride, max-pooling,
and average-pooling) usually present inside convolutional
blocks. However, these variants are almost equivalent from
an efficiency perspective. We did not consider batch nor-
malization in this benchmarking, as it can be computed to-
gether with the preceding convolution at inference time.

For the benchmarking of the upsampling operators, all
the operators tested demonstrated much lower efficiency
than the standard convolution, as expected. Among them,
bilinear upsampling has marginally higher efficiency, par-
ticularly when deployed on microcontrollers.
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Figure 2. Measured real-world efficiency on different platforms for the benchmarked operators. Each color corresponds to a different
hardware platform, each bar corresponds to the efficiency (defined in equation 4) of the tested operator, indicated in the horizontal axis.

4. XiNet design
Exploiting the analysis performed in Section 3.2, we pro-

pose a novel convolutional block based on the set of max-
imally efficient operators. In particular, our convolutional
block comprises standard convolutions as the primary oper-
ator and targets embedded inference. Given the broad range
of computational constraints among different embedded de-
vices, we designed our convolutional block to easily adjust
the trade-off between parameter count, RAM usage, energy,
and performance.

4.1. Efficiency of standard convolutions

Standard convolutions’ parameters and MAC count de-
pend on the kernel size K, the number of input channels
Cin, and the number of output channels Cout. To maxi-
mize efficiency and compatibility with different platforms
(as seen in the provided additional materials, Section 4), we
fix the kernel size to K = 3. Therefore, the MAC and pa-
rameter counts depend on Cin and Cout. In particular, we
can:

• scale both Cin and Cout by multiplying them by a con-
stant factor, α as in [16, 17];

• change γ, defined as the ratio between Cin and Cout,
obtaining a reduction of parameters and MAC by a fac-
tor γ.

Using a standard convolution scaled with the described
techniques has two advantages: first, we use a maximally
efficient operator; thus, for the same MAC, we will get a
network with lower power consumption. Secondly, we have
a significant advantage in terms of RAM usage. For exam-
ple, in an architecture based on inverted residual blocks, the
dynamic memory needed by an operator is equal to the sum
of the input and output tensor:

RAMDW = 2tWHCout (5)

Instead, with an architecture based on the convolution
pattern we propose, this is reduced to

RAMS = WHCout +
WHCout

γ
(6)

Therefore, for the same number of channels, we obtain a
reduction in the required memory of

RAMDW

RAMS
= 2t

γ

γ + 1
(7)

Considering t = 6 as in Mobilenetv2 and MCUNet and
γ = 4 translates to a memory saving of almost 10×.

4.2. Convolutional block

To complete the design of the convolutional block, we
insert a pointwise convolution before our optimized convo-
lutional pattern to project the number of feature maps from
Cin to Cout/γ as shown in Figure 3.

Figure 3. Structure of the proposed convolutional block. In the
illustration, the output of the compression pointwise convolution
is orange, the output of the main (3 × 3) convolution is red, and
the output of the XiNet convolutional block is blue.

Since the architecture is designed to be quantized with
minimal performance loss, we use max pooling as it allows
us to achieve a higher signal-to-quantization noise ratio by
increasing the dynamic range of the activations. For the
same reason, we complete the sequence of operators by in-
serting a ReLU6 nonlinearity [7] instead of Swish/SiLU.
As in MobilenetV2 [16], we verified that nonlinearity in the
compressed subspace leads to the destruction of helpful in-
formation and a consequent decrease in performance. For
this reason, we use ReLU6 only after the main convolution
and not after the pointwise convolution.

Finally, we add an attention mechanism and skip con-
nections to the convolutional block, described in Sections 5
and 6.
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4.3. Hardware aware scaling

When designing XiNet, a ConvNet based on a sequence
of our convolutional blocks, we wanted to resemble the
hardware-aware scaling (HAS) properties of [15]. HAS is
a novel scaling paradigm that focuses on tightly matching
hardware requirements for different embedded platforms
while allowing for a one-shot network architecture design
without requiring additional training complexity. HAS in-
dependently optimizes the number of operations, number of
parameters, and RAM usage. For this, we add β, a hyper-
parameter that controls the trade-off between the number of
operations and parameters. In practice, β linearly modifies
the number of input and output channels in each block de-
pending on its relative position in the network. Finally, the
number of channels is rounded to the closest multiple of 4
to increase efficiency on platforms performing 4-way SIMD
operations on uint8 data in 32-bit registers. To summarize,
the number of channels for the i-th convolutional block is:

Ci
out = 4⌈α2Di−2

(
1 +

(β − 1)i

N

)
C0

out⌉ (8)

where Di is the number of downsampling blocks before the
i-th block, N is the total number of convolutional blocks,
and C0

out is the number of filters of the first convolutional
block. As in ResNets [5], and as described in Eq. 8, the
number of feature maps is doubled after each downsampling
block.

In conclusion, the scaling properties of XiNets, and their
computational complexity are completely defined by a set
of three hyper-parameters:

• α, the width multiplier that linearly scales the number
of convolutional filters within the whole architecture
and affects the number of parameters, number of oper-
ations, and RAM usage quadratically;

• β, the shape factor, scales the number of filters within
the architecture linearly, from αCout in the first block
to αβCout in the last block. Varying α and β allows for
a different trade-off between computational complex-
ity and the number of parameters. β < 1 decreases the
number of parameters at the expense of computational
complexity. Conversely, β > 1 allows for the gener-
ation of computationally simpler networks but with a
higher number of parameters;

• γ, the compression factor, scales the ratio between in-
put and output filters of the compressed Conv2D. The
number of parameters, operations, and RAM usage de-
pends linearly on γ.

Modifying the XiNet hyper-parameters, as described in
[15], enables scaling our neural architecture for different
hardware platforms.

5. Efficient attention
Attention mechanisms play a crucial role in models’ per-

formance, as proved by many recent works in literature
[23, 24]. However, this usually comes at the cost of higher
computational complexity with respect to simple ConvNets.
In this section, we describe an efficient attention module
that can be plugged into any convolutional block and is cur-
rently integrated into ours as depicted in Figure 3. Atten-
tion mechanisms for image processing can be clustered into
three different categories: channel attention [21, 8], spatial
attention [14, 10, 21] and self-attention [19, 25].

In channel attention [21, 8], the attention mechanism ex-
tracts a one-dimensional vector encoding the relative chan-
nel importance of each input filter. Practically, the latter
operation is achieved via a matrix-vector multiplication at
the end of the module between the one-dimensional vector
and the original feature map. This operation brings signif-
icant performance advantages while requiring a very low
number of operations and parameters. However, these oper-
ations are very inefficient when used on embedded devices.
Furthermore, they often bring compatibility issues due to
the non-standard operations used within the block. Embed-
ded device toolchains seldom support matrix-vector multi-
plication, and the global average pooling operations must
be executed on the CPU even when using a purposefully
designed NN engine. In fact, [15] uses a similar attention
approach with Squeeze-and-Excitation blocks [8], leading
to decreased error rates on CIFAR100 of over 8% with a
negligible 0.03% MAC increase. However, this comes at
the cost of a 32% increase in execution latency and, conse-
quently, energy consumption.

Spatial attention (SA) [14, 10, 21] instead is generally
more efficient since it requires an element-wise multiplica-
tion of the attention module output and its input for which
hardware accelerators are usually optimized. The main lim-
itation of SA is generating the attention map, usually requir-
ing non-standard operations and a high fragmentation (e.g.,
[21]).

Self-attention [19, 25] is the most problematic approach
to bring to embedded devices. As it relies on computing
a high dimensional correlation matrix between each pixel
in the input feature map, this results in a tensor with spatial
resolution W 2×H2, i.e., 270MB of RAM when used on a
128×128 tensor, making this approach unfeasible for small
embedded devices with < 1MB of available RAM. Some
variants of self-attention work on image patches instead of
full-resolution images [19]. However, with the low amount
of RAM usually available in off-the-shelf MCUs, the input
resolution does not allow for meaningful patch generation.

5.1. Mixed channel and spatial attention

Given the results of Section 3.2, we propose an atten-
tion model that approximates a mixed channel- and spatial-
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attention mechanism while relying on the most efficient op-
erators. In particular, we tested different configurations that
generate a feature map with the same Wout ×Hout × Cout

dimensions of the output feature map of a convolutional
block. Thus, it is possible to perform an element-wise mul-
tiplication between the feature maps and the attention mask
instead of the costly and usually non-optimized tensor-
vector and tensor-matrix multiplication. A detailed break-
down of the different attention mechanisms benchmarked is
available in the supplementary materials, Section 2.

To converge on a good trade-off between performance
and computational cost, we tested six different attention
mechanisms derived from our analysis and inspired by the
literature:

• a modified Spatial Attention Module (SAM), similar
to [10] based on a standard Conv2D (B in Figure 4);

• a lighter version of the SAM based on a striding oper-
ation performed on the channels axis (C in Figure 4);

• a lighter SAM relying on a pointwise operation, with
and without nonlinearity (D in Figure 4);

• a variant of SAM where the main block convolution is
split into 2 operations, using only one to compute the
attention map. (E in Figure 4);

• a lightweight implementation of the first block, acting
on the compressed representation (F in Figure 4).

Figure 4. Tested attention modules: A - Base convolutional block
without attention module. B - Naive convolution implementation
as in YOLOv5. C - Striding-based. D - Pointwise convolution-
based. E - Split-based. F - attention applied on compressed tensor.

We tested the listed attention mechanisms in a XiNet
with five convolutional blocks on an image classification
task, namely CIFAR-100. The relative accuracy and latency

Module Energy MAC/s Acc Gain@1
None 1.68 mJ 137.7M +0%
Conv2D 10.2 mJ 143.9M +11.4%
Stride 3.54 mJ 115.7M +6.1%
Pointwise 3.46 mJ 122.4M +10.1%
Pointwise (relu) 3.46 mJ 122.1M -0.5%
Split 3.93 mJ 104.4M +10.5%
Compression 3.41 mJ 120.5M +8.3%

Table 1. Relative accuracy on CIFAR-100 and energy consumption
for different attention mechanisms measured on an STM32H743
MCU.

(measured on a STM32H743 MCU) for each of the atten-
tion variants are reported in Table 1.

As expected, implementing the block with standard con-
volutions provides the highest performance and MAC/s.
However, operation count and, thus, energy consumption
becomes too high for an MCU-targeted ConvNet. Lighter
variants, like the pointwise- and split-based attention mech-
anisms, show a better performance-to-computation trade-
off without compromising performance too much.

In XiNet, we use the pointwise-based attention module,
as it is more straightforward, requires less fragmentation,
and does not require a concatenation operation to merge
multiple patches.

6. Broadcasted skip connections
Following the same protocol that guided the develop-

ment of the convolutional block, we use only maximally
efficient operators from Section 3.2 to design a broadcast-
ing mechanism for skip connections. It is similar to the one
used in [27] to connect layers that work on tensors with
different spatial resolutions and feature maps. Our broad-
casting skip connection performs an average pooling on the
input tensor to match the spatial dimension of the output of
the convolutional block. The downsampled tensor is then
processed by a pointwise convolution to match the num-
ber of channels. Finally, we perform an element-wise sum,
which is more efficient than concatenation.

Performing the two broadcasting operations in this par-
ticular order has two main advantages:

• in architectures with downsampling, previous convo-
lutional blocks usually have fewer channels than the
current block, and thus, performing pooling before in-
creasing the channel count reduces the RAM needed
to store the skip tensor;

• as deeper layers have lower spatial resolutions, after
a pooling operation, we can discard the original high-
resolution tensor and only store the pooled version for
later layers, optimizing RAM usage even more.

To optimize the skip connections inside XiNet, we de-
fined a ConvNet in which each layer receives informa-
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tion from all previous layers through the broadcasting skip
block, similar to a DenseNet [9]. We assigned a trainable
weight to each skip tensor and used a softmax operator to
normalize the weight of all skip connections. Given a net-
work with N blocks, we approximate a super-network con-
taining the N ! sub-nets composed of all skip connection
combinations, a process similar to that employed in [22].
We trained this architecture on the CIFAR-100 dataset and
checked the scores assigned to each skip connection at con-
vergence to find the optimal data path.

Figure 5. Average skip connection importance - defined as weight
magnitude - per layer. The layer ID on the x-axis represents the
input tensor of the broadcast skip module. The subplots on the
right represent the single importances per layer.

Figure 5 demonstrates a notable preference in each con-
volutional block for tensors originating from the first con-
volutional block’s output. This could be due to neighboring
blocks extensively reusing the same features, as verified in
[3], rendering skip connections unnecessary. Utilizing fea-
tures from distant blocks maximizes feature diversity, lead-
ing to improved performance. These findings also enable
effective exploitation of the broadcasting module’s struc-
ture, as the first block has the fewest channels, reducing
RAM usage for skip connections. For deeper blocks, this
implies a 5× reduction in the skip tensor’s size.

6.1. Block design ablation study

Table 2 provides a detailed analysis of the behavior of the
reference architecture with and without the enhancements
suggested in Sections 5 and 6. Results indicate that the two
proposed blocks improve the network performance without
significantly altering block efficiency.

Base XiNet
Skip connections ✓ ✓
Attention blocks ✓ ✓
mAP 72.3 72.7 74.4 74.9
Efficiency 68% 64% 70% 67%

Table 2. Effects of the presence of the different building blocks on
network performance and efficiency. ‘Base’ is a sequence of con-
volutional blocks without attention and skip connections. ‘XiNet’
is instead the complete architecture.

7. Experimental results
To demonstrate the effectiveness of our proposed archi-

tecture on image processing tasks, we evaluated it on three
benchmark datasets: CIFAR-100, MS-COCO [13] and Pas-
cal VOC [2]. We compare the performance of neural net-
works running on embedded platforms at up to 30 fps. De-
tails on the baseline implementations and training proce-
dure of XiNet are reported in the supplementary materials.

7.1. Microcontroller-scale image classification

To evaluate XiNet’s performance on image classification
tasks, we measured its accuracy, energy consumption, and
frames per second (fps) on an STM32H7 MCU running at
280MHz and a Raspberry Pi 4. The computational cost of
the network is summarized in Table 3. Table 4 compares
XiNet’s performance to other state-of-the-art approaches.

res α β γ RAM MAC
XiNet-Class 160 1 1.5 4.0 204KB 259M

Table 3. Hyperparameters of the benchmarked classification archi-
tecture, targeting an STM32H7 MCU.

XiNet significantly outperforms depthwise-convolution
based neural networks, achieving more than 3× the fps
while maintaining similar levels of classification accuracy.
Furthermore, results demonstrate how XiNet can operate ef-
ficiently on resource-constrained microcontrollers without
compromising accuracy or performance.

STM32H7A3 Raspberry Pi 4
Acc fps Energy fps Energy

MCUNet in3 69.62% 1.34 53.0mJ 10.8 469mJ
MCUNet in4 72.86% 1.11 71.9mJ 7.70 657mJ
PhiNet 69.17% 2.40 31.6mJ 15.6 324mJ
XiNet-Class 72.27% 3.40 22.3mJ 30.6 165mJ

Table 4. Performance of our proposed method on the CIFAR-100
benchmark compared to other state-of-the-art approaches. These
neural networks were benchmarked on a STM32H7 MCU and a
RaspberryPi 4.

7.2. Object Detection

Figure 6. Comparison of our proposed architecture and different
generations of the smallest YOLO detectors. Circle size is propor-
tional to RAM usage.
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Figure 7. Comparison with other edge-oriented neural architectures showing the trade-offs between memory, operations, and object de-
tection performance. XiNet outperforms MCUNet and PhiNet both in terms of RAM (left) and operation (right). Each color represents a
different architecture (type or complexity).

To develop our tiny object detector, we started with the
architecture of YoloV7 [20], offering state-of-the-art per-
formance with relatively small models. We modified the
original YoloV7 architecture replacing the backbone fea-
ture extractor with XiNet, and changed the network head to
use XiNet convolutional blocks to optimize resource usage
compared to standard convolutions.

As we are not targeting any specific platform, we use
by default a compression factor γ = 4.0, a shape factor
β = 1.4, and varied the width multiplier α to obtain net-
works with different operation counts. To evaluate our ap-
proach, we tested our object detector on the COCO object
detection dataset [13] and compared it to other tiny ob-
ject detectors in the YOLO family. Figure 6 shows each
model’s trade-off between mean average precision (mAP)
and network complexity. Our results indicate that XiNet
outperforms all other alternatives in terms of performance-
complexity trade-off.

7.3. Microcontroller-scale object detection

This section evaluates XiNet’s performance on compu-
tationally constrained embedded devices, specifically mi-
crocontrollers. We analyze the object detection perfor-
mance of XiNet using the VOC2012 [2] dataset, compar-
ing our results with the official results of the MCUNet
[12, 11] family of architectures. We target a multimedia-
oriented STM32H743 microcontroller with 2MB of avail-
able FLASH memory and 512KB of RAM that can be used
for the network.

We propose three different architectures obtained by
scaling different aspects of the reference architecture pre-
sented before. These architectures are detailed in Table 5:

• XiNet-L is the biggest architecture that can fit the tar-
get platform. It demonstrates the best possible perfor-

mance achievable by scaling the network using HAS
to use all available FLASH and RAM and as many op-
erations as possible.

• XiNet-S is optimized for energy consumption and
memory usage, showcasing the flexibility of trading
operations and parameters to reduce energy consump-
tion significantly.

• XiNet-M is a balanced architecture, leveraging the
scaling principles used in HAS to use all available
FLASH to optimize the trade-offs between accuracy,
memory, and energy.

res α β γ RAM MAC
XiNet-S 256 0.4 2.0 4.0 53KB 80M
XiNet-M 384 0.4 2.0 4.0 138KB 220M
XiNet-L 416 0.45 1.8 4.0 511KB 789M

Table 5. Hyperparameters of the benchmarked architectures tar-
geting an STM32H7 MCU, with corresponding computational re-
quirements.

Results for object detection on the VOC-2012 dataset are
shown in Figure 7. In particular, these experiments prove
how independently scaling parameters, RAM, and number
of operations allows XiNet-based object detectors to signif-
icantly outperform other methods by making the best use of
all the available FLASH offered by the platform, thus allow-
ing for a significant increase in mAP. When scaling XiNets
to match the performance of current state-of-the-art models
(e.g. MCUnetV2 H7), we obtain a reduction in the num-
ber of operations of 2× and a reduction in RAM usage of
9×. XiNet-S, for example, can achieve 8fps on 320× 240
images on an STM32H743 MCU, while XiNet-M can run
on a Raspberry Pi 4 at 3fps when working on 640 × 480
images.
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8. Conclusion
This paper proposes XiNet, a novel neural network ar-

chitecture developed to optimize compatibility among hard-
ware platforms and energy efficiency. We designed the net-
work building blocks, including convolutional blocks, at-
tention mechanisms, and broadcasting skip connections, to
exploit the hardware’s capabilities maximally. XiNet of-
fers advanced scalability features that allow the network to
be scaled for specific computational requirements (FLASH,
RAM, and energy budget) using Hardware Aware Scal-
ing. Our results demonstrate that XiNet has superior per-
formance in object detection and image classification for
embedded platforms with the ability to run under real-time
constraints. XiNet outperforms other state-of-the-art net-
works in object detection with a fixed complexity budget,
achieving more than twice the frames per second for the
same performance on various hardware platforms.
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