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Abstract

Estimating the transferability of publicly available pre-
trained models to a target task has assumed an important
place for transfer learning tasks in recent years. Exist-
ing efforts propose metrics that allow a user to choose one
model from a pool of pre-trained models without having to
fine-tune each model individually and identify one explicitly.
With the growth in the number of available pre-trained mod-
els and the popularity of model ensembles, it also becomes
essential to study the transferability of multiple-source mod-
els for a given target task. The few existing efforts study
transferability in such multi-source ensemble settings using
just the outputs of the classification layer and neglect pos-
sible domain or task mismatch. Moreover, they overlook
the most important factor while selecting the source mod-
els, viz., the cohesiveness factor between them, which can
impact the performance and confidence in the prediction of
the ensemble. To address these gaps, we propose a novel
Optimal tranSport-based suBmOdular tRaNsferability met-
ric (OSBORN) to estimate the transferability of an ensem-
ble of models to a downstream task. OSBORN collectively
accounts for image domain difference, task difference, and
cohesiveness of models in the ensemble to provide reliable
estimates of transferability. We gauge the performance of
OSBORN on both image classification and semantic seg-
mentation tasks. Our setup includes 28 source datasets, 11
target datasets, 5 model architectures, and 2 pre-training
methods. We benchmark our method against current state-
of-the-art metrics MS-LEEP and E-LEEP, and outperform
them consistently using the proposed approach.

1. Introduction
In computer vision, transfer learning is a go-to strategy to

train Deep Neural Networks (DNNs) on newer domains and

datasets across tasks such as image classification [30, 21],
image segmentation [44, 60] and object detection [16, 42].
This widespread usage is due to the easy availability of
a large pool of open-sourced pre-trained models (trained
on large-scale datasets such as ImageNet [31, 3]), which,
when fine-tuned, achieve faster convergence and better per-
formance than training from scratch. However, every time
a user wants to employ transfer learning, the question that
has increasingly grown relevant with an increased number
of source models is: “Which combination of dataset and
architecture should I pick to fine-tune to achieve the best
performance on my target dataset?”. To solve this, we need
a tool that helps us choose a source or set of source models,
which require minimal fine-tuning and achieves maximal
performance.

Transferability estimation (TE) metrics have been pro-
posed in recent years to tackle this problem [48, 36, 58, 47,
39]. With these metrics, a particular source model can be se-
lected without conducting expensive fine-tuning of all avail-
able source models on the target training set. Most efforts
in this direction are, however limited by their capability of
selecting only a single source model, thus restricting their
use in an ensemble learning setting. There has been only
one work so far [1] which extends an existing single-source
transferability estimation method [36] to an ensemble set-
ting. While this work showed promising results, it did not
consider the similarity between source and target datasets
in the latent representation space, or account for the rela-
tionships between individual models in the ensemble. This
problem space remains nascent at this time, necessitating
more efforts to estimate transferability reliably in different
conditions.

Ensemble models have been popular for a few decades
now in machine learning [14, 7, 51]. Ensemble models are
known to increase task accuracy, decrease overall predictive
variance and increase robustness against out-of-distribution
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Figure 1. Illustration of the objective and problem setting of our proposed metric. (Trivia: OSBORN is also the main antagonist in
the Spider-Man movie (2002), hence the emoji.)

data samples [15]. Recent efforts have shown the usefulness
of ensembles of pre-trained models [52], especially consid-
ering the widespread availability of pre-trained models in
the community [41]. The problem of estimating transfer-
ability for a model ensemble from a large source model pool
becomes even more relevant in this context.

In this work, we introduce a novel transferability esti-
mation metric specifically designed for ensemble selection
called Optimal Transport-based Submodular Transferability
metric (OSBORN). As stated earlier, a recent effort in this
direction [1] showed promising results for such a score, but
focused on individual model’s performance (via the classi-
fier’s outputs) and did not consider the feature (latent rep-
resentation) space mismatch, or how these models interact
with each other in the ensemble. To address this, OSBORN
measures the latent space mismatch between the source and
the target datasets (domain difference) in addition to the
mismatch in the classifier’s outputs (task difference). Also,
to account for the interaction between models in the ensem-
ble, we introduce a novel model cohesion term, which cap-
tures the mutual cooperation between models towards form-
ing an ensemble. Cohesion is required to ensure that indi-
vidual models in an ensemble are in agreement with each
other in terms of predictions (and not voting out each other).
Thus, in this work, we propose a domain, task and cohesion-
aware transferability estimator for ensemble selection from
a source pool of multiple models.

Beyond bringing the abovementioned factors into trans-
ferability estimation for ensembles, we show that the pro-
posed score can be viewed as a submodular set function [4].
This allows us to follow a greedy maximization strategy,
which is known to provide a high-quality solution for the
problem based on well-known theoretical guarantees [34].
We thus select cohesive and closely related models for a par-
ticular target dataset. To evaluate our metric, we conduct
extensive experiments using 28 source datasets, 11 target
datasets, and 5 model architectures. In downstream tasks,

we consider fully-supervised pre-training-based image clas-
sification, self-supervised pre-training-based image classifi-
cation, semantic segmentation as well as domain adaptation.
Table 1 presents an overview of our experiment breadth, as
compared to other recent efforts on this problem. In particu-
lar, to the best of our knowledge, we are the first to perform
transferability estimation of ensembles for image classifica-
tion and domain adaptation tasks.

To summarize, we make the following contributions: (1)
We introduce a novel transferability estimation metric for
ensemble selection that considers domain similarity, task
similarity and inter-model cohesion in its design; (2) We
show that viewing the proposed metric as a submodular
set function allows us to use a simple greedy maximiza-
tion strategy to select a source model ensemble for a given
target dataset; (3) We study the performance of our met-
ric across a wide range of downstream tasks and model
pools;(4) We evaluate the reliability of our metric using
different correlation metrics in our studies, and also carry
out additional analysis and ablation studies to study its use-
fulness. We outperform earlier methods by a margin of
58.62%, 66.06%, and 96.36% in terms of Pearson Correla-
tion Coefficient (PCC), Kendall τ (KT) [25] and Weighted
Kendall τ (WKT) [50] for the image classification task. 1

2. Related Work
Transfer Learning: Over the years, transfer learning has
been applied and explored across various fields [10, 33,
2, 5], as well as across datasets, model architectures, and
pre-training strategies [32, 12, 20]. These efforts have in-
cluded the study of interesting and practical questions such
as which particular layers are more transferable [57] or esti-
mating the correlation between pre-training and fine-tuning
performance [27]. Beyond finetuning of source models to
target datasets, task transfer methods [59, 11] have also

1Project page: https://vimalkb007.github.io/OSBORN/
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Single Source TE

Classification Segmentation DA Classification

# LEEP [36] ✓ × ×
# LogME [58] ✓ × ×
# OTCE [47] × × ✓

Multi Source TE

# MS-LEEP [1] × ✓ ×
# Ours ✓ ✓ ✓

Table 1. Experimental settings studied by different methods in
single-source TE and multi-source TE settings (DA: Domain
Adaptation). We note the wide range of our experimental settings
when compared to earlier work.

studied relationships between visual tasks such as semantic
segmentation, depth prediction and vanishing point predic-
tion, or used attribution maps to relate such tasks [45, 46].
In contrast to the aforementioned methods, the objective of
our work is dataset transferability estimation.

Transferability Estimation Metrics (Single Source): As
stated earlier, gauging transferability reduces the effort in
finding an optimal source model for a particular target
dataset because it averts the expensive fine-tuning process.
In recent years, significant efforts have been made in this
problem space, considering the relevance of this problem to
practitioners. The H-Score was proposed [6] to measure the
usefulness (in terms of discriminativeness) of pre-trained
source models for the target task. While this method shows
promising results as a pioneer work in this field, it misses
considering the scenarios where the source and target data
have different distributions. Subsequently, NCE [48], and
LEEP [36] developed methods that used the classifier out-
puts of pre-trained source models when the target dataset is
forward-propagated through the model to estimate the log-
likelihood of the target dataset. NCE largely focused on
estimating transferability in scenarios where the source and
target tasks share the same input data (e.g., face recogni-
tion and facial attribute classification). Subsequent methods
such as LogME [58] also showed that likelihood methods
might be prone to over-fitting. To tackle this, LogME [58]
estimated the maximum value of label evidence (instead of
maximum likelihood) given the feature set extracted by the
pre-trained source models. Considering the fact that pre-
vious methods largely relied on classifier outputs and their
sub-optimal performance in practical scenarios like cross-
domain settings, OTCE [47] proposed an optimal transport
framework to compute domain difference (based on fea-
ture space) and task difference (based on label space) to
estimate transferability. This method leveraged the source
model’s latent representations in addition to classifier out-
puts with no explicit assumptions on the source and target
datasets. All the above works are, however focused on esti-
mating transferability from a single source model to a target

dataset.
Transferability Estimation Metrics (Multi-Source En-
sembles): Agostinelli et al[1] recently proposed the first
work on extending transferability estimation to select
source model ensembles in [1], specifically focused on se-
mantic segmentation. This work extends LEEP [36] to en-
sembles, and shows promising results in the considered set-
tings. Our work builds on this effort in multiple ways: (i)
instead of solely relying on classifier outputs for estimating
transferability [36, 1, 48], we also consider the domain mis-
match in the latent feature representation space; (ii) beyond
looking at the individual model’s outputs in an ensemble,
we also consider the interactions and correlation between
the model outputs; (iii) we make no assumptions on the
source and target data distributions; and (iv) while [1] fo-
cused on segmentation, we show our method’s results on
classification, segmentation and domain adaptation tasks.
We also show results on multiple pre-training strategies
while previous works [36, 58, 48, 47] mostly focus on fully-
supervised pre-training strategies. Our proposed metric can
also be viewed as a submodular function, which allows us
to leverage ranking-based greedy optimization strategies to
make it efficient in practice.
Ensemble Learning. Learning ensembles of models has
been popular in machine learning to increase overall task
performance, decrease prediction variance, prevent over-
fitting, and increase out-of-distribution robustness [7, 18,
56, 38]. More recent efforts in training ensembles of neural
network models have focused on speeding up their train-
ing [49, 52], leveraging a single model’s capacity to train
multiple subnetworks whose predictions are ensembled to
improve robustness [19], or studying mixture-of-experts
paradigms which bring together thousands of subnetworks
for large language models [43]. We clarify that our work
focuses rather on selecting model ensembles from a larger
source model pool via estimating transferability without ex-
plicitly training ensembles themselves. One can view our
work as a step before ensemble learning when there is a
larger model pool and only few models can be ensembled.
As stated in [1], this setting is commonly encountered by a
practitioner in the real-world across application domains.

3. Background and Preliminaries
Notations: Given M source datasets, we denote the rth

source dataset as Dsr={(xi
sr , y

i
sr )}n

r

i=1 ∼ Psr (x, y) and
target dataset as Dt={(xi

t, y
i
t)}mi=1 ∼ Pt(x, y) where,

xi
sr ∈ Xsr , x

i
t ∈ Xt, yisr ∈ Ysr , and yit ∈ Yt. Note that

we do not restrict the label spaces P (Ysr ) and P (Yt) to
span the same category set. We base our study on a domain-
agnostic and task-agnostic setting.
Transferability Estimation for Ensembles: For every
source dataset Dsr , we assume there exists a pre-trained
model on that dataset denoted by (θsr , hsr ) where θ is the
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feature extractor, and h is the classifier head. M represents
the collection of such source models. As stated earlier, we
focus on a multiple source model selection setting (i.e. en-
sembles) where our metric provides a transferability esti-
mation (TE) score αMe→t for a given subset of models Me

from the source pool M . When correlated to the accuracy
AMe→t (i.e. fine-tuned accuracy of the ensemble on the
target test set), this TE score provides the reliability of the
transferability estimate. Following [1], we calculate the en-
semble accuracy by fine-tuning individual models in subset
Me (both θ and h) on the target train set and averaging their
predictions on the target test set.
Submodularity in TE for Ensembles. The main idea
of TE involves choosing optimal source models for a
given target dataset. Apart from performance & com-
putation trade-offs, a crucial motivation to select a sub-
set of models is to mitigate risk of negative transfer.

Figure 2. Test accura-
cies on Caltech101 with
varying subsets of models
(chosen randomly)

Fig 2 herein shows that opting for
all models in the ensemble could
lead to a decrease in overall per-
formance compared to selecting a
smaller set of models. This can
be due to the detrimental impact of
weak or non-transferable models in
the ensemble, highlighting the im-
portance of carefully combining models to ensure optimal
performance. Further, finding an optimal ensemble for a
given target dataset requires checking all possible combina-
tions of different source models for a particular ensemble
size. This exhaustive process is an NP-hard problem. In
this paper, we propose a submodular approach to rank the
available models in the source pool according to the perfor-
mance gain they would yield if added to the subset pool of
the ensemble and select the top k models, where k is the
required size of the ensemble. While submodular subset
selection is popular in different machine learning settings
[4, 24, 53], to the best of our knowledge, this is the first
such use for transferability estimation. To this end, we first
formally define submodularity below.

Definition 3.1. Let Ω be a set and P (Ω) be the power
set of Ω, then a submodular function is a set function
f : P (Ω) → R. The submodular function follows the prop-
erty of diminishing returns, i.e. adding a new element to
a smaller set produces a larger increase in f compared to
a larger set. Mathematically, if for all X,Y ⊆ Ω, where
X ⊆ Y and for all v ∈ Ω \ Y , the property follows:

f(X + v)− f(X) ≥ f(Y + v)− f(Y ) (1)

A key benefit of posing a problem as one of submodular
subset selection is that a greedy approach can be leveraged
to efficiently identify a solution of required subset size that
is reasonably close to the optimal solution. Nemhauser [34]
showed that the quality of the subset chosen greedily cannot

be worse than 1 − e−1 of the optimal value. This makes
submodularity an attractive approach for usage in the field
of TE for ensembles as we can rank the models in the source
pool and select an ensemble of desired size. Further details
on how to greedily select the models are discussed later in
this paper.
Evaluation Criteria. As stated earlier, the reliability of
a TE method is obtained by measuring the correlation be-
tween αMe→t and AMe→t. Previous works [58, 36, 1, 47,
48] measure this correlation using different techniques such
as Pearson Correlation Coefficient (PCC), Kendall τ (KT)
[25] and Weighted Kendall τ (WKT) [50]. We report re-
sults for all these correlation measures to be comprehensive
in our analysis.

4. OSBORN: Transferability Estimation Met-
ric for Model Ensemble Selection

In order to design a reliable transferability estimation
approach for model ensembles, we propose the Optimal
Transport-based Submodular Transferability metric (OS-
BORN), which considers three factors: domain difference,
task difference, and inter-model cohesion. Inspired by ear-
lier efforts on single-source transferability estimation [47],
we consider both classifier output and distance in the latent
representation space in our approach. Besides, since our
focus is on model ensembles, we consider inter-model re-
lationships in this metric. We now describe each of these
quantities.
Minimize Domain Difference (WD). In order to minimize
the latent space mismatch between the source and target
datasets, similar to [47], we choose Wasserstein distance
and Optimal Transport (OT) to compute this mismatch ow-
ing to its advantages in capturing the geometries of under-
lying data. Mathematically, the p-Wasserstein distance is
given as follows:

Wp (β, γ) =

(
inf

π∈Π(β,γ)

∫
D(x, z)pdπ(x, z)

)1/p

(2)

where, p ≥ 1, β, γ are continuous or discrete random
variables in a complete and separable space S, D(., .) :
S × S → R+ is a distance or a cost function between two
points x and z, π(β, γ) is the coupling matrix which can
also be understood as the joint probability distributions with
marginals β and γ. In particular, in this work, we use the 1-
Wasserstein distance, also called the Earth Mover Distance,
to calculate the domain difference between source and tar-
get latents as:

WD (θs, xt) =

m,n∑
i,j=1

||θs(xi
s)− θs(x

j
t )||22π∗

ij , (3)

where || · − · ||22 is the distance or cost metric, π∗ is the
optimal coupling matrix of size m × n obtained by solv-
ing the optimal transport (OT) problem using the Sinkhorn
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algorithm [9, 47]. Note that θs(.) is the feature extractor be-
longing to the source model. Intuitively, if the latent space
of the source dataset is closely aligned with that of the target
dataset, it is easier for the model to transfer.

Minimize Task Difference (WT ). In order to measure the
difference between a source task and the given target task,
we use the mismatch between the model/classifier’s outputs
for source and target data forward-propagated through the
source model. We use the conditional entropy (CE) of the
predicted labels ŷt ∈ Ys of the target dataset samples given
their ground truth labels yt ∈ Yt. The predicted labels
are obtained by forward-propagating the target samples xt

through the corresponding source model θs. Let Ŷt be a ran-
dom variable that takes values in the range of Ys; and Yt be
a random variable that takes values in the range of Yt, then
WT can be calculated as:

WT (θs, xt) = H(Ŷt|Yt)

= −
∑

ŷt∈Ys

∑
yt∈Yt

P̂ (ŷt, yt) log
P̂ (ŷt, yt)

P̂ (yt)

(4)

where P̂ (ŷt, yt) is the joint distribution of predicted and
ground truth target labels and P̂ (yt) is the marginal dis-
tribution of the ground truth labels. These quantities can
be easily computed using the optimal coupling matrix (ob-
tained in Eqn 3) as follows:

P̂ (ŷt, yt) =
∑

i,j:ŷi
t=ŷt,y

j
t=yt

π∗
ij , (5)

The marginal distribution can be obtained from the joint dis-
tribution as follows:

P̂ (yt) =
∑

ŷt∈Ys

P̂ (ŷt, yt), (6)

Intuitively, similar tasks will result in a low WT value.
Using WT i.e CE alone represents empirical transferabil-
ity according to [48]. However, in [47], it is experimen-
tally shown that using only CE is insufficient in a domain-
agnostic setting, which motivates us to combine this with
WD to account for feature representation space mismatch.

Minimize Model Disagreement (Cohesiveness WC). For an
ensemble, it is important that the individual models re-
inforce the predictions of each other and have less dis-
agreement amongst themselves to have overall good perfor-
mance. To understand the cohesiveness of an ensemble, we
use Conditional Entropy to capture the amount of disagree-
ment between models in the subset of models Me. Mathe-
matically, we represent WC as:

WC (Me, xt) =
∑

mi,mj∈Me

H(mi(xt)|mj(xt)) (7)

Figure 3. Overview of our method for estimating the transferability
for ensembles.

Intuitively, we want a high cohesiveness and less disagree-
ment among the models to reinforce the ensemble’s predic-
tive belief, i.e. a low WC value, and to avoid scenarios
where models vote out each other’s predictions.

Bringing the quantities together, we define OSBORN for
a subset of models Me of our source pool M as follows. Our
metric collectively accounts for domain difference, task dif-
ference and model cohesion. Ref. Fig. 3 for the overview.

OSBORN =
∑

mi∈Me

[WD(mi, xt) +WT (mi, xt)]+

WC (Me, xt)

(8)

A model ensemble that obtains a low OSBORN score will
have better transferability to a target dataset. Our experi-
ments show that a simple combination of these three quan-
tities (with no weighting co-efficients) outperforms existing
methods in all our experiments. In our ablation studies and
analysis, we study the contribution of each OSBORN com-
ponent as well as the effect of weighting each component
differently.

Submodular Subset Selection in OSBORN. As stated ear-
lier, we show that the proposed OSBORN metric translates
to a submodular optimization problem, which allows us
to rank and pick models efficiently from the source pool.
While the aforementioned quantities were written from a
minimization perspective (for clarity and ease of under-
standing), to pose this as a submodular maximization prob-
lem, we consider the corresponding scoring function to be
maximized as:
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f (Me) = −
∑

mi∈Me

[WD(mi, xt) +WT (mi, xt)]−

WC (Me, xt)

(9)

The value of our set function is a transferability estimate
designed such that it is highly correlated to the fine-tune ac-
curacy (see Table 3 & 4), thus enabling us to select models
without expensive fine-tuning.

Theorem 4.1. The scoring function f (X), as defined in
Equation 9, is a submodular function.

Proof. Let X1 and X2 be two sets such that X1 ⊆ X2 ⊆
M . If we consider an unselected model instance v ∈
M\X2. The gain in the score is obtained by appending v to
the set X1, and this is calculated as:

f (X1 ∪ v)− f (X1) = − [WD (v, xt) +WT (v, xt)]

−
∑

mi∈X1

H (mi (xt) | v (xt))

−
∑

mj∈X1

H (v (xt) | mj (xt))

(10)

Similarly, the gain obtained by set X2 is given by:

f (X2 ∪ v)− f (X2) = − [WD (v, xt) +WT (v, xt)]

−
∑

mi∈X2

H (mi (xt) | v (xt))

−
∑

mj∈X2

H (v (xt) | mj (xt))

(11)

As we have X1 ⊆ X2, the number of terms in the summa-
tion of Equation 11 will be greater than or equal to that of
Equation 10. Since entropy is always a non-negative value,
we can say that

−
∑

mi∈X1

H (mi (xt) | v (xt))−
∑

mj∈X1

H (v (xt) | mj (xt)) ≥

−
∑

mi∈X2

H (mi (xt) | v (xt))−
∑

mj∈X2

H (v (xt) | mj (xt))

This implies that

f (X1 ∪ v)− f (X1) ≥ f (X2 ∪ v)− f (X2) (12)

We can see that Equation 12 satisfies the condition in
Definition 3.1. This completes the proof.

Submodular Optimization using Greedy Maximization.
Since our set function f(Me) (mentioned in Eq. 9) is sub-
modular, it exhibits monotonicity, i.e. the set with maxi-
mum gain is always the entire source pool M . However,
since we want to select a subset of models i.e. ensemble set
from the source pool M , we impose a cardinality constraint.

Formally, we aim to select the set Me of size at most k that
maximizes the gain:

max
Me:|Me|=k

f(Me) (13)

This problem is however NP-hard, but we use the greedy
maximization strategy to find a near-optimal set of mod-
els Me for the target dataset. In practice, we pre-calculate
pair-wise domain difference WD and task difference WT

between each source and target datasets. Then, we calculate
the model cohesion term WC for adding each model mi to
the set of already selected models Me. Using these three
quantities pertaining to mi, we calculate the gain achieved
by adding it to the set Me as f (Me ∪mi) − f (Me) and
greedily pick the model with the highest gain and add it
to the set Me. We continue this iteration till we achieve
the ensemble set size of k. Once the target samples are
forward-propagated through the source models, the quan-
tities in our metric can be computed independently for each
source model, thus making our overall computations paral-
lelizable.

Considering M∗
e as the optimal ensemble set, it is well-

known from [34] that such a greedy approach has a perfor-
mance guarantee of at least 63% of the optimal ensemble
set, i.e.

f (Me) ≥
(
1− 1

e

)
f (M∗

e ) (14)

In practice, we observe that we see that the avg. accuracy
of the ensemble selected by greedy (76.315%) in a fully-
supervised setting is, 95.56% of the avg. accuracy of the
optimal ensemble(79.857%). Similarly for self-supervised
setting, the avg. accuracy of the ensemble selected by
greedy (79.857%) is, 93.50% of the avg. accuracy of the
optimal ensemble(84.962%), as shown in Table 2. More
details on the experiments are presented in Sec 5.

Ensemble Accuracy (Fully Supervised)
Target Dataset Greedy Optimal

Oxford102Flowers 90.720 91.697
Caltech101 68.533 75.333

StanfordCars 69.692 72.540

Average 76.315 79.857

Ensemble Accuracy (Self Supervised)

Oxford102Flowers 86.935 95.604
Caltech101 88.800 90.000

StanfordCars 62.604 69.282

Average 79.446 84.962

Table 2. Comparison of the target test set accuracies achieved by
fine-tuned ensembles selected using the greedy optimization of
OSBORN vs the optimal ensembles. We clearly observe that our
approach empirically gives significantly stronger performances
than the theoretical guarantee.
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5. Experiments and Results
Experimental Setup. We follow the same experimental
setup as the previous work on source model ensemble se-
lection [1] to evaluate our transferability metric in the mul-
tiple source model setting. Given a total of M models in the
source pool, our objective is to select an ensemble model by
choosing k models from the source pool. We follow [1] in
setting k to 3 for fairness of comparison. We also conducted
a study to evaluate this on the Oxford-IIIT Pets dataset, and
found that maximum accuracy is gained for an ensemble of
size 3 (see Fig 4), which further reinforces our choice for
conducting experiments.
Classification Datasets. For the classification tasks, we
consider 11 widely-used datasets including CIFAR-10 [29],
CIFAR-100 [29], Caltech-101 [13], Stanford Cars [28], Ox-
ford 102 Flowers [37], Oxford-IIIT Pets [40], Imagenette
[22], CUB200 [54], FashionMNIST [55], SVHN [35], Stan-
ford Dogs [26]. These datasets are popularly used in many
transfer learning tasks. Out of these 11 datasets, we set
Caltech-101 [13], Stanford Cars [28], Oxford 102 Flowers
[37], Oxford-IIIT Pets [40], Stanford Dogs [26] as our tar-
get datasets and estimate transferability using OSBORN.
Model Architectures (Fully-supervised). For this setting,
we consider 2 source model architectures ResNet-101 [21]
and DenseNet-201 [23], keeping in mind the model diver-
sity and capacity. We take these models from the open-
sourced PyTorch Library [41]. Initially, both the models are
initialized with the fully-supervised ImageNet weights [31],
and then we train them on the 11 classification datasets to
prepare our source model pool.
Model Architectures (Self-supervised). For this setting,
we consider ResNet-50 [21] as our source model architec-
ture but initialize it with weights obtained from two self-
supervised pre-training strategies, namely BYOL [17] and
MoCov2 [8]. We have two variants of ResNet-50 models to
produce enough diversity. And as done in the previous case,
we train these two models on the 11 classification datasets
to prepare our source model pool. We use multiple pre-
trained SSL models to build our pool. However, finetuning
is done in a fully-supervised fashion. Our motivation here
was to study if OSBORN can estimate transferability reli-
ably across multiple pre-training settings.
Training Setup for Source Models (Classification Tasks).
For all classification tasks, we train the source models using
a cross-entropy loss and optimize it using Stochastic Gradi-
ent Descent (SGD) with momentum. Given these details,
the most important hyperparameters are learning rate, batch
size and weight decay. We train the models with a grid
search of learning rate in (1e−1, 1e−2, 1e−3, 1e−4), batch
size in (32, 64, 128), and weight decay in (1e−3, 1e−4,
1e−5, 1e−6, 0) to pick the best hyperparameters. All our
experiments are written in PyTorch and are conducted on
a single Tesla V-100 GPU. For the fully-supervised pre-

trained setting, we initialize the models with ImageNet
weights. In the case of a self-supervised pre-trained setting,
we initialize the models using BYOL or MoCov2 (on Ima-
geNet) weights. For our experiments on the multi-domain
DomainNet dataset, we initialize our models with ImageNet
weights.

Training Setup for Source Models (Semantic Segmen-
tation Tasks). We train the source models using a pixel-
wise cross-entropy loss and optimize it using Stochastic
Gradient Descent (SGD) with momentum. The most im-
portant hyperparameters herein are learning rate, batch size
and weight decay. We train the models with a grid search
of learning rate in (1e−1, 1e−2, 1e−3, 1e−4), batch size
in (32, 64, 128), and weight decay in (1e−3, 1e−4, 1e−5,
1e−6, 0), and pick the best hyperparameters. All these ex-
periments are also written in PyTorch and conducted on a
single Tesla V-100 GPU. We initialize source models using
the COCO pre-trained weights.

Implementation of Source Models and Baselines. We use
open-source models available via the PyTorch Library for
classification and semantic segmentation tasks. We use the
PyTorch Lightning Library to obtain model weights for a
self-supervised pre-training setting. We use the code re-
leased by the respective papers for calculating OTCE [47],
MS-LEEP, E-LEEP, IoU-EEP and SoftIoU-EEP [1] scores.

Figure 4. Test accuracy on the Oxford-
IIIT Pets dataset compared to the en-
semble size. We observed a similar
trend across other datasets as well.

Evaluating
Ensemble Per-
formance. We
follow the pro-
tocol in [1] for
computing ground
truth accuracies
of ensembles. We
finetune (both
feature extractor
and classifier of)
all the source
models present
in the ensemble using the target training set. Then, we
individually make predictions using the source models on
the target test set and average them to get the final ensemble
prediction. We note that no target-trained models are in
the source pool. We compare this final prediction with the
ground-truth label and calculate the classification accuracy.
Note that we need to fine-tune all source models only
once and can re-use their predictions on the test set across
all ensemble combinations. As stated earlier, we report
Pearson Correlation Coefficient (PCC), Kendall τ (KT) and
Weighted Kendall τ (WKT) in our results.

Evaluation on Fully-Supervised Pre-Trained Models.
We herein compare our OSBORN with the baseline metrics,
i.e. MS-LEEP and E-LEEP, in terms of three correlation
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Weighted Kendall’s τ Kendall’s τ PearsonTarget Dataset MS E Ours MS E Ours MS E Ours

Oxford102Flowers 0.086 -0.019 0.616 0.138 0.074 0.400 0.230 0.164 0.456
OxfordIIITPets 0.414 0.393 0.558 0.346 0.326 0.453 0.504 0.500 0.666
StanfordDogs 0.326 0.323 0.477 0.244 0.242 0.427 0.398 0.407 0.604
Caltech101 0.435 0.409 0.565 0.240 0.231 0.335 0.353 0.341 0.486

StanfordCars 0.115 0.018 0.486 0.137 0.071 0.368 0.256 0.163 0.549

Average 0.275 0.225 0.540 0.221 0.190 0.367 0.348 0.315 0.552

Table 3. Comparison of different ensemble transferability estimation metrics for fully-supervised models (classification tasks). The best
results are indicated in bold. Note: MS: MS-LEEP, E: E-LEEP, Ours: OSBORN.

Figure 5. Comparison of OSBORN over 5 target datasets interms
of Weighted Kendalls’s τ . We can see that our metric constantly
outperforms the baselines across every dataset by a large margin.

metrics, WKT, KT, and PCC2. The correlation values are re-
ported in Table 3. Averaged across five target datasets, OS-
BORN improves 96.36% over MS-LEEP and 140% over E-
LEEP in terms of WKT; improves 66.06% over MS-LEEP
and 93.16% over E-LEEP in terms of KT; improves 58.62%
over MS-LEEP and 75.23% over E-LEEP in terms of PCC.
We can visually see the overall performance of our metric
outperforming the existing baselines significantly in Fig 5.

Evaluation on Self-Supervised Pre-Trained Models. We
compare the performance of our method with the baseline
methods, i.e. MS-LEEP and E-LEEP. We present the exper-
imental results regarding different correlation coefficients
in Table 4. Note that we use the Frobenius norm regu-
larizer while solving the OT problem because it gave us
better results when compared to using other regularizers.
In the appendix, we report results without any regularizers
and compare them with the Frobenius norm variant. Ta-
ble 4 shows that, averaged across five target datasets, OS-
BORN improves 268.69% over MS-LEEP and 231.82%
over E-LEEP in terms of WKT; improves 442.10% over

2Our baselines MS-LEEP and E-LEEP use custom proprietary model
architectures that are not publicly available. We hence followed the au-
thors’ code and guidelines in using their method on the models used in
our work, and picked the best-performing hyperparameters for the results
corresponding to their baselines shown in this work.

MS-LEEP and 379.07% over E-LEEP in terms of KT; im-
proves 527.27% over MS-LEEP and 392.86% over E-LEEP
in terms of PCC.

Performance of Selected Ensembles. Table 2 reports the
ensemble accuracy of the models selected through OS-
BORN. For completeness of this discussion, we also report
the same results for OSBORN without greedy maximiza-
tion as well as for MS-LEEP and E-LEEP in Table 5. Fol-
lowing [1], we first calculate the OSBORN value for ev-
ery ensemble candidate and pick the ensemble that bags the
highest value. We follow a similar strategy with MS-LEEP
and E-LEEP to pick the best model according to their val-
ues. To compute the ensemble accuracy, we used the in-
dividual models fine-tuned on the target train set and got
their predictions on the target test set. We average these
predictions and compare them with the ground truth labels
to obtain overall accuracy. We observe that the ensemble
selected by OSBORN achieves the highest test accuracy
across all datasets. In the case of both fully supervised
and self-supervised settings, the baseline methods, i.e. MS-
LEEP and E-LEEP, select the same ensembles (despite hav-
ing different correlation values) in every case, which is why
they obtain the same ensemble accuracy.

Scaling Number of Models in Ensemble. As shown ear-
lier in this section (Fig 4), we found the performance to sat-
urate after an ensemble size of 3 in the datasets considered
in this work as well as in [1]. On the other hand, we also ob-
serve unsurprisingly that the cost of ensemble selection can
go up significantly as the ensemble size increases. We show
the cost performance of models selected for the Caltech101
dataset in Fig 6. Despite the increasing trend, we note that
the time taken is still in the order of seconds, which makes
the proposed OSBORN metric practical and relevant.

Ablation Studies. We conducted additional experiments to
understand the influence of each component in OSBORN
(included in the Appendix). In general, while simple addi-
tion of the three quantities in OSBORN without any weights
outperformed previous methods, we observed that these can
be finetuned through grid search over a larger range of val-
ues to get even better transferability estimates. This how-
ever varies with the target dataset. On Caltech101 as the tar-
get dataset, we noticed that giving more weightage to WD
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Weighted Kendall’s τ Kendall ’s τ PearsonTarget Dataset MS E Ours MS E Ours MS E Ours

Oxford102Flowers -0.080 -0.090 0.549 -0.035 -0.050 0.336 -0.077 -0.090 0.306
OxfordIIITPets 0.555 0.574 0.357 0.221 0.229 0.139 0.201 0.212 0.232
StanfordDogs 0.089 0.132 0.170 0.014 0.029 0.110 0.132 0.159 0.236
Caltech101 0.290 0.311 0.488 0.195 0.228 0.308 0.248 0.287 0.374

StanfordCars -0.359 -0.377 0.260 -0.207 -0.221 0.139 -0.285 -0.289 0.232

Average 0.099 0.110 0.365 0.038 0.043 0.206 0.044 0.056 0.276

Table 4. Comparison of different ensemble transferability estimation metrics for self-supervised pre-trained models (classification tasks).
The best results are indicated in bold. Note: MS: MS-LEEP, E: E-LEEP and Ours: OSBORN.

Figure 6. Cost performace of model selection for the Caltech101
dataset.

Ensemble Accuracy (Fully Supervised)
Target Dataset MS-LEEP E-LEEP Ours

Oxford102Flowers 85.347 85.347 89.865
Caltech101 68.533 68.533 68.533

StanfordCars 48.623 48.623 62.915

Average 67.501 67.501 73.771

Ensemble Accuracy (Self Supervised)

Oxford102Flowers 88.278 88.278 93.040
Caltech101 86.933 86.933 89.333

StanfordCars 6.056 6.056 61.820

Average 60.422 60.422 80.598

Table 5. We compare the target test set accuracies achieved by
fine-tuned model ensembles picked by MS-LEEP, E-LEEP and
OSBORN.

compared to the other two terms (WT and WC) achieved
higher correlation scores, as shown in Fig 7. This could be
because of the wide variety of images in this dataset. WD

measures the latent space mismatch between such varied
images with the source datasets (which may not have over-
lapping images/representation with the target set), which
benefits in this case. More detailed analysis is provided in
the Appendix.

Figure 7. WD weightage vs. correlation comparison for Cal-
tech101. We set weights for WT and WC as 1.

6. Conclusions
In this paper, we propose a novel optimal transport-based

transferability estimation metric, OSBORN, carefully de-
signed for ensembles that consider multiple factors, such as
the mismatch in the latent space, label space, and the co-
hesiveness amongst the individual models in the ensemble.
We show that the proposed metric can be treated as a sub-
modular optimization problem, allowing us to leverage a
greedy strategy for source model ensemble selection. We
show experimentally that our metric outperforms the exist-
ing metrics MS-LEEP and E-LEEP across tasks on multiple
correlation metrics. Future directions include increasing the
computational efficiency of this method, as well as studying
its applicability to other tasks and problem settings.
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[5] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvit-
skyi, Daniel Guo, Bilal Piot, Steven Kapturowski, Olivier
Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andew Bolt,

11617



and Charles Blundell. Never give up: Learning directed ex-
ploration strategies. 8th International Conference on Learn-
ing Representations, 2020, Addis Ababa, Ethiopia, April 26-
30, 2020, 2020. 2

[6] Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang, Lizhong
Zheng, Amir Zamir, and Leonidas J. Guibas. An
information-theoretic approach to transferability in task
transfer learning. In 2019 IEEE International Conference on
Image Processing, 2019, Taipei, Taiwan, September 22-25,
2019, pages 2309–2313. IEEE, 2019. 3

[7] L. Breiman. Bagging predictors. Machine Learning, 24:123–
140, 2004. 1, 3

[8] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming
He. Improved baselines with momentum contrastive learn-
ing. CoRR, abs/2003.04297, 2020. 7

[9] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In C.J. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013. 5

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N.
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguis-
tics, 2019. 2

[11] Kshitij Dwivedi and Gemma Roig. Representation similar-
ity analysis for efficient task taxonomy & transfer learning.
In 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 12379–12388, 2019. 2

[12] Linus Ericsson, Henry Gouk, and Timothy M. Hospedales.
How well do self-supervised models transfer? In 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5410–5419, 2021. 2

[13] Li Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: An incremen-
tal bayesian approach tested on 101 object categories. In
2004 Conference on Computer Vision and Pattern Recogni-
tion Workshop, pages 178–178, 2004. 7

[14] Yoav Freund and Robert E Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997. 1

[15] Mudasir A. Ganaie, Minghui Hu, Mohammad Tanveer, and
Ponnuthurai N. Suganthan. Ensemble deep learning: A re-
view. Engineering Applications of Artificial Intelligence,
115:105151, 2022. 2

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pages 580–587,
2014. 1

[17] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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