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Abstract

Accurate reconstruction of both the geometric and topo-
logical details of a 3D object from a single 2D image em-
bodies a fundamental challenge in computer vision. Exist-
ing explicit/implicit solutions to this problem struggle to re-
cover self-occluded geometry and/or faithfully reconstruct
topological shape structures. To resolve this dilemma, we
introduce LIST, a novel neural architecture that leverages
local and global image features to accurately reconstruct
the geometric and topological structure of a 3D object from
a single image. We utilize global 2D features to predict
a coarse shape of the target object and then use it as a
base for higher-resolution reconstruction. By leveraging
both local 2D features from the image and 3D features from
the coarse prediction, we can predict the signed distance
between an arbitrary point and the target surface via an
implicit predictor with great accuracy. Furthermore, our
model does not require camera estimation or pixel align-
ment. It provides an uninfluenced reconstruction from the
input-view direction. Through qualitative and quantitative
analysis, we show the superiority of our model in recon-
structing 3D objects from both synthetic and real-world im-
ages against the state of the art. Our source code is publicly
available to the research community [13].

1. Introduction

Constructing a truthful portrayal of the 3D world from a
single 2D image is a basic problem for many applications
including robot manipulation and navigation, scene under-
standing, view synthesis, virtual reality, and more. Follow-
ing the work of Erwin Kruppa [11] in camera motion esti-
mation and the recovery of 3D points, researchers have at-
tempted to solve the 3D reconstruction issue using structure
from motion [33, 16, 28], and visual simultaneous localiza-
tion and mapping [8, 27]. However, the main limitation of
such approaches is that they require multiple observations

Fig. 1: Five unique views of objects reconstructed by LIST from
a single RGB image. Not only does our model accurately recover
occluded geometry, but also the reconstructed surfaces are not in-
fluenced by the input-view direction.

of the desired object or scene from distinct viewpoints with
shared features. Such a multi-view formulation allows for
integrating information from numerous images to compen-
sate for occluded geometry.

Reconstructing a 3D object from a single image is a more
difficult task since a sole image does not contain the whole
topology of the target shape due to self-occlusions. Re-
searchers have tried both explicit and implicit techniques to
reconstruct a target object with self-occluded parts. Explicit
methods attempt to infer the target shape directly from the
input image. Nevertheless, a major drawback of such ap-
proaches is that the output resolution needs to be defined in
advance, which constrains these techniques from achieving
high-quality results. Recent advances in implicit learning
offer a solution to reconstruct the target shape in an arbi-
trary resolution by indirectly inferring the desired surface
through a distance/occupancy field. Then, the target sur-
face is reconstructed by extracting a zero level set from the
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distance/occupancy field.
Implicit 3D reconstruction from a single view is an ac-

tive area of research where one faction of techniques [18, 3]
encode global image features into a latent representation
and learn an implicit function to reconstruct the target. Yet,
these approaches can be easily outperformed by simple re-
trieval baselines [32]. Therefore, global features alone are
not sufficient for a faithful reconstruction. Another fac-
tion leverages both local and global features to learn the
target implicit field from pixel-aligned query points. How-
ever, such methods rely on ground-truth/estimated camera
parameters for training/inference [35, 12], or they assume
weak perspective projection [25, 9].

To address these shortcomings we propose LIST, a novel
deep learning framework that can reliably reconstruct the
topological and geometric structure of a 3D object from a
single RGB image, Fig. 1. Our method does not depend on
weak perspective projection, nor does it require any cam-
era parameters during training or inference. Moreover, we
leverage both local and global image features to generate
highly-accurate topological and geometric details. To re-
cover self-occluded geometry and aid the implicit learning
process, we first predict a coarse shape of the target object
from the global image features. Then, we utilize the lo-
cal image features and the predicted coarse shape to learn a
signed distance function (SDF).

Due to the scarcity of real-world 2D-3D pairs, we train
our model on synthetic data. However, we use both syn-
thetic and-real world images to test the reconstruction abil-
ity of LIST. Through qualitative analysis we highlight our
model’s superiority in reconstructing high-fidelity geomet-
ric and topological structure. Via a quantitative analysis
using traditional evaluation metrics, we show that the recon-
struction quality of LIST surpasses existing works. Further-
more, we design a new metric to investigate the reconstruc-
tion quality of self-occluded geometry. Finally, we provide
an ablation study to validate the design choices of LIST in
achieving high-quality single-view 3D reconstruction.

2. Related Work
In this section we summarize pertinent work on the re-

construction of 3D objects from a single RGB image via im-
plicit learning. Interested readers are encouraged to consult
[7] for a comprehensive survey on 3D reconstruction from
2D images. Contrary to explicit representations, implicit
ones allow for the recovery of the target shape at an arbi-
trary resolution. This benefit has attracted interest among
researchers to develop novel implicit techniques for differ-
ent applications. Dai et al. [5] used a voxel-based implicit
representation for shape completion. DeepSDF, introduced
by Park et al. [23], is an auto-decoder that learns to esti-
mate signed distance fields. However, DeepSDF requires
test-time optimization, which limits its efficiency and capa-

bility.
To further improve 3D object reconstruction quality, Lit-

twin and Wolf [14] utilized encoded image features as the
network weights of a multilayer perceptron. Wu et al. [34]
explored sequential part assembly by predicting the SDFs
for structural parts separately and then combining them to-
gether. For self-supervised learning, Liu et al. [15] pro-
posed a ray-based field probing technique to render the im-
plicit surfaces as 2D silhouettes. Niemeyer et al. [21] used
supervision from RGB, depth, and normal images to re-
construct rich geometry and texture. Chen and Zhang [3]
proposed generative models for implicit representations and
leveraged global image features for single-view reconstruc-
tion. For multiple 3D vision tasks, Mescheder et al. [18]
developed OccNet, a network that learns to predict the prob-
ability of a volumetric grid cell being occupied.

Pixel-aligned approaches [25, 26, 9, 1] have employed
local query feature extraction from image pixels to improve
3D human reconstruction. Xu et al. [35] incorporated sim-
ilar ideas for 3D object reconstruction. To enhance the re-
construction quality of surface details, Li and Zhang [12]
utilized normal images and a Laplacian loss in addition to
aligned features. Zhao et al. [37] exploited coarse predic-
tion and unsigned distance fields to reconstruct garments
from a single view. Duggal and Pathak [6] proposed cat-
egory specific reconstruction by learning a topology aware
deformation field. Mittal et al. introduced AutoSDF [19],
a model that encodes local shape regions separately via
patch-wise encoding. However, these prior works rely on
weak perspective projection and the rendering of metadata
to align query points to image pixels. In contrast, LIST does
not require any alignment or rendering data, and it recovers
more accurate topological structure and geometric details.

3. Implicit Function Learning from Unaligned
Pixel Features

Given a single RGB image of an object, our goal is to re-
construct the object in 3D with highly-accurate topological
structure and self-occluded geometry. We model the target
shape as an SDF and extract the underlying surface from
the zero level set of the SDF during inference. To train our
model we employ an image and query point pair (xi, Qi),
where Qi is a set of 3D coordinates (query points) in close
vicinity to the surface of the object with a measured signed
distance and xi is a rendering of the object from a random
viewpoint. An overview of the our framework is presented
in Fig. 2. The details of each component are provided in the
following subsections.

3.1. Query Features From Coarse Predictions

Consider an RGB image xi ⊂ X ∈ RH×W×3 of
height H and width W . We propose a convolutional neural
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Fig. 2: To reconstruct the target object from a single RGB image, LIST first predicts the coarse topology from the global image features.
Simultaneously, local image features are used to extract local geometry at the given query locations. Finally, an SDF predictor (Ψ) estimates
the signed distance field (σ) to reconstruct the target shape. Note that images and colors are for visualization purposes only.

encoder-decoder Ωω , parameterized by weights ω, to ex-
tract latent features from the image and predict a coarse es-
timation ẏxi

i of the target object. Concretely,

Ωω(xi) := ẏxi
i | RH×W×3 → RN×3, (1)

where ẏxi
i is a point cloud representation of the target and

N is the resolution of the point cloud. Note that the sub-
script i indicates i-th sample and the superscript xi des-
ignates the source variable. For high-performance point
cloud generation, we utilize tree structured graph convolu-
tions (TreeGCN) [29] to decode the image features.

We use the coarse prediction ẏi as a guideline for the
topological structure of the target shape in a canonical
space. To extract query features from this coarse predic-
tion, first we discretize the point cloud in an occupancy grid
u̇ẏii ∈ 1M×M×M of resolution M . However, the coarse
prediction may contain gaps and noisy points that may im-
pair the reconstruction quality. To resolve this, we em-
ploy a shallow convolutional network Γö parameterized by
weights ö to generate a probabilistic occupancy grid from
u̇ẏii ,

v̇u̇i
i := Γö(u̇

ẏi
i ) : 1M×M×M → [0, 1]M×M×M . (2)

Specifically, our aim is to find the neighboring points of ẏi
with a high chance of being a surface point of the target
shape.

Although it is possible to regress the voxel representation
directly from the global image features [4, 30, 9], learning a
high-resolution voxel occupancy prediction requires a sig-
nificant amount of computational resources [9]. Moreover,
we empirically found that point cloud prediction followed

by voxel discretization achieves better accuracy on diverse
shapes rather than predicting the voxels directly.

Next, a neural network Ξξ, parameterized by weights
ξ, maps the probabilistic occupancy grid (2) to a high-
dimensional latent matrix through convolutional operations.
Then, our multi-scale trilinear interpolation scheme I ex-
tracts relevant query features fC at each query location qi
from the mapped features. More formally,

fC := I (Ξξ(v̇
u̇i
i ), Qi). (3)

In addition to qi, we also consider the neighboring points at
a distance d from qi along the Cartesian axes to capture rich
3D features, i.e.,

qj = qj + k · n̂j · d, (4)

where k ∈ {1, 0,−1}, j ∈ {1, 2, 3}, and n̂j ∈ R3 is the
j-th Cartesian axis unit vector.

3.2. Localized Query Features

The coarse prediction and query features fC can aid the
recovery of the topological structure of the target shape.
Nevertheless, relevant local features are also required to re-
cover fine geometric details. To achieve this, prior arts as-
sume weak perspective projection [25, 9] or align the query
points to the image pixel locations through the ground-
truth/estimated camera parameters [35, 12]. Predicting the
camera parameters is analogous to predicting the object
pose from a single image, which is itself a hard problem
in computer vision. It involves a high chance of error and
a computationally expensive training procedure. Further-
more, the error in the pose/camera estimation may lead to
the loss of geometric details in the reconstruction.
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To overcome these limitations, we obtain insight from
spatial transformers [10] and leverage the spatial relation-
ship between the input image and the coarse prediction.
Via the coarse prediction, which portrays an object from
a standard viewpoint and the query points that delineate the
coarse predictions, it is possible to localize the query points
to the local image features. This is done by predicting a
spatial transformation with the aid of global features from
the input image and the coarse prediction as follows.

First, we define a convolutional neural encoder Ππ , pa-
rameterized by weights π, to encode the input image into
local (lxi

π ) and global (zxi
π ) features. Concretely,

Ππ(xi) := {lxi
π , z

xi
π }. (5)

Concurrently, a neural module Kκ encodes the coarse pre-
diction ẏxi

i into global point features. Using global fea-
tures from both the image and the coarse prediction, the
spatial transformer Θ estimates a transformation to local-
ize the query points in the image feature space. Then, lo-
calized query points Q̃i are generated by applying the pre-
dicted transformation to Qi,

Θθ(z
xi
π ,Kκ(ẏ

xi
i ), Qi) := Q̃i | RN×3 → RN×2. (6)

Finally, a bi-linear interpolation scheme B extracts the local
query features fL from the local image features lxi

π ,

fL := B(lxi
π , Q̃i). (7)

Note that the point encoder Kκ and the localization net-
work Θ are designated to ensure an accurate SDF predic-
tion. Therefore, we do not use any camera parameters dur-
ing training and we optimize these neural modules directly
with the SDF prediction objective. This has the following
benefits: (i) additional modules or training to predict the
projection matrix and object pose from a single image are
not required; (ii) reconstructions are free from any pose es-
timation error, which boosts reconstruction accuracy.

3.3. Signed Distance Function Prediction

To estimate the final signed distance ∆i, we combine the
coarse features fC with the localized query features fL and
utilize a multilayer neural function defined as

Ψψ(fC , fL) :=

{
R−, if qi is inside the target surface
R+, otherwise.

(8)

3.4. Loss Functions

We incorporate the chamfer distance (CD) loss and opti-
mize the weights ω to accurately estimate the coarse shape
of the target. More specifically,

LCD(yi, ẏi) =
∑
a∈ẏi

min
b∈yi

||a− b||2 +
∑
b∈yi

min
b∈ẏi

||b− a||2,

(9)

where yi ∈ RN×3 is a set of 3D coordinates collected from
the surface of the object and ẏi ∈ RN×3 is the estimated
coarse shape. To supervise the probabilistic occupancy grid
prediction, we discretize yi to generate the ground-truth oc-
cupancy vyii ∈ 1M×M×M . The neural weight ö is then
optimized by the binary cross-entropy loss,

LV (vi, v̇i) = − 1

|vi|
Σ(γvi log v̇i+(1−γ)(1−vi) log(1−v̇i)),

(10)
where γ is a hyperparameter to control the influence of the
occupied/non-occupied grid points. To optimize the SDF
prediction, we collect a set of query points Qi within dis-
tance δ of the target surface and measure their signed dis-
tance σi. The estimated signed distance is then guided by
optimizing the neural weights ξ, π, θ, and ψ through

LSDF =
1

|Qi|
Σ(σi −∆i)

2. (11)

3.5. Training Details

We incorporate a two-stage procedure to train LIST. In
the first stage, we only focus on the coarse prediction from
the input image xi and optimize the weights ω through LCD.
Then, we freeze ω after convergence to a minimum valida-
tion accuracy and start the second stage for the SDF predic-
tion. During the second stage, we jointly optimize ö, ξ, π, κ,
θ, and ψ through the combined loss L = LV +LSDF. LIST
can also be trained end-to-end by jointly minimizing LCD
with LV and LSDF. However, we found the two-stage train-
ing procedure easier to evaluate and quicker to converge
during experimental evaluation. To reconstruct an object at
test time, we first densely sample a fixed 3D grid of query
points and predict the signed distance for each point. Then,
we use the marching cubes [17] algorithm to extract the tar-
get surface from the grid.

4. Experimental Evaluation
In this section, we describe the details of our experi-

mental setup and results. Additional information, including
implementation details, can be found in the supplementary
material.

4.1. Datasets

Similar to [12] and [19], we utilized the 13-class subset
of the ShapeNet [2] dataset to train LIST. The renderings
and processed meshes from [35] were used as the input view
and target shape. We trained a single model on all 13 cate-
gories. Additionally, we employed the Pix3D [31] dataset to
test LIST on real-world scenarios. The train/test split from
[36] was used to evaluate on all 9 categories of Pix3D. Fol-
lowing [36], we preprocessed the Pix3D target shapes to be
watertight for training.
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To prepare the ground-truth data, we first normalized the
meshes to a unit cube and then sampled 50 k points from
the surface of each object. Next, we displaced the sampled
points with a Normal distribution of zero mean and vary-
ing standard deviation. Lastly, we calculated the signed dis-
tance for every point. To supervise the coarse prediction and
probabilistic occupancy grid estimation, we sub-sampled 4
k points from the surface via farthest point sampling. Fur-
ther details regarding the data preparation strategy can be
found in the supplementary material.

4.2. Baseline Models

For single-view reconstruction via synthetic images, we
compared against the following prior arts: IMNET [3], and
D2IM-Net [12]. IMNET does not require pose estima-
tion. However, the reconstruction only unitizes global fea-
tures from an image. D2IM-Net extracts local features by
aligning the query points to image pixels through render-
ing metadata and it uses a pose estimation module during
inference.

For single-view reconstruction from real-world images,
we evaluated against TMN [22], MGN [20], and IM3D [36].
TMN deforms a template mesh to reconstruct the target ob-
ject. MGN and IM3D perform reconstruction through the
following steps: (i) identify objects in a scene, (ii) estimate
their poses, and (iii) reconstruct each object separately.

4.3. Metrics

We computed commonly used metrics (e.g., CD, inter-
section over union (IoU), and F-score), to evaluate the per-
formance of LIST. The definitions of these metrics can
be found in the supplementary material. Nonetheless,
these traditional metrics do not differentiate between vis-
ible/occluded surfaces since they evaluate the reconstruc-
tion as a whole. To investigate the reconstruction quality of
occluded surfaces, we propose to isolate visible/occluded
surfaces based on the viewpoint of the camera and evalu-
ate them separately using the traditional metrics. A visual
depiction of this new strategy is presented in Fig. 3.

To measure the reconstruction quality of occluded sur-
faces, we first align the predicted/ground-truth meshes to
their projection in the input image using the rendering meta-
data. Then, we assume the camera location as a single
source of light and cast rays onto the mesh surface by ray
casting [24]. Next, we identify the visible/occluded faces
through the ray-mesh intersection and subdivide the identi-
fied faces to separate them. Note that the rendering meta-
data is only used to evaluate the predictions. Finally, we
sample 100 k points from the separated occluded faces to
compute the CDos, and voxelize the sampled points to com-
pute the IoUos and F-Scoreos.

In our implementation, we set the canvas resolution to
4096 × 4096 pixels and generated one ray per pixel from

(a) (b) (c) (d) (e)

Fig. 3: To evaluate the reconstruction quality of occluded surfaces,
we first align the reconstructed shape (b) with the input image (a)
and cast rays onto the surface (c). Next, we identify the (red) faces
that intersect with the rays via ray-mesh intersection and separate
the reconstructed mesh into (d) visible and (e) occluded areas.

the camera location. It is important to note that ray casting
and computing ray-mesh intersections are computationally
demanding tasks. Therefore, to manage time and resources,
we chose five sub-classes (chair, car, plane, sofa, table) to
evaluate occluded surface reconstruction.

4.4. Single-View 3D Reconstruction Evaluation

4.4.1 Single-View 3D Reconstruction from Renderings
of Synthetic Objects

In this experiment we performed single-view 3D recon-
struction on the test set of the ShapeNet dataset. The qual-
itative and quantitative results are displayed in Fig. 4 and
Table 1, respectively. In comparison to the baselines, the
topological structure and occluded geometry recovered by
LIST are considerably better. For example, in row 3 all of
the baselines struggle to reconstruct the tail of the airplane
and they fail to estimate the full length of the wings. In
row 5, none of the baselines were able to recover the oc-
cluded part of the table. In contrast, LIST not only recov-
ers the structure, but it also maintains the gap in between.
Moreover, notice that in row 2 D2IM-Net fails to resolve
the directional view ambiguity and imprints an arm shaped
silhouette on the seat rather than reconstructing the arm.
This indicates a strong influence of the input-view direc-
tion in the reconstructed surface. Conversely, LIST can re-
solve view-directional ambiguity and provide a reconstruc-
tion that is uninfluenced by the input-view direction. As
shown in Table 1, LIST outperforms all the other baseline
models.

We also evaluated LIST against the baselines on oc-
cluded surface recovery by partitioning the reconstructions
using our proposed metric. The results are recorded in Ta-
ble 2. LIST outperformed all the baselines hence show-
casing the superiority of our approach in reconstructing oc-
cluded geometry. Furthermore, LIST provides a stable re-
construction across different views of the same object as
shown in Fig. 5. However, the use of ground-truth rendering
data instead of the estimated data improved the reconstruc-
tion quality. This indicates the source of the problem to be
the sub-optimal prediction of the camera pose. Nonetheless,
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Input IMNET D2IM-Net LIST GT

Fig. 4: A qualitative comparison between LIST and the baseline models using the ShapeNet [2] dataset. Our model recovers significantly
better topological and geometric structure, and the reconstruction is not tainted by the input-view direction. GT denotes the ground-truth
objects.

plane bench cabinet car chair display lamp speaker rifle sofa table phone boat Mean

CD↓

IMNET 18.95 17.34 15.17 10.86 14.72 16.77 83.64 33.41 10.33 13.35 19.32 9.16 15.24 21.40
D2IM-Net 13.25 12.51 9.47 7.83 11.31 15.33 34.08 17.62 8.55 12.34 14.26 8.11 15.73 13.87

LIST 12.13 13.49 7.45 1.04 9.20 13.65 47.31 16.75 7.32 9.92 11.14 7.91 15.78 13.31

IoU↑

IMNET 39.43 44.65 49.25 55.75 51.22 53.34 29.26 50.66 46.43 51.12 41.63 52.79 49.61 47.31
D2IM-Net 45.44 48.45 48.60 53.58 53.13 52.72 32.45 51.75 50.76 53.35 45.17 53.06 52.89 49.33

LIST 49.03 47.57 56.29 65.57 52.70 57.34 24.80 55.34 52.42 56.79 47.90 58.98 54.35 52.23

F-score↑

IMNET 48.87 31.78 44.34 48.78 41.45 48.32 21.23 48.29 52.92 44.12 45.21 51.52 52.31 44.54
D2IM-Net 51.37 36.76 43.49 51.77 45.56 50.82 29.57 51.93 56.25 48.34 47.23 54.84 52.73 47.74

LIST 52.46 36.39 42.51 53.12 46.62 51.78 22.88 52.67 58.24 50.52 49.62 56.89 53.58 48.25

Table 1: Quantitative results using the ShapeNet [2] dataset for various models. The metrics reported are the following: chamfer distance
(CD), intersection over union (IoU), and F-score. The CD values are scaled by 10−3.

LIST is free from any such complication as our framework
does not require any explicit pose estimation.

4.4.2 Single-View 3D Reconstruction from Real Im-
ages

In this experiment we evaluated single-view 3D reconstruc-
tion on the test set of the Pix3D dataset. The qualitative and
quantitative results are provided in Fig. 6 and Table 3, re-
spectively. The baseline results were obtained from the re-
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Input IMNET D2IM-Net LIST

Fig. 5: A qualitative comparison between LIST and the baseline
models using distinct views of the same object. Not only can our
model both maintain better topological structure and geometric de-
tails, but it also provides a reconstruction that is stable across dif-
ferent views of the object.

plane car chair sofa table Mean

CDos ↓

IMNET 24.11 13.34 15.47 24.34 26.86 20.82
D2IM-Net 26.23 13.44 13.59 20.45 23.45 19.43

LIST 18.93 6.57 12.66 18.44 21.76 15.67

IoUos ↑

IMNET 45.63 46.87 38.32 45.87 39.02 43.14
D2IM-Net 48.44 50.33 49.43 50.32 42.22 48.14

LIST 53.15 55.37 51.25 55.22 43.17 51.63

Fos-score↑

IMNET 40.93 46.94 44.43 46.84 45.64 44.95
D2IM-Net 47.21 50.73 48.89 49.15 47.72 48.73

LIST 50.33 52.55 49.34 51.02 48.11 50.27

Table 2: A quantitative evaluation of the occluded surfaces of re-
constructed synthetic objects via our evaluation strategy. The met-
rics reported are the following: chamfer distance (CDos), intersec-
tion over union (IoUos), and Fos-score. The CDos values are scaled
by 10−3.

spective papers. Compared to other methods our approach
generates the most precise 3D shapes, which results in the
lowest average CD and F-score. Notice that in Fig. 6, rows
3 and 4, only LIST can accurately recover the back and legs
of the chair. Additionally, LIST reconstructions provide a
smooth surface, precise topology, and fine geometric de-
tails.

4.5. Ablation Study

4.5.1 Setup

To investigate the impact of each individual component in
our single-view 3D reconstruction model, we performed an

Input MGN IM3D LIST GT

Fig. 6: Single-view reconstruction using real-world images from
the Pix3D [31] test set (best viewed zoomed in).

Input Base OL 1E 2D Final

Fig. 7: Qualitative results obtained from the ablation study using
different network settings.

ablation study with the following network options.

• Base: A version of LIST that predicts the signed dis-
tance utilizing only global image features and coarse
predictions.

• OL: An improved Base version that uses the proba-
bilistic occupancy from the coarse prediction and oc-
cupancy loss.

• 1E: A version of LIST where local and global im-
age features from the same encoder are used for both
coarse prediction and localized query feature extrac-
tion.

• 2D: LIST with two separate decoders to estimate the
signed distance from local and global query features.
The final prediction is obtained by adding both estima-
tions.

• EC: We train LIST without the localization module
and use a separate pose estimation module similar to
[12] to predict the camera parameters. The estimated

9327



bed bookcase chair desk sofa table tool wardrobe misc Mean

CD↓

TMN 7.78 5.93 6.86 7.08 4.25 17.42 4.13 4.09 23.68 9.03
MGN 5.99 6.56 5.32 5.93 3.36 14.19 3.12 3.83 26.93 8.36
IM3D 4.11 3.96 5.45 7.85 5.61 11.73 2.39 4.31 24.65 6.72
LIST 5.81 1.74 6.11 3.87 2.08 1.68 1.99 0.80 5.16 4.36

IoU↑ LIST 45.61 39.54 41.15 59.68 67.34 49.12 27.82 43.87 34.72 46.77
F-score↑ LIST 58.18 67.22 60.01 78.34 70.14 69.19 46.48 75.70 39.14 65.66

Table 3: A quantitative evaluation of the occluded surfaces of reconstructed real-world objects using our evaluation strategy. The metrics
reported are the following: chamfer distance (CDos), intersection over union (IoUos), and Fos-score. The CDos values are scaled by 10−3.

Base OL 1E 2D EC Final
CD↓ 11.35 9.64 10.72 8.48 7.89 7.32
IoU↑ 51.34 53.95 51.40 55.23 55.10 56.83

F-score↑ 43.11 48.06 45.92 51.37 51.33 52.75

Table 4: Quantitative results obtained from the ablation study us-
ing different network settings.

camera parameters were used to transform the query
points during inference.

To maximize limited computational resources, we focused
on the most diverse five sub-classes (chair, car, plane, sofa,
table) of the ShapeNet dataset for this ablation study. The
qualitative and quantitative results of the experiments are
recorded in Fig. 7 and Table 4 respectively.

4.5.2 Discussion

In the ablation experiments the Base version was able to
recover global topology, but it lacked local geometry. As
shown in Fig 7, the probabilistic occupancy and optimiza-
tion loss helped recover some details in the OL version.
Conversely, the performance decreased slightly after the in-
clusion of local details in the single-encoder version (1E).
We hypothesize that the task of query point localization,
while estimating the coarse prediction, overloads the en-
coder and hinders meaningful feature extraction for the
signed distance prediction. To overcome this issue, we used
a separate encoder for the coarse prediction and query point
localization. The dual-decoder version (2D), performed
similar to the final model. Nonetheless, we found that the
geometric details had a thicker reconstruction than the tar-
get during qualitative evaluation. This motivated the fusion
of features rather than predictions in the final version.

We also ablated the localization module using estimated
camera parameters during training and inference. As shown
in Table 4, the final version of LIST outscores the ver-
sion employing estimated camera (EC) parameters. This
indicates that our localization module with an SDF predic-
tion objective is more suitable for single-view reconstruc-
tion compared to a camera pose estimation sub-module.

More importantly, this removes the requirement for pixel-
wise alignment through camera parameters for local feature
extraction. Note that the EC reconstruction appears quali-
tatively similar to the others and was therefore omitted in
Fig. 7.

4.6. Limitations and Future Directions

Although LIST achieves state-of-the-art performance on
single-view 3D reconstruction, there are some limitations.
For example, the model may struggle with very small struc-
tures. We speculate that this is due to the coarse pre-
dictor failing to provide a good estimation of such struc-
tures. Please see the supplementary material for examples
of failed reconstruction results. Another shortcoming is the
need for a clear image background. LIST can reconstruct
targets from real-world images, yet it requires an unclut-
tered background to do this. In the future, we will work
towards resolving these issues.

5. Conclusion

In this paper we introduced LIST, a network that im-
plicitly learns how to reconstruct a 3D object from a sin-
gle image. Our approach does not assume weak perspec-
tive projection, nor does it require pose estimation or ren-
dering data. We achieved state-of-the-art performance on
single-view reconstruction from renderings of synthetic ob-
jects. Furthermore, we demonstrated domain transferabil-
ity of our model by recovering 3D surfaces from images of
real-world objects. We believe our approach could be bene-
ficial for other problems such as object pose estimation and
novel view synthesis.
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