
Viewing Graph Solvability in Practice

Federica Arrigoni
Politecnico di Milano (Italy)

federica.arrigoni@polimi.it

Tomas Pajdla
CIIRC - CTU in Prague (Czechia)

pajdla@cvut.cz

Andrea Fusiello
University of Udine (Italy)

andrea.fusiello@uniud.it

Abstract

We present an advance in understanding the projective
Structure-from-Motion, focusing in particular on the view-
ing graph: such a graph has cameras as nodes and funda-
mental matrices as edges. We propose a practical method
for testing finite solvability, i.e., whether a viewing graph in-
duces a finite number of camera configurations. Our formu-
lation uses a significantly smaller number of equations (up
to 400ˆ) with respect to previous work. As a result, this is
the only method in the literature that can be applied to large
viewing graphs coming from real datasets, comprising up to
300K edges. In addition, we develop the first algorithm for
identifying maximal finite-solvable components.

1. Introduction
Structure-from-Motion [13] has been widely explored

for its various applications in Computer Vision, with most
research focusing on developing robust 3D scene recon-
struction algorithms. In this respect, one compelling prob-
lem is establishing if a set of fundamental matrices uniquely
determines a configuration of cameras. Indeed, it is known
that fundamental matrices can be uniquely computed from
the camera matrices [7], but the converse may not be true
when only a subset of all possible fundamental matrices is
available (see Fig. 1). The viewing graph [10] can be an-
alyzed to answer this question. Such a graph has vertices
corresponding to cameras, and an edge is present if and only
if the fundamental matrix between the two cameras exists.

A solvable graph uniquely identifies a configuration of
cameras up to a single transformation (projective or Eu-
clidean, depending on camera knowledge). Conversely, an
unsolvable viewing graph is one for which multiple trans-
formations exist that can be applied to the cameras without
changing the fundamental matrices (or essential matrices in
the calibrated case). The term “multiple” means any num-
ber of solutions – finite or infinite – strictly greater than one.
An unsolvable graph is undesirable in practice as it repre-
sents an inherently ill-posed problem, hence it is important
to test solvability before running a structure-from-motion

Fundamental
Matrices

Uncalibrated
Cameras

Unique

?

1

2 4

3

5

1

2 4

3

5

P1

P3

P5

P2 P4
F12

F23 F34

F14
F25 F45

Figure 1. While a set of cameras uniquely determines the funda-
mental matrices, the opposite may not hold. Fundamental matrices
can be conveniently represented as a viewing graph. The knowl-
edge of the cameras is equivalent to a complete graph [10].

method [15, 8]. When a graph turns out to be non-solvable,
the challenge is to identify its largest solvable component,
but this is (at least) as difficult as testing.

Related Work. Previous studies have demonstrated that,
in the calibrated case, solvable graphs are those that are par-
allel rigid [12, 1]. Effective methods for extracting maxi-
mal rigid components are available for non-solvable graphs
[9, 18]. Hence the calibrated case is considered solved.

The uncalibrated case, instead, is less explored and still
offers open issues. Early works focused on manually ana-
lyzing small graphs [10] or providing sufficient conditions
for solvability [14, 16]. Trager et al. [17] showed that – in
principle – any viewing graph can be classified into solv-
able or not solvable via a system of polynomial equations,
although this is computationally expensive. Arrigoni et
al. [2, 3] proposed a novel set of polynomial equations based
on cycle consistency, which decided the solvability of mini-
mal graphs up to 90 nodes and non-minimal (dense) graphs
with 9 nodes: this sets the state of the art in the uncalibrated
case in terms of solvable problem size, but it is still far from
the size of typical real datasets (see Tab. 3). Larger graphs
have not been processed in [3]: actually, solving polyno-
mial equations requires Gröbner basis computation, whose
worst-case complexity is doubly exponential in the number
of variables [5]. In addition, the task of computing maximal
solvable components has never been addressed so far.

The authors of [17] also introduced the concept of finite
solvability, a viewing graph that determines a finite num-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8147

Table 1. Differences between solvability and finite solvability.

Definition Test

Solvability [17, 3] unique solution #solutions of
polynomial system

Finite Solvability [17] finite #solutions rank of linear system

ber of projective configurations of cameras (see Tab. 1 and
Fig. 2). Clearly, solvability (i.e., unique solution) implies
finite solvability. However, the converse does not hold: ex-
amples of graphs corresponding to two solutions, meaning
that they are finite solvable but not solvable, are reported in
[3]. Finite solvability can be established as a consequence
of solvability testing, namely by counting the number of
solutions retrieved, as done in [3]. However, this is pro-
hibitive for practical scenarios: even the smallest graphs
from our real experiments (see Tab. 3) cannot be decided
by [3]. An alternative (and efficient) approach is followed
in [17], which derived linear equations that can be used to
check finite solvability: this is the only available charac-
terization of finite solvability, which constitutes the starting
point of our work.

Contribution. In this paper we focus on the computa-
tional problem of deciding finite solvability in the uncali-
brated case. Although this is not equivalent to the sought
notion of solvability (see Tab. 1), it is a valuable property
that presents two main advantages:

the cases of graph that are finite solvable but not solv-
able are really rare (only ten examples were found in
[3]), hence – in practice – finite solvability is a very
good approximation of solvability;
solvability has mainly a theoretical relevance, for its
computational complexity is prohibitive. Finite solv-
ability, instead, reduces to testing the rank of a matrix,
hence it is applicable in practice.

We present a computationally feasible method for checking
finite solvability of a viewing graph: with respect to [17] we
significantly reduce (up to 400ˆ on large real datasets) the
number of equations.

Moreover, inspired by the algorithms proposed in [9, 18]
for calibrated cameras, we develop the first procedure for
identifying the maximal finite-solvable components of an
unsolvable viewing graph with uncalibrated cameras. This
is accomplished by analyzing the null-space of the matrix
defining finite solvability equations.

Our contributions result in a practical method that can
be applied to large/dense viewing graphs from popular
structure-from-motion datasets, as demonstrated by our ex-
periments. We significantly outperform [17] in terms of ex-
ecution times, and extend the size of manageable graphs to
the unprecedented value of 300K edges.

The paper is organized as follows: Sec. 2 reviews rele-
vant background while Sec. 3 presents our contributions and
the derived method; experiments are presented in Sec. 4 and
the conclusion is given in Sec. 5.

2. Background
In this section, we review the concepts of solvability and

finite solvability, with the latter being the main point of fo-
cus of this paper. For more details see [17].

2.1. Solvability and Finite Solvability

Let P1, . . . , Pn denote n uncalibrated cameras, repre-
sented by matrices in R3ˆ4 of rank 3. The center of cam-
era Pi has coordinates given by ci P R4, a non-zero el-
ement of the kernel of Pi. We represent projective vari-
ables using non-homogeneous coordinates with the intro-
duction of proper tricks for the scale ambiguity1, as in [17].
Let G “ pV, Eq be an undirected graph with vertex set
V “ t1, . . . , nu and edge set E Ď t1, . . . , nu ˆ t1, . . . , nu

representing a viewing graph of an uncalibrated structure
from motion problem. We denote the number of edges with
m and the fundamental matrix of pi, jq P E with Fij .

The key question is the following: given a graph with
fundamental matrices on the edges, how many camera
configurations exist yielding such fundamental matri-
ces? Several cases are possible:

1. there exists a unique camera configuration;
2. there exist a finite number of camera configurations;
3. there exist infinitely many camera configurations.

Clearly, uniqueness is intended up to a single projective
transformation2. Such cases give rise to different notions
of solvability, that will be introduced next. More formally,
it is possible to define solvability as a property of the pair
pG,Pq where P is a set of cameras and G a graph that rep-
resents the connectivity pattern between the cameras.

Definition 1 ([17]). Let P “ tP1, . . . , Pnu be a config-
uration of cameras and G be a graph. The pair pG,Pq is
called solvable if there exists a unique (up to a single projec-
tive transformation) camera configuration yielding the same
fundamental matrices as P .

It can be proved that solvability actually depends on the
structure of the graph and on the camera centres only [17].
In other terms, the remaining parts of the 3 ˆ 4 camera ma-
trices are not involved. A generic configuration is typically
considered to eliminate the reliance on cameras, resulting in

1In this paper, we use uppercase letters to denote matrices, lowercase
bold letters for vectors, and lowercase letters for scalars.

2We alway assume that there exists at least one solution, as happens
in a noiseless case. This is a standard practice, followed also by previous
work [17, 3]. Solvability in a noisy case has never been considered so far.

8148

Solvable: 1 solution Unsolvable: >1 solutions

Finite solvable: finite solutions

finite solutions > 1

infinite solutions

Figure 2. Relations between different notions of solvability.

another concept of solvability, that is a property of a graph
by itself. In practice, generic configurations are obtained by
sampling at random the coordinates of the centres.

Definition 2 ([17]). A graph G is called solvable if it is
solvable for a generic configuration of cameras. Otherwise
it is called non solvable.

Solvability, as defined above, is tantamount to a unique
solution. A relaxed notion is that of finite solvability, which
only requires a finite number of solutions. Note that solv-
ability implies finite solvability, but the converse is not true
(see [3] for some counterexamples). Observe also that a
non-solvable graph can be either finite solvable or entail in-
finitely many configurations of cameras. The relations be-
tween these concepts are summarized in Fig. 2.

Determining the solvability of a graph requires solving a
polynomial system of equations [17, 3]. This is highly de-
manding from the computational point of view, hence pro-
hibitive for large/dense graphs that appear in practice. The
solution set to such polynomial equations is an algebraic
variety and, in particular, a smooth algebraic group, as ob-
served in [17]. This property implies that the dimension of
such a variety coincides with the dimension of the tangent
space at the identity, which can be easily computed. Specif-
ically, since the tangent space is a linear space, computing
its dimension reduces to determining the rank of a linear
system of equations. Such a dimension reveals if the orig-
inal polynomial system admits a finite number of solutions
or, in other terms, if the graph is finite solvable. However,
the exact number of solutions can not be determined in this
way, or, in other terms, we can not distinguish between a
solvable case (unique solution) and a non-solvable one.

i

j k
h

Hij Hik
Hhi

Pi

Pk

Ph
Pj

Figure 3. Edges in the viewing graph with a common vertex. Each
edge is associated with an unknown 4 ˆ 4 transformation.

2.2. Linear Equations for Finite Solvability

We now briefly review the linear equations for finite
solvability derived in [17], which constitute the starting

point of our developments. Building blocks are a collec-
tion of matrices L1, . . . , Ln of dimension 20 ˆ 16, where
Li depends only on the camera centre ci “ rc1 c2 c3 c4sT:

Li“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0 0 0 ´c4 0 0 0 c3 0 0
0 0 0 0 0 0 0 0 ´c4 0 0 0 c3 0 0 0
0 0 0 0 0 0 ´c4 0 0 0 0 0 0 0 c2 0
0 0 0 0 ´c4 0 0 0 0 0 0 0 c2 0 0 0
0 0 0 0 0 0 0 ´c3 0 0 0 c2 0 0 0 0
0 0 0 0 ´c3 0 0 0 c2 0 0 0 0 0 0 0
0 0 ´c4 0 0 0 0 0 0 0 0 0 0 0 c1 0
0 ´c4 0 0 0 0 0 0 0 0 0 0 0 c1 0 0
0 0 0 ´c3 0 0 0 0 0 0 0 c1 0 0 0 0
0 ´c3 0 0 0 0 0 0 0 c1 0 0 0 0 0 0
0 0 0 ´c2 0 0 0 c1 0 0 0 0 0 0 0 0
0 0 ´c2 0 0 0 c1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ´c3 c4 0 0 c2 0 0 0 0 ´c2
0 0 0 0 0 ´c3 0 0 0 c2 0 ´c4 0 0 0 c3

´c4 0 0 0 0 0 0 0 0 0 c4 0 c1 0 ´c3 0
0 0 ´c3 c4 0 0 0 0 0 0 c1 0 0 0 0 ´c1

´c3 0 0 0 0 0 0 0 c1 0 0 ´c4 0 0 0 c3
0 0 0 0 0 ´c4 0 0 0 0 c4 0 0 c2´c3 0
0 ´c2 0 c4 0 c1 0 0 0 0 0 0 0 0 0 ´c1

´c2 0 0 0 c1 0 0 ´c4 0 0 0 0 0 0 0 c2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Recall that camera centers are typically sampled at ran-
dom to comply with the assumption of generic configura-
tions, hence L1, . . . , Ln P R20ˆ16 are known matrices. For
each edge in the graph pi, jq P E let us consider an un-
known projective matrix (not necessarily invertible) denoted
as Hij P R4ˆ4. Each pair of adjacent edges ph, iq P E and
pi, jq P E – see Fig. 3 – gives rise to a linear equation:

Li vecpHhiq ´ Li vecpHijq “ 0 (1)

where vec denotes the vectorization that turns a matrix into
a vector. For more details about the mathematical derivation
of Eq. (1), please see the supplementary material of [17].
Hence, the equations coming from all adjacent edges in the
graph can be collected in a homogeneous linear system:

Sx “ 0 (2)

where x “ rvecpH12qT . . . vecpHhiq
T . . . vecpHijqT . . . sT

is the vertical concatenation of all the unknowns. Accord-
ingly, the number of columns in S is equal to 16m where m
is the number of edges in the graph.

Proposition 1 ([17]). Let G be a graph with m edges and
let c1, . . . , cn P R4 be n generic camera centres. G is finite
solvable if and only if:

dimpnullpSqq “ 15 ` m. (3)

The right term in Eq. (3), namely 15 ` m, refers to the
fact that each Hij matrix is defined up to scale, and there is a
global projective ambiguity inherent to the problem, mean-
ing that a single transformation can be arbitrarily fixed. This
suggests that additional equations can be included in order
to remove all the ambiguities:

8149

One matrix can be arbitrarily fixed, e.g., H12 “ I4
with I4 being the 4 ˆ 4 identity matrix.
The scale of the remaining Hij can be arbitrarily set,
e.g., by fixing the sum of its entries to 1. This results
in a linear equation for each edge (except the one used
to fix the global transformation): 1T

16 vecpHijq “ 1,
where 116 denotes a vector of ones of length 16.

We denote by sSx “ b the resulting (non-homogeneous)
linear system obtained by appending the above additional
equations to Eq. (2). sS is called the solvability matrix.

Corollary 1. Let G be a graph and let c1, . . . , cn P R4 be
n generic camera centres. G is finite solvable if and only if:

dimpnullp sSqq “ 0. (4)

Hence finite solvability can be checked as follows: start-
ing from a graph G, a set of camera centres c1, . . . , cn P R4

is sampled at random and the solvability matrix sS is con-
structed according to Eq. (1), with the provision that the ad-
ditional equations for ambiguity fixing should be included
as well; if dimpnullp sSqq “ 0 then the graph is finite solv-
able, otherwise it is non solvable.

3. Practical Finite Solvability
We first clarify the limitations of the previous approach

for finite solvability [17], thus motivating the need of a more
scalable method (Sec. 3.1). Accordingly, in Sec. 3.2 we
introduce a new reduced system of equations. Then, we
show how to extract maximal components in the case where
a graph is not finite solvable (Sec. 3.3). Finally, in Sec. 3.4
we report some implementation details.

3.1. Drawback of Previous Approach

Previous formulation [17] considers an equation of the
form (1) for each pair of adjacent edges, as reviewed in
Sec. 2.2. In other terms, for a fixed vertex, all possible
combinations of pairs of adjacent edges are considered. If
di denotes the degree of vertex i, that is the number of inci-
dent edges, then the number of such combinations is

dipdi ´ 1q{2. (5)

Hence, the number of equations produced by a single node
is quadratic in the degree of the node. For instance, a node
with degree 100 will contribute with 4950 equations. This
is a severe limitation, as managing equations coming from
all the nodes in a graph can be prohibitive in practice. See
Fig. 7 for typical degrees of real datasets.

3.2. Reduced Formulation

We show here how to substantially reduce the number
of equations, thus alleviating the aforementioned drawback.
Let us start with a simple observation related to the building
block of the solvability matrix.

Lemma 1. For any generic centre ci P R4, the 20 ˆ 16
matrix Li has only 11 independent rows. In particular, the
following 11 ˆ 16 sub-matrix of Li, obtained by selecting
11 rows out of 20:

Ki“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0 0 0 ´c4 0 0 0 c3 0 0
0 0 0 0 0 0 0 0 ´c4 0 0 0 c3 0 0 0
0 0 0 0 0 0 ´c4 0 0 0 0 0 0 0 c2 0
0 0 0 0 ´c4 0 0 0 0 0 0 0 c2 0 0 0
0 0 0 0 0 0 0 ´c3 0 0 0 c2 0 0 0 0
0 0 ´c4 0 0 0 0 0 0 0 0 0 0 0 c1 0
0 ´c4 0 0 0 0 0 0 0 0 0 0 0 c1 0 0
0 0 0 ´c3 0 0 0 0 0 0 0 c1 0 0 0 0
0 0 0 0 0 0 ´c3 c4 0 0 c2 0 0 0 0 ´c2
0 0 0 0 0 ´c3 0 0 0 c2 0 ´c4 0 0 0 c3

´c4 0 0 0 0 0 0 0 0 0 c4 0 c1 0 ´c3 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

has full rank.

Proof. First of all one can show that the rank of Ki is 11 by
symbolic computation (e.g., in MATLAB). Then, again by
symbolic computation, it can be proved that any other row
of Li is a linear combination of the rows of Ki.

Thanks to Lemma 1, we can replace Li with Ki in
Eq. (1), obtaining:

Ki vecpHhiq ´ Ki vecpHijq “ 0. (6)

This corresponds to reducing by 45% the number of rows
in the solvability matrix with respect to [17]. More impor-
tantly, such a gain is not optimal as the number of equations
involved can be further reduced: the following result proves
that, for a given vertex i, we do not need to consider all pos-
sible pairs of adjacent edges, but only a minimal number of
di ´ 1 equations. In other terms, the number of equations
produced by a single node becomes linear in the degree of
the node (whereas in [17] it was quadratic, see Eq. (5)).

Proposition 2. Let G be a graph and c1, . . . , cn P R4 be
n generic camera centres. For each vertex i, a minimal set
of di ´ 1 equations of the form (6) is chosen by selecting
one edge as reference, and pairing it with each of the re-
maining edges that are incident to node i. Let us collect
equations coming from all nodes in the graph in a unique
homogeneous linear system:

Rx “ 0 (7)

where x “ rvecpH12qT . . . vecpHhiq
T . . . vecpHijqT . . . sT

is the vertical concatenation of all the unknowns, as before.
Then, Eq. (7) is equivalent to (2).

Proof. We restrict our attention to a single vertex i and its
associated set of incident edges (see Fig. 3). In particular
we consider three edges pi, jq, pi, hq and pi, kq where pi, jq

is set as reference, and assume that equations of the form (6)
holds true for the pairs pi, jq-pi, hq and pi, jq-pi, kq, namely:

Ki vecpHihq ´ Ki vecpHijq “ 0

Ki vecpHijq ´ Ki vecpHikq “ 0.
(8)

8150

Then

Ki vecpHihq ´ Ki vecpHikq “

Ki vecpHihq ´ Ki vecpHijq
loooooooooooooooomoooooooooooooooon

0

`Ki vecpHijq ´ Ki vecpHikq
loooooooooooooooomoooooooooooooooon

0

(9)
hence equations associated with the pair pi, hq-pi, kq are de-
pendent from equations associated with the other pairs of
edges. A key fact for proving this result is that all the in-
volved edges share a common vertex i, hence all the equa-
tions share the same building block Ki. Thus, equations
from (2) are redundant and depend on those from (7): this
allows to use only a subset of equations.

As done before, we append to (7) the 15 ` m equations
aimed at fixing all the ambiguities and obtain a new non-
homogeneous linear system sRx “ b, where sR is called the
reduced solvability matrix. Combining Prop. 1-2 we get:

Corollary 2. Let G be a graph and c1, . . . , cn P R4 be n
generic camera centres. G is finite solvable if and only if:

dimpnullp sRqq “ 0. (10)

To summarize, we have shown that we can substantially
reduce the number of equations needed for checking finite
solvability, resulting in a reduced solvability matrix. Table 2
summarizes our key contributions and the main differences
with respect to [17]. See also Tab. 3 for the number of equa-
tions employed by the two formulations on real datasets.

Table 2. Differences between [17] and our formulation.

Trager et al. [17] Our formulation

Building block 20 ˆ 16 Li 11 ˆ 16 Ki

#Equations for vertex i dipdi ´ 1q{2 di ´ 1

3.3. Finite Solvable Components

Previous section has derived a reduced solvability ma-
trix whose null-space reveals whether the input graph is fi-
nite solvable or not. In the latter case the following rele-
vant question arises: Can we restrict our attention to the
largest sub-graph that is finite solvable? Actually, the
answer is yes, as will be shown next.

More formally, a finite-solvable component is a subgraph
G1 “ pV 1, E 1q such that V 1 Ď V , E 1 Ď E and G1 is finite-
solvable. It is called maximal if it is not a subset of any other
component. The following result states that each edge is
included in exactly one maximal finite-solvable component.
A similar result holds for the calibrated case [9].

Proposition 3. Let G “ pV, Eq be a graph. Then the set of
edges of all maximal finite-solvable components induces a
partition of the original edge set E .

Proof. A single edge is solvable (hence finite solvable)
since the fundamental matrix uniquely determines a pair of
cameras (up to a projective transformation) [7]. In other
terms, each edge must be in at least one maximal finite-
solvable component. In order to show that an edge belongs
to at most one maximal finite-solvable component, we sup-
pose by contradiction that an edge pi, jq is in two compo-
nents: since they are both maximal, it is not possible that
one component is contained in the other one; since each
component is finite solvable, the system obtained after fix-
ing the global ambiguity (R̄x “ b) has a unique solution
within each component (see Corollary 2), therefore we end
up with two different solutions for the transformation Hij

associated with the common edge, which contradicts the
uniqueness of the solution.

Hence the task is to partition the edges of a (non-
solvable) viewing graph into maximal finite-solvable com-
ponents. This section presents the first algorithm that ac-
complishes such a task3. Since we are considering a non-
solvable case here, the condition in Eq. (10) is violated,
meaning that the reduced solvability matrix sR has a non-
trivial null-space. Let d denote the (unknown) dimension
of such a null-space and let N be a 16m ˆ d matrix contain-
ing a basis for the null-space as columns. N has a particular
structure that reveals the membership of each edge to a spe-
cific component, as demonstrated by the following result.

Proposition 4. Let G be a graph, let c1, . . . , cn P R4 be n
generic camera centres and let N denote a basis for null-
space of the reduced solvability matrix sR. Then:

1. the rows of N corresponding to the edge used to fix the
global ambiguity are zero;

2. two edges are in the same component ðñ the corre-
sponding rows in N are equal.

Proof. Since we are dealing with a non-solvable case, the
system sRx “ b (that defines finite solvability) has multiple
solutions. In particular, all solutions are of the form:

x “ rx ` Nw (11)

where rx denotes a particular solution satisfying sRrx “ b,
and Nw represents a linear combination of the columns
of N for any w P Rd. Recall that sRN “ 0 and x “

rvecpHijqT . . . vecpHlkqTsT. It is convenient to express
Eq. (11) edge by edge:

»

–

vecpHijq

...
vecpHlkq

fi

fl “

»

–

vecp rHijq

...

vecp rHlkq

fi

fl `

»

–

Nijw
...

Nlkw

fi

fl (12)

3For simplicity of exposition, hereafter we will sometimes drop the
term “maximal” when referring to a component, for it is taken for granted.

8151

Figure 4. Maximal finite-solvable components extracted with our algorithm on synthetic viewing graphs. Each component is color-coded.
Note that the cases with #componentsą1 resemble typical topologies of unsolvable graphs (see [17, 3]).

where N has been partitioned into blocks of size 16 ˆ d.
Indeed, observe that a given edge does not correspond to
a single row in N but it corresponds to 16 rows in N : in
general, these 16 rows will not be the same but they will be
equal (one by one) to other 16 rows of all other edges in the
same component (meaning that the first row will be equal
to the first, the second row to the second, and so on), as will
be shown now. 1) Suppose that edge pi, jq is the one used
to fix the ambiguity and let us consider edge pl, kq. The
fact that all the ambiguities have been fixed in this com-
ponent, it is equivalent to say that there is no freedom in
the possible solutions. In other terms: edge pl, kq lies in
the same component as edge pi, jq ðñ Nlkw “ 0 for all
w P Rd ðñ Nlk “ 0. 2) Let us consider two edges pi, jq

and pl, kq and assume that they do not belong to the same
component as the edge used to fix the global projective am-
biguity, otherwise see the previous point. This means that
the global ambiguity has not been fixed but there are de-
grees of freedom corresponding to a global translation of
the solution. In other terms: edges pi, jq and pl, kq are in
the same component ðñ vecp rHijq “ vecp rHijq ` q and
vecp rHlkq “ vecp rHlkq ` q ðñ Nijw “ q and Nlkw “ q
for all w P Rd ðñ Nij “ Nlk.

According to the above result, we can identify maxi-
mal finite-solvable components by grouping together those
edges with equal rows in the null-space of the reduced solv-
ability matrix. Some examples are given in Fig. 4.

3.4. Algorithm

Our method is summarized in Fig. 5. Testing finite-
solvability requires to determine whether dimpnullp sRqq “

0 or not (Corollary 2). This is accomplished numerically
by computing the least eigenvalue of sRT

sR (i.e., the small-
est singular value of sR) with the Matlab function eigs and
comparing it with a small threshold, e.g. 1e´10. Although
such a threshold might be a critical choice, in our exper-
iments we always found a significant gap in the singular
values of sR when the rank drops (see Fig. 6).

Computing the finite-solvable components requires ex-
tracting a basis for the null space of sR (Prop. 4). This is

_

_

_

Figure 5. Proposed algorithm for testing finite solvability and ex-
tracting maximal finite-solvable components.

not a straightforward task from the numerical point of view,
as the matrix may have arbitrarily small non-zero singu-
lar values. The full singular value decomposition (SVD) is
generally the most reliable choice, but it is computationally
prohibitive for large matrices. Cheaper (but less reliable)
alternatives to SVD are based on QR or LU rank-revealing
factorizations. In particular, we found that those based on
LU (such as [6]) perform best in our case. The authors of [6]
propose an efficient and reliable method4 for computing an
orthonormal basis of the null space of a large sparse rectan-
gular matrix (usually with more rows than columns), whose
dimension is unknown a priori. This is particularly suitable
for matrices with a small-dimensional null space. The main
computational component is a sparse LU factorization with
partial pivoting, which is significantly cheaper than the QR
factorization customarily used for dense matrices.

After retrieving a basis N for nullp sRq we are required to
cluster blocks of 16 rows of N . One could represent these
blocks as vectors of R16d. However, in our implementa-
tion we digest them as vectors of Rd by summing the abso-
lute values of the rows. Since the number of clusters is not

4The implementation of this MATLAB function called nulls is avail-
able at http://www.cs.tau.ac.il/˜stoledo/Tools/nulls.m

8152

1 2 3 4 5 6 7 8 9 10 11

10
-12

10
-10

10
-8

10
-6

10
-4

1e-051e-05

3e-06

3e-13

9e-13
3e-13

9e-06

4e-13

5e-06

5e-13

3e-062e-062e-06

5e-07
8e-07Ellis Island

NYC Library

Madrid Metropolis

Tower of London

Piazza del Popolo

Union Square

Yorkminster

Gendarmenmarkt

Montreal Notre Dame

Roman Forum

Alamo

Vienna Cathedral

Notre Dame

Quad

Piccadilly

Figure 6. Smallest ten singular values of the reduced solvability
matrix for real viewing graphs [19, 4]. Note the drop of the last sin-
gular value by several orders of magnitude for unsolvable graphs.

known beforehand, we implemented a simple greedy strat-
egy that starts with the first row and groups together those
that differ from it by less than a threshold. It then proceeds
with the first of the remaining rows and continues in this
manner. Every cluster corresponds to one finite-solvable
component. Note that, in general, the number c of compo-
nents is not equal to the dimension d of the null-space.

4. Experiments
We demonstrate the effectiveness of our method by ap-

plying it to several examples and showing that it can be
profitably used to check the finite solvability of a viewing
graph and, in non-solvable cases, extract the maximal finite-
solvable components. Our algorithm was implemented in
MATLAB and the code is publicly available5. Experiments
were performed on a MacMini M1 (2020) with 16Gb RAM.

Both small-scale and large-scale viewing graphs from
real structure-from-motion datasets are used. In particular,
we consider the Cornell Arts Quad dataset [4], 14 sequences
from the 1DSfM benchmark [19], and 14 sequences from
[11]. For each sequence, we utilize only the associated
graph, discarding other information (e.g., point correspon-
dences and fundamental matrices) since we only need the
graph topology to check finite solvability. In addition, we
reduce our analysis to the largest biconnected component,
since it is cheap to compute and being biconnected is a
necessary condition for finite solvability [17]. Table 3 re-
ports the features of each sequence, including the number
of nodes, the number of edges and the percentage of edges
(with respect to the complete graph). See also Fig. 7 for in-
formation on the degrees, which play a key role in determin-
ing complexity. We compare our approach to the method by
Trager et al. [17], which is the only characterization of fi-
nite solvability available in the literature. Since the code
is not available online, we used our implementation, which

5https://github.com/federica-arrigoni/finite-solvability

 E
llis

 Is
la
nd

N
YC

 L
ib
ra

ry

M

ad
rid

 M
et

ro
po

lis

 T

ow
er

 o
f L

on
do

n

Pia

zz
a

de
l P

op
ol
o

 U
ni
on

 S
qu

ar
e

Yor

km
in
st
er

G
en

da
rm

en
m

ar
kt

 M
on

tre
al
 N

ot
re

 D
am

e

R
om

an
 F

or
um

Ala
m

o

Vie
nn

a
C
at

he
dr

al

N
ot

re
 D

am
e

Arts
 Q

ua
d

Pic
ca

di
lly

0

200

400

600

800
Mean Degree

Max Degree

Figure 7. Average and max degree for real viewing graphs [19, 4].
For all the datasets, the min degree is equal to two.

Figure 8. Ratio between the number of equations employed by
Trager et al. [17] and those from our formulation, for the largest
real viewing graphs [19, 4]. On “Piccadilly” the improvement
given by our method even surpasses 400ˆ.

shares the same routines and tricks as our method: the two
pieces of code construct the solvability matrix differently,
but use the same testing procedure. Results are given in
Tab. 3, which reports the output of finite-solvability testing,
the execution times and the number of equations for the
competing methods. The time spent in building the solv-
ability matrix dominates the testing time, but this can be
improved by a more careful use of MATLAB indexing for
sparse matrices, that we plan to investigate in the future.

Results show that there are only 5 graphs that are not
finite-solvable, hence we conjecture that unsolvability is a
rare situation in practice. The method by Trager et al. [17]
can manage only the ten smallest sequences but fails to han-
dle larger cases. Our algorithm, instead, successfully man-
ages all the considered datasets, including the largest one
(Piccadilly) with more than 300K edges. Our method is
significantly faster than [17]: for example, the latter runs in
about 27 minutes on “Tsar Nikolai I” whereas ours takes
less than 2 seconds. Table 3 also reports the number of
equations employed by the two formulations: the reduction
given by our approach even surpasses 400x (Piccadilly), as
can be appreciated from Fig. 8. For the unsolvable cases, we
applied our algorithm for extracting maximal components.
Our approach found 4 components for all such sequences:
we verified that the largest one is indeed finite solvable and

8153

Table 3. Results of our experiments on real datasets [19, 4, 11]. “T build” is the time spent building the solvability matrix (Trager et al. [17])
or the reduced solvability matrix (our method), “T test” is the time for finite solvability test and “T comp” represents the time required for
computing the components (only on non-solvable cases). The Ò symbol means that the computation either led “out of memory” error or
crashed. Times are in seconds. Solvable in the table means finite-solvable. Datasets are ordered by the number of edges.

Dataset Trager et al. [17] Our Method

Name #nodes density #edges #equations T build T test Solvable #equations T build T test Solvable T comp #comp

Gustav Vasa 18 72 % 110 25920 0.24 0.29 YES 2222 0.02 0.07 YES - 1
Dino 319 36 37 % 230 58200 0.58 0.47 YES 4664 0.02 0.06 YES - 1
Dino 4983 36 37 % 231 58760 0.55 0.48 YES 4686 0.02 0.05 YES - 1
Folke Filbyter 40 32 % 250 63840 0.67 0.66 YES 5060 0.02 0.05 YES - 1
Jonas Ahls 40 41 % 321 98340 1.5 1.4 YES 6622 0.03 0.07 YES - 1
Park Gate 34 94 % 529 324920 14 6.8 YES 11264 0.06 0.11 YES - 1
Toronto University 77 33 % 974 500460 31 9.6 YES 20581 0.15 0.19 YES - 1
Sphinx 70 55 % 1330 1034720 140 50 YES 28490 0.27 0.33 YES - 1
Cherub 65 64 % 1332 1075800 160 70 YES 28589 0.29 0.29 YES - 1
Tsar Nikolai I 98 52 % 2486 2512260 1032 579 YES 53614 0.87 0.57 YES - 1
Skansen Kronan 131 88 % 7490 17528900 Ò - - 163339 7.8 2.6 YES - 1
Alcatraz Courtyard 133 92 % 8058 19596800 Ò - - 175813 9.1 2.9 YES - 1
Buddah Tooth 162 73 % 9546 23605780 Ò - - 208230 12 3.6 YES - 1
Pumpkin 195 65 % 12276 33703640 Ò - - 267927 21 5.0 YES - 1
Ellis Island 240 71 % 20290 77011780 Ò - - 443740 64 12 YES - 1
NYC Library 358 32 % 20662 68645240 Ò - - 450626 64 10 YES - 1
Madrid Metropolis 370 35 % 23755 86652300 Ò - - 518540 86 13 YES - 1
Tower of London 489 20 % 23844 68287460 Ò - - 519189 86 12 NO 7.6 4
Piazza del Popolo 345 42 % 24701 97222440 Ò - - 539627 89 16 NO 5.9 4
Union Square 853 7 % 25478 56296820 Ò - - 551133 100 11 NO 15 4
Yorkminster 448 28 % 27719 100582600 Ò - - 604890 112 17 YES - 1
Gendarmenmarkt 722 18 % 48124 197518320 Ò - - 1050786 361 38 NO 15 4
Montreal N. Dame 467 48 % 52417 303423420 Ò - - 1148037 415 47 YES - 1
Roman Forum 1102 12 % 70153 249322400 Ò - - 1531244 799 62 NO 65 4
Alamo 606 53 % 97184 797160760 Ò - - 2131382 2186 154 YES - 1
Vienna Cathedral 898 26 % 103530 807533920 Ò - - 2267782 2405 166 YES - 1
Notre Dame 553 68 % 103932 879763460 Ò - - 2280421 2465 171 YES - 1
Arts Quad 5460 1 % 221929 867626110 Ò - - 4942476 10568 442 YES - 1
Piccadilly 2446 11 % 319195 3082312560 Ò - - 6995384 24640 1430 YES - 1

Largest
finite-solvable
component

Figure 9. Simplified representation of the non-solvable graphs
from Tab. 3: the largest finite-solvable components (green) con-
tains all except three edges (explicitly drawn). Such edges have a
“square” topology, which is a well-known non solvable case (see
[17]); each edge forms a component consisting of just itself.

inspected the remaining ones, which all turned out to have
the same structure depicted in Fig. 9, which is indeed a typ-
ical case of a non solvable graph. See also Fig. 4 for addi-
tional visualizations of synthetic graphs.

We also attempted to test the solvability (see Tab. 1) us-
ing the approach from [3] but the Grobner basis solver, im-
plemented in Macaulay26, crashed after building the poly-
nomial system even in the smallest dataset (“Gustav Vasa”).
It is known that Grobner basis cannot cope with many un-
knowns, as it generates huge memory requirements (expo-

6https://github.com/federica-arrigoni/solvability

nential in the number of variables [5]) to store intermediate
results. This further demonstrates the practical importance
of the notion of finite solvability, explored in this paper.

5. Conclusion

This paper has provided theoretical and practical insights
into the problem of viewing graph solvability of Structure-
from-Motion problems. We presented a new formulation of
finite solvability, that comprises a significant smaller num-
ber of equations (up to 400ˆ) with respect to previous work,
resulting in a practical method for testing finite solvabil-
ity. We also developed the first algorithm for identifying
the maximal finite-solvable components of an unsolvable
graph, therefore fulfilling an open issue in the uncalibrated
case. Our approach – for the first time in the literature – can
manage large/dense viewing graphs from real datasets (up
to 300K edges) on an ordinary desktop computer.

Acknowledgements. This paper is supported by PNRR-PE-
AI FAIR project funded by the NextGeneration EU program and
by EU H2020 No. 871245 SPRING project.

8154

References
[1] Federica Arrigoni and Andrea Fusiello. Bearing-based net-

work localizability: A unifying view. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 41(9):2049 –
2069, 2019.

[2] Federica Arrigoni, Andrea Fusiello, Elisa Ricci, and Tomas
Pajdla. Viewing graph solvability via cycle consistency. In
Proceedings of the International Conference on Computer
Vision, 2021.

[3] Federica Arrigoni, Andrea Fusiello, Romeo Rizzi, Elisa
Ricci, and Tomas Pajdla. Revisiting viewing graph solvabil-
ity: an effective approach based on cycle consistency. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
pages 1–14, 2022.

[4] David Crandall, Andrew Owens, Noah Snavely, and
Daniel P. Huttenlocher. Discrete-continuous optimization
for large-scale structure from motion. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3001–3008, 2011.

[5] Thomas W. Dubé. The structure of polynomial ideals and
Gröbner bases. SIAM Journal on Computing, 19(4):750 –
773, 1990.

[6] Craig Gotsman and Sivan Toledo. On the computation of
null spaces of sparse rectangular matrices. SIAM Journal on
Matrix Analysis and Applications, 30(2):445–463, 2008.

[7] Richard Hartley and Andrew Zisserman. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press,
second edition, 2004.

[8] Y. Kasten, A. Geifman, M. Galun, and R. Basri. GPSfM:
Global projective SFM using algebraic constraints on multi-
view fundamental matrices. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3259–3267, 2019.

[9] Ryan Kennedy, Kostas Daniilidis, Oleg Naroditsky, and
Camillo J. Taylor. Identifying maximal rigid components
in bearing-based localization. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems, pages
194 – 201, 2012.

[10] Noam Levi and Michael Werman. The viewing graph. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 518 – 522, 2003.

[11] C. Olsson and O. Enqvist. Stable structure from motion
for unordered image collections. In Proceedings of the
17th Scandinavian conference on Image analysis (SCIA’11),
pages 524–535. Springer-Verlag, 2011.

[12] O. Ozyesil and A. Singer. Robust camera location estimation
by convex programming. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2674 – 2683, 2015.

[13] Onur Ozyesil, Vladislav Voroninski, Ronen Basri, and Amit
Singer. A survey of structure from motion. Acta Numerica,
26:305 – 364, 2017.

[14] Alessandro Rudi, Matia Pizzoli, and Fiora Pirri. Linear solv-
ability in the viewing graph. In Proceedings of the Asian
Conference on Computer Vision, pages 369–381, 2011.

[15] S. Sengupta, T. Amir, M. Galun, T. Goldstein, D. W. Jacobs,
A. Singer, and R. Basri. A new rank constraint on multi-

view fundamental matrices, and its application to camera
location recovery. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2413–
2421, 2017.

[16] M. Trager, M. Hebert, and J. Ponce. The joint image hand-
book. In Proceedings of the International Conference on
Computer Vision, pages 909–917, 2015.

[17] Matthew Trager, Brian Osserman, and Jean Ponce. On the
solvability of viewing graphs. In Proceedings of the Euro-
pean Conference on Computer Vision, pages 335–350, 2018.

[18] R. Tron, L. Carlone, F. Dellaert, and K. Daniilidis.
Rigid components identification and rigidity enforcement in
bearing-only localization using the graph cycle basis. In
IEEE American Control Conference, 2015.

[19] K. Wilson and N. Snavely. Robust global translations with
1DSfM. In Proceedings of the European Conference on
Computer Vision, pages 61–75, 2014.

8155

