
Adaptive Spiral Layers
for Efficient 3D Representation Learning on Meshes

Francesca Babiloni1,2, Matteo Maggioni1, Thomas Tanay1, Jiankang Deng1,2,
Ales Leonardis1, Stefanos Zafeiriou2

1Huawei, Noah’s Ark Lab 2Imperial College London
{f.babiloni22, j.deng16, s.zafeiriou}@imperial.ac.uk

{matteo.maggioni, thomas.tanay, ales.leonardis}@huawei.com

Abstract

The success of deep learning models on structured data
has generated significant interest in extending their applica-
tion to non-Euclidean domains. In this work, we introduce a
novel intrinsic operator suitable for representation learning
on 3D meshes. Our operator is specifically tailored to adapt
its behavior to the irregular structure of the underlying
graph and effectively utilize its long-range dependencies,
while at the same time ensuring computational efficiency
and ease of optimization. In particular, inspired by the
framework of Spiral Convolution, which extracts and trans-
forms the vertices in the 3D mesh following a local spiral
ordering, we propose a general operator that dynamically
adjusts the length of the spiral trajectory and the param-
eters of the transformation for each processed vertex and
mesh. Then, we use polyadic decomposition to factorize its
dense weight tensor into a sequence of lighter linear layers
that separately process features and vertices information,
hence significantly reducing the computational complexity
without introducing any stringent inductive biases. No-
tably, we leverage dynamic gating to achieve spatial adap-
tivity and induce global reasoning with constant time com-
plexity benefitting from an efficient dynamic pooling mech-
anism based on Summed-Area-tables. Used as a drop-in
replacement on existing architectures for shape correspon-
dence our operator significantly improves the performance-
efficiency trade-off, and in 3D shape generation with mor-
phable models achieves state-of-the-art performance with a
three-fold reduction in the number of parameters required.
Project page: https://github.com/Fb2221/DFC

1. Introduction

Convolutional layers have emerged as the de facto stan-
dard methodology to effectively capture local similarity on
a grid, hence leading to a notable paradigm shift in fields
that analyze regular Euclidean data, such as object detec-

Figure 1: Visual comparison of SpiralConvolution (left) and
our operator (right). Our proposed operator adapts to the un-
derlying structure of the mesh, learning vertex-adaptive and mesh-
adaptive spiral sequences of variable lengths, ranging from 7 to
70. In contrast, the base SpiralConvolution operator works on
a fixed receptive field of length 9. The weight tensors of both
operators are shown in the image using Einstein notation and a
schematic representation. Our proposed operator approximates its
dense weight tensor through CP decomposition for efficient im-
plementation. The subscripts indicate respectively: k a fixed se-
quence length, m a variable sequence length, c, d input and output
channels, n and i the number of vertices and meshes considered.

tion, image classification, speech recognition, and machine
translation. Recently, advances in geometric deep learn-
ing have sparked interest towards processing non-Euclidean
data, however, applying classic neural networks to such
kind of data (i.e., 3D mesh or point cloud) still presents sig-
nificant challenges.
Early deep-learning methods address this issue in an extrin-
sic manner, applying convolutions directly in the 3D Eu-
clidean space [58, 46], but suffer from high computational
complexity and a lack of smoothness in the data represen-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14620

https://github.com/Fb2221/DFC

tation. Conversely, more recent methods propose intrin-
sic methods for non-Euclidean domains [6], and are ca-
pable of achieving better results than their extrinsic coun-
terparts. For instance, mesh-based methods, which are
tailored the specific topological connectivity of the ver-
tices, typically achieve better performance and lower run
times [4, 18, 16, 8]. In contrast, Graph Neural Networks
(GNNs) build a more general representation, but tend to
reach suboptimal results because they only leverage the
graph nature of the meshes [50, 37, 17, 12, 15]. More re-
cently SpiralNet [4] and its extension SpiralNet++ [18] de-
fine anisotropic mesh operators that are analogous to 2D
convolutions on patches. This is achieved by enforcing a
local spiral ordering of the vertices of the mesh, to robustly
capture local information. Despite the impressive applica-
tion of this operator on 3D meshes that share a fixed topol-
ogy, its expressivity is still constrained by a shared, static,
and local set of weights that remains unchanged after train-
ing. Consequently, the processing of SpiralNet is indepen-
dent of the data and task at hand, it is not influenced by the
vertex on which it is applied, and it is confined to consider-
ing only local regions.
In this work, we propose to build upon the SpiralNet frame-
work by overcoming these limitations, while maintaining
the original properties of topology awareness, efficiency,
and ease of optimization. We introduce a novel operator for
3D meshes, specifically designed to leverage the irregular
structure and long-range dependencies inherently present in
the mesh. Guided by the use of Einstein notation, we con-
struct a light-weight mesh-operator by factorizing a dense
and general weight tensor via CP decomposition. The fac-
torization is designed to separate the processing of feature
and vertex dimensions. Specifically, vertices are processed
by promoting two different inductive biases. First, we en-
able global reasoning by capturing long-range interactions
using a dynamic learnable pooling layer implemented as
Summed-Area-Tables (SAT) which is capable of efficiently
adapting the receptive field depending on the input. Sec-
ond, we enable robust local reasoning by capturing local in-
formation using a gating operator to dynamically adapt the
response of our layer to both the input vertex and mesh. The
proposed operator focuses on the application of 3D meshes
that share a fixed topology, but can be extended to remeshed
variants and it is suitable for tasks such as reconstruction,
shape correspondence, and data synthesis.
In line with other work designed for 3D meshes on fixed
topology [4, 18, 16, 8], we evaluate our methodology on
two well-established tasks: namely, 3D shape correspon-
dence and mesh generation through 3D Morphable Mod-
els. Our findings demonstrate superior performance on the
3D human shape benchmarks of COMA, FAUST, SCAPE,
DFAUST and SYNHAND, quantitatively illustrating best-
in-class results. In comparison to SpiralConv, our approach

achieves state-of-the-art performance while reducing the
parameter count by 64% and 84% respectively demonstrat-
ing the efficacy of adaptive processing in practical applica-
tions. An overview of our operator and its closest competi-
tor is presented in Figure 1.

2. Related Work
Geometric Deep Learning on Meshes. The field of

geometric deep learning [6] has gained important traction
in recent years. Here, we briefly review related works
analyzing 3D shapes. Point-based methods describe 3D
shapes in terms of point clouds [41, 42, 48, 32, 19].
These simple and flexible extrinsic approaches however
tend to achieve lower performance when compared to
mesh-based methods that explicitly leverage the 3D sur-
face connectivity. Mesh-based methods can be broadly
divided into two categories depending on their definition
of convolution: spectral domain-based methods and spatial
domain-based methods. Notable spectral domain-based
methods view meshes as specific type of graphs that can
processed using graph-based neural networks (GNN)
such as Chebnet [12] which uses fast localized spectral
convolutions and GAT [50] which applies the concept
of attention to graph structures. The use of a spectral
view-point is also used in state-of-the-art networks of AC-
SCNN [30] and DiffusionNet [45]. Spatial domain-based
methods directly define convolution and pooling operations
for triangle meshes. Examples include the early work
of [40, 22], MoNet [37] and SplineCNN [15] which use
either a Gaussian or B-Spline kernel function for spatial
convolutions, FeastNet [51] which establishes connections
between filter weights and graph neighborhoods using a
dynamic graph-convolution operator. Examples of more
recent work are HSN [56] and PFCNN [59] which directly
address the rotation ambiguity problem present in 3D
meshes, and the state-of-the-art Field Convolution [36]. In
the same line of research, and the most relevant prior art for
our work, is Spiral Convolution, which applies learnable
filters to aggregate a set of neighboring vertices extracted
from the mesh following a spiral trajectory (SpiralNet) [4],
potentially with a fixed ordering and multiple scales
(SpiralNet++) [18]. This serialization encodes information
about the topology of the mesh efficiently and effectively.
Differently from our method, this operator is still limited
by the inductive bias of static and local processing.

Dynamic Methods for Neural Networks. The idea
of using a layer whose weights are dependent on the
input data can be traced back to early CNNs using max-
pooling [24]. Dynamic Networks [21] for Euclidean-data
emerged multiple times in the context of 2D Computer Vi-
sion [20, 23, 7, 54, 13, 34] as well as in NLP [49, 57, 53, 33].
Dynamicity is also a core component of many notable oper-

14621

ators of geometric deep learning [50, 60, 62, 5], where the
importance of vertices in a graph is recalibrated according
to their content.In the context of 3D meshes that share a
fixed topology, in [61, 55] a differentiable pooling operator
is proposed to dynamically group vertices based on their
embeddings, in [8] an attention mechanism is adopted to
compute vertex feature upsampling and downsampling,
and in [16] learnable weighting matrices are used to first
resample the neighbors of each vertex and then apply
shared anisotropic filters. In contrast, our method is the
only one capable to introduce all dynamic components
(mesh-adaptivity, vertex-adaptivity, dynamic receptive
field) without significantly increasing computational com-
plexity and parameter count.

Tensor Notation for Neural Networks. In machine
learning, tensor algebra [27] is commonly used to analyze
neural network layers [39] and describe methods that speed
up their inference via factorization [10, 29, 38]. Recently,
the Einstein notation has gained traction as a practical way
to improve code readability [44, 28] and enable efficient
tensor calculus [28]. In this work, we use Einstein notation
as an intuitive way to highlight tensor characteristics.

3. Background
In this section, we recall the general form of SpiralCon-

volution, as introduced in [18], and we establish a formal-
ism to describe generic linear operations in neural networks
using Einstein notation.

SpiralConvolution. In [4, 18], the authors develop
convolution-like operators that extract an ordered set of
neighbors around each vertex in the 3D mesh following spi-
ral trajectories [31]. This simple and intuitive serialization
can be formally defined as

x(l)
n = γ(l)

(
||

j∈S(n,K)

x
(l−1)
j

)
(1)

where l denotes a layer in the neural network, j and n are
two vertices in the mesh, || is a concatenation operator, γ(l)

is an MLP, S(n,K) is the operator that creates the spiral se-
quence of length (i.e. kernel size) K corresponding to vertex
n, and x

(l−1)
j and x

(l)
n denote the input and output features.

In other words, similarly to standard convolutions, this op-
erator generates output features at any given reference po-
sition by aggregating a number of local neighbors extracted
from a local region centered around the reference position.

Einstein Notation. Following [28], tensors are denoted
with uppercase letters, and indices to the dimensions of
the tensors are denoted in lowercase subscripts. For in-
stance Xijk ∈ RI×J×K is a tensor of size I × J × K

with three dimensions (or modes) indexed by i ∈ [1, I],
j ∈ [1, J], and k ∈ [1,K]. Using Einstein notation, any
multiplication among tensors can be written as: Cs3 =∑

(s1∪s2)\s3 As1Bs2 where s1, s2, and s3 are the index sets
of the left argument, the right argument, and the result ten-
sor, respectively. The summation of inner products will be
made explicit by underlining indexes corresponding to the
dimensions to reduce in the input tensors. Let us illustrate
our notation through a set of common tensor operations.
The Hadamard product between Y,X ∈ RI×J can be writ-
ten as Zij = XijYij and is equivalent to the algebraic nota-
tion Z = X ⊙ Y , being ⊙ an element-wise multiplication.
The matrix multiplication of X ∈ RI×K and Y ∈ RK×J

can be written as Zij = XikYkj and is equivalent to the al-
gebraic notation Z = XY ; note that in this case we reduce
dimension K. Finally, the outer product between Y ∈ RI

and X ∈ RJ is denoted as Z ∈ RI×J as Zij = XiYj ,
and it is equivalent to the algebraic expression Z = Y ⊤X .
When using a chained sequence of operations, we use the

]
symbol to write each intermediate result.

4. Method
As a starting point of our investigation, we re-formulate

the spiral convolution operator of Equation (1) using Ein-
stein notation. This provides two main advantages: first, it
enables an intuitive formulation and description of multi-
dimensional tensor expressions without resorting to heavy
tensor algebra; and second, it allows to analyze and discuss
the different roles played by the weight tensor of a Neural
Network layer, identified in its generic form with the upper-
case W . With this in mind, let us define the SpiralConvolu-
tion operator in Einstein notation as

Yind = Xinmc Wmcd (2)

where Xinmc is a batch of i ∈ [1, I] input meshes composed
of n ∈ [1, N] vertices. Each vertex is the origin of a spiral
neighborhood of m ∈ [1,K] (e.g. K = 9 [4]) vertices
and c ∈ [1, C] features (i.e. channels). The Wmcd learn-
able weights used to aggregate vertices along the spirals are
then applied to the input mesh tensor to generate an output
Yind of processed meshes characterized by n ∈ [1, N] ver-
tices and d ∈ [1, D] features. Upon closer inspection, Equa-
tion (2) clearly highlights three shortcomings for the weight
tensor Wmcd: first, the weights are independent of the input;
second, the weights are shared among all vertices; and third,
the weights are limited to a fixed receptive field determined
by the spiral length K. In other words, this basic form of
the operator lacks of the characteristics of dynamicity to the
input and spatial positions that have been proven successful
in modern CNNs [47, 34] and even transformer architec-
tures [49, 13]. Thus, we propose to generalize the original
operator with the following modification of its weight ten-

14622

sor, relaxing its aforementioned three inductive biases:

Yind = Xinmc Wimncd (3)

where m ∈ [1, N] now contains the complete set of ver-
tices in the mesh and thus follows (much longer) spiral
trajectories. Note that in this formulation, the dynamic
weights are implicitly assumed to be a function of input,
Wimncd = g(Xinmcd), via an operator g, which in relevant
literature is typically parameterized by a light-weight neu-
ral network [20]. In other words, we generalize the origi-
nal SpiralConvolution of Equation (2) and propose a non-
linear operator which is mesh-adaptive, vertex-adaptive,
and has global receptive field. However, in this form, our
non-linear generalization is hindered by high memory re-
quirements (i.e. size of the weights), and O(N2 · C ·D) com-
putational complexity. To overcome these drawbacks, we
propose to approximate the behavior of the original Equa-
tion (3) by factorizing the dense tensor Wimncd into a se-
quence of lower-dimensional matrices which can be still
easily trained end-to-end. Firstly, we separate vertex-wise
processing from channels-wise processing by using the CP
Decomposition1, as is typically done for depthwise separa-
ble convolutions [9], obtaining:

X1
imnr = XimncW

1
cr

X3
inr = X1

imnrW
23
imnr

Yind = X3
inrW

4
rd

(4)

where W 1
cr and W 4

rd implement linear layers and r ∈ [1, R]
is the rank of the decomposition, representing the number
of components that are used to approximate the original
tensor Winmcd. Equation (4) is an improvement over (3),
since it reduces the computational complexity to the sum of
a sequence of operations plus the complexity of the func-
tion used to create matrix W 23

imnr. Nevertheless, a naı̈ve
implementation is still limited to cases where the data size
is small enough to fit in memory: first, directly using an hy-
pernetwork to generate the tensor W 23

imnr is computation-
ally very demanding since its computation scales quadrat-
ically with the number of vertices; second, in cases where
the number of vertices is higher than features, the complex-
ity of equation (4) is still O(N2) . To overcome this problem
and satisfy the two seemingly mutually exclusive objectives
of efficient implementation and non-stringent inductive bi-
ases, we propose a new alternative formulation for the term
W 23

imnr as a succession of two light-weight vertex-reasoning
terms: one local dynamic term associated with the weight
tensor W 2

imnr and one efficient global dynamic term asso-
ciated with the weight tensor W 3

imnr. The first term focuses

1Also known as CANDECOMP/PARAFAC or polyadic decomposi-
tion, which is a generalization of singular value decomposition (SVD) for
multi-dimensional tensors [27]

on replacing the shared and static weights in SpiralConvolu-
tion with a tensor capable of adaptively processing the local
neighbors along the spiral, hence significantly relaxing the
stringent inductive bias of the original operator. To achieve
this goal efficiently, we propose to use a vertex-wise gating
layer (G), similarly to [33]:

X2
inr = X1

imnrW
2
imnr =

[
X1

imnrW
L
mn

]
inr

WG
inr (5)

with WG
inr = fG(Xinr) where fG is an arbitrary function

which we implement as a linear transformation, and WL
mn is

a weight tensor of learnable parameters that relates each n ∈
[1, N] vertex in the mesh to its m ∈ [1,K] local neighbors
along the spiral. The second term aims to relax the bias
of local and static receptive field in SpiralConvolution. We
propose to use a learnable pooling function (P) to obtain
dynamic and potentially global reasoning on the entire mesh
while avoiding the direct computation of a weight tensor of
N2 parameters:

X3
inr = X2

imnrW
3
imnr =

[
X2

imnrW
S
ml

]
ilnr

W P
iln (6)

where the size of the extraction of spiral patches: X2
imnr of

Equation (6) comes from X2
inr of Equation (5) where a spi-

ral neighborhood indexed by m ∈ [1, N] has been extracted
for each vertex. WS

ml is a triangular matrix of ones imple-
menting a cumulative sum over X2

imnr along the m dimen-
sion and W P

iln = fP (Ximnr) is a dynamic function predict-
ing the size of the receptive field for each mesh and vertex
as one-hot vectors along the l dimension, with (l ∈ [1,M]).
In practice, in our implementation we use integral image
or Summed-Area-Tables (SAT) [11, 52, 63] a technique for
fast region accumulation over 2D images that enables the
computation of pooling operations on a receptive field of
arbitrary size with a constant computational cost. We adapt
this technique to spirals and implement it as a 1D cumula-
tive sum over the spiral length, followed by a thresholding
operator determining the size of the receptive field .

The advantages of this implementation are two-fold: i)
the model is able to actively adapt the receptive field ac-
cording to the irregular structure of the mesh and ii) vertex-
reasoning can be performed at constant computational cost

Figure 2: Overview of our implementation. α, β, γ, δ are learn-
able scalars.

14623

Method Acc.(%) Param(M)

FeaStNet* 79.24 1.91
MoNet* 86.05 1.91
ChebyNet* 98.77 1.91
SpiralNet* 72.84 1.91
SplineCNN [15] 99.20 4.15
SpiralNet++ [18] 99.88 1.91
Ours 99.88 0.31

0 100 200 300 400 500 600

Epoch
20

0

20

40

60

80

100

%
 o

f
ex

a
ct

 c
or

re
sp

on
d
en

ce

Method

Ours (ch=16) - 0.82 GFlops
SpiralConv (ch=16) - 0.81 GFlops
SpiralConv (ch=32) - 1.72 GFlops
SpiralConv (ch=64) - 3.83 GFlops
SpiralNet++ - 13.04 GFlops

Table 1: 3D shape correspon-
dence on FAUST . Comparison
among different geometric oper-
ators in term of the test accu-
racy (i.e ratio of correct corre-
spondence with null geodesic er-
ror). Results of methods marked
with ”*” are reported as in [18].

Figure 3: 3D shape correspondence performance on FAUST. Left) Validation curves of Ours, Spi-
ralConv, and SpiralNet++. SpiralConv is evaluated in three variants with an increasing number of
channels (16, 32, 64), characterized by 124K, 256K and 563K parameters respectively. SpiralNet++
uses SpiralConv but follow the architecture described in [18]. Our method trend resembles Spiral-
Net++ (purple), while requiring x15 less GFlops. Right) Visual comparison between our method and
SpiralConv under the same network complexity (0.82 GFlops) and training setup (ch=16). Geodesic
error is shown saturated at 10% of the geodesic diameter. Thanks to its adaptive behavior, our method
outperforms a static SpiralConv network by a large margin.

even when the predicted ideal receptive field is global (m ∈
[1, N]). Moreover, thanks to the use of interpolation, the
whole layer is fully-differentiable and learned end to end. In
our experiments, we modify the architecture to add one of
our blocks before every static convolution, and add a resid-
ual connection after each component to ease convergence.
Figure 2 shows an overview of our implementation. More
details can be found in additional material.

5. Experiments

In this section, we compare different operators used to
process 3D deformable shapes that are represented as 3D
meshes that share a common topological structure, such
as human faces and bodies. We benchmark our approach
using two established tasks, i.e. mesh reconstruction and
shape correspondence, comparing our method against ex-
isting mesh structure-based operators for 3D representation
learning and generation.

5.1. 3D Correspondence

We evaluate the performance of the proposed method in
the task of 3D dense shape correspondence, a task that aims
at registering each node of a given shape with the corre-
sponding node of a reference shape [35]. Following re-
lated work [3, 35, 37, 51], we use the FAUST dataset [2]
which includes 10 human shapes represented by 6,890 ver-
tices captured in 10 different poses, covering a variety of ac-
tions. As in [35, 3], we use the first 80 human shapes in the
FAUST dataset for training and the remaining 20 for testing.
The registration task is formulated as classification, with
the ground truth correspondence of FAUST meshes given
implicitly via nodes arranged in the same order for every
example. The quality of the performance is measured as the
percentage of the inferred correspondences that are located

inside the region delimited by a geodesic radius r around
the correct node, using the calculation outlined in [25]. To
showcase the ability of our operator to process 3D meshes in
an efficient yet adaptive way, we compare its performance
against other well-known geometric deep learning opera-
tors [51, 37, 12, 4, 15, 18]. Specifically, we follow [18]
and use a six-layer neural network to process directly raw
3D coordinates. We set the number of features as 16 in all
layers, and use our operator on the three central layers. A
detailed description of the architecture can be found in ad-
ditional material.To ensure a fair comparison with the rest
of the evaluated methods, we train our model using the stan-
dard cross-entropy loss and an Adam [26] optimizer with a
learning rate of 3e-3. Moreover, we set the kernel size of
the local operator to K = 9. In Table 1, we report the ac-
curacy of our model and other approaches in obtaining ex-
act correspondences (i.e. 0% geodesic error). Remarkably,
our method reaches an accuracy of 99 % with a parameter
count of approximately 300k, 83% less than the second-best
performing method (SpiralNet++) and more than 92% less
than the parameter count of SplineCNN (4.15M). Note that
our operator is not limited to consider only 9 vertices, since
is still able to learn the optimal size of the receptive field
thanks to the use of the efficient learnable pooling layer.
Instead it can leverage mesh topologies, local and global
structures in the data, and dynamically adapt its response to
the input mesh, achieving a significantly better accuracy-
complexity trade-off than all other baselines. Lastly, we
compare against other more recent deep-geometric meth-
ods for mesh processing. Figure 4 shows the % of corre-
spondence against the normalized geodesic error according
to the Princeton benchmark protocol, a measure of how well
a shape descriptor matches a point on a surface to its corre-
sponding point on another surface. As visible, our method
outperforms the majority of the prior art and even performs

14624

20

30

40

50

60

70

80

90

100

0 0.02 0.04 0.06 0.08 0.1

%
 o

f
C

o
rr

es
p

o
n

d
en

ce
s

(F
A

U
ST

)

Normalised Geodesic Error

 FieldConv - 1.53M (+392%)
 ACSCNN - 4.43M (+1326%)
 HSN - 1.41M (+354%)
 SpiralConv++ - 0.12M (-60%)
 Ours - 0.31M

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

%
 o

f
C

o
rr

es
p

o
n

d
en

ce
s

(F
A

U
ST

-R
M

)

Normalised Geodesic Error

 AMLCONV

 AMLCONV*

 FieldConv - 1.53M (+70%)

 ACSCNN - 4.43M (+392%)

 HSN - 1.41M (+57%)

 SpiralConv++ - 0.76M (-16%)

 Ours - 0.9M
20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15

%
 o

f
C

o
rr

es
p

o
n

d
en

ce
s

(S
C

A
P

E-
R

M
)

Normalised Geodesic Error

 AMLCONV*
 AMLCONV
 FieldConv - 1.53M (+70%)
 Ours - 0.9M

Figure 4: FAUST. Percentage of corre-
spondences for a given geodesic error.
Methods are reported together with their
parameter count.

Figure 5: FAUST Remeshed. Adaptive
spirals provide a good trade off between
performance and parameter count.

Figure 6: SCAPE Remeshed. Adap-
tive spirals outperform both the alterna-
tive operator of FieldConv and AML-
CONV, which leverages functional maps.

comparably to ACSNN, which uses +1326% more param-
eters.

5.1.1 Comparison with SpiralConvolution

In this section, we compare our method against its clos-
est prior art, the SpiralConvolution operator used in Spi-
ralNet++ [18] (SpiralConv). For the sake of fairness, we
use the same backbone architecture, and replace the three
central layers of the network with a SpiralConv of different
numbers of channels (16, 32, 64). We use as benchmark the
task of 3D shape correspondence on FAUST: performance
is measured as the percentage of exact shape correspon-
dences, whereas complexity is measured both as the number
of floating-point operations (FLOPS) and parameter count.
The results in Figure 3 (left) illustrate the performance of
all compared operators throughout training, together with
the validation curve of SpiralNet++, reported for reference.
As clearly visible, our method exhibits the best convergence
properties: i) it significantly outperforms a SpiralConv vari-
ant of similar complexity (ch=16), ii) it converges to al-
most perfect accuracy faster than the variant of SpiralConv
with x4 more channels (ch=64), and iii) it outperforms even
Spiralnet++ which accounts for x15 more GFlops. These
results demonstrate the effectiveness of our proposed op-
erator and the importance of appropriately including adap-
tive mechanisms in the processing of 3D meshes. Finally,
in Figure 3 (right) we visualize the geodesic error of our
method against the SpiralConv variant having comparable
GFlops (i.e. the one with 16 channels). This comparison
clearly highlights the superior performance of our method,
thus confirming that including adaptive processing opera-
tions leads to learning better mesh representations.

5.1.2 Adaptive Weights Visualization

A core characteristic of our operator consists of its ability
to adaptively generate different kernels depending on the
mesh and vertex at hand. Here, we seek to provide addi-
tional insights by visualizing the generated convolutional
weights for the task of dense shape correspondence on the

FAUST dataset, using a t-SNE plot. We select a sample
of 10 meshes and 10 vertices (equidistant between 0 and
6889) considering 100 examples in total. Then we extract
all kernels from the 3 adaptive spiral layers and project them
into 2D points using t-SNE. As visible in Figure 7, plotting
these points clearly shows the adaptive nature of our ker-
nels: firstly, kernels processing the same vertex are grouped
in distinct clusters. Furthermore, within each cluster, we
observe how there is a local variation of the kernels as they
adapt their response to the 10 different meshes.

 0

765

1530

2296

3061

3827

4592

5358

6123

6889

Figure 7: t-SNE plot of the adaptive kernels used by our method
on the task of Dense shape correspondence on FAUST.

5.2. Correspondence on different mesh topologies

Next, we explore the ability of our method to general-
ize on meshes with varying positions and triangulation, by
experimenting with the task of finding pointwise correspon-
dence between shapes that do not share the same mesh con-
nectivity. We compare against additional geometric deep-
learning works [30, 36, 56] on the more challenging 5k
remeshed variant of the FAUST dataset. Moreover, we pro-
vide evidence of the generalization ability of our method by
testing on the 5K remeshed variant of the SCAPE [1] dataset
(a dataset containing 71 registered meshes of a single sub-
ject in different poses). In practice, we follow the same
network design as in the previous section and trained our
method as well as the static baseline of SpiralConv++. To
ensure a fair comparison with recent works, we follow the
experimental setup described in FieldConv [36], replicat-
ing comparing using the same input descriptors and perfor-
mance metric. As visible in Figure 5 and 6 SpiralConv++ is
vastly outperformed by our counterpart on FAUST and fails
to converge on SCAPE, possibly due to its limited recep-
tive field. Despite the fact that we compare against methods

14625

Method Mean Error Median Error Params

FeaStNet [51] 0.523 ± 0.643 0.297 158K
MoNet [37] 0.526 ± 0.605 0.353 155K
COMA [43] 0.470 ± 0.598 0.263 117K
ChebyConv [12] 0.436 ± 0.562 0.242 155K
Neural3DMM [4] 0.443 ± 0.560 0.245 157K
SpiralNet++[18] 0.423 ± 0.534 0.236 155K
Aff -MoNet [17] 0.406 ± 0.455 0.251 168K
Ours -II 0.389 ± 0.521 0.214 172K
Ours -III 0.373 ± 0.507 0.207 198K

Table 2: Performance comparison on 3D shape recon-
struction on the COMA dataset, using a 4-stages encoder-
decoder and kernel size K=9. Our method outperforms
competitors by a large margin with a small increase in pa-
rameter count.

Figure 8: Qualitative results of 3D shape reconstruction on the
COMA dataset. Visualization of the per-vertex euclidean distance
from ground truth (mm) for our method and SpiralNet++. Errors are
saturated at 10mm. 3DMM largely benefits from the dynamic behavior
of our method .

specifically designed to process meshes of changing topolo-
gies, our solution achieves the best performance. More-
over, our performance is comparable to more complex state-
of-the-art functional maps pipelines like AMLCONV [14].
These results confirm that our method is capable of general-
izing robustly beyond meshes of fixed topologies, by adapt-
ing its instance and vertex aware response beyond the graph
structure of the template mesh.

5.3. 3D Reconstruction with 3DMM

In this section, we showcase the ability of our method
to capture complex 3D shape variations and generate high-
quality reconstructions. Specifically, we investigate the
task of 3D shape reconstruction with Neural 3D Morphable
Models (3DMM) and compare the results obtained using
our approach against existing state-of-the-art methods. As
our benchmark, we use the COMA dataset [43] which in-
cludes 20,466 3D Meshes capturing 12 classes of extreme
expression sequences for 12 different subjects. Each mesh
is pre-processed to have 5,023 vertices. We follow the inter-
polation setting in [43]. To evaluate the generalization abil-
ity of the model, i.e. the ability to reconstruct data similar
to those seen during training, we split the dataset in training
and test samples with a ratio of 9:1. We then measure per-
formance as the error between each vertex in the input and
its reconstruction. We use as the evaluation metric the eu-
clidean distance (in millimeters) in the 3D space reporting
for each evaluated method, the mean and median euclidean
errors, and the standard deviation over all samples and ver-
tices.

5.3.1 Effect of Different Operators

In this section, we =evaluate the performance of our method
against different 3D mesh processing operators: COMA
[43], FeaStNet [51], MoNet [37], ChebyNet [12], SpiralNet
[4], SpiralNet++ [18], and Aff-Monet [17]. To ensure a fair
comparison, we employ the same model architecture, local
kernel size, and training setup as related work [17]. We use
as base architecture a 4-stage encoder-decoder with a la-

tent space dimension d=16, ELU activation function, and a
number of channels for each stage set to be [32,32,32,64],
trained for 300 epochs using an Adam optimizer with a
learning rate of 0.001 and a learning rate decay of 0.99 per
epoch. The batch size is set to 32, and the kernel size for
local layers is set to K = 9. To investigate the effectiveness
of our proposed operator to enrich the 3D representation
learning of an established baseline, we use SpiralConvolu-
tion 3DMM architecture modified to include our operator in
either two (Ours-II) or three (Ours-III) stages. Further im-
plementation details can be found in the supplementary ma-
terial. Table 2 reports performance together with the num-
ber of parameters as a measure of complexity. The experi-
mental results show that our method significantly improves
the representation power of the network, outperforming all
compared methods by a large margin with only a slight in-
crease in the number of parameters. Our proposed method
achieves a mean error of 0.389 ± 0.521 and 0.373 ± 0.507
for Ours-II and Ours-III, respectively, which represents a
7.6% and 20.5% decrease in mean error compared to the
state-of-the-art SpiralNet++ and a 17.0% and 20.9% de-
crease compared to the lightest model COMA.

Figure 8 shows the qualitative results of 3D shape re-
construction on the COMA dataset, highlighting the con-
tribution of our block when applied to the SpiralNet++
backbone. For each vertex, the error is computed as the
Euclidean distance from the ground truth. Our model
makes use of the adaptive convolutional filters, which en-
sure unique processing of each shape, and the dynamic re-
ceptive field allowing effective learning at multiple scales.
It is able to reconstruct high-fidelity 3D shapes and re-
produce a high degree of facial expression details, vastly
improving the baseline. Figure 1 shows the learned spi-
ral sequences of our method compared against the base-
line for 6 different vertices. While the spiral length of Spi-
ralNet++ is limited to 9, our operator is able to learn the
optimal length dynamically, spanning from 7 to 70 length
[41, 13, 70, 62, 68, 66, 7]. More visualization can be found
in additional material.

14626

0 50 100 150 200 250 300

Epoch

0.10

0.11

0.12

0.13

0.14

0.15

R
ec

on
st

ru
ct

io
n
 L

o
ss

Method

SpiralNet+ + (ch = 16)
+ Wk (Local)
+ Wkn (Local, Spatially-Adaptive)
+ Wikn (Local, Spatially-Adaptive, Dynamic)
+ Wimn (Global,Spatially-Adaptive, Dynamic)

0 50 100 150 200 250 300

Epoch

0.07

0.08

0.09

0.10

0.11

0.12

R
ec

on
st

ru
ct

io
n
 L

o
ss

Method

SpiralNet+ + (ch = 32)
+ Wk (Local)
+ Wkn (Local, Spatially-Adaptive)
+ Wikn (Local, Spatially-Adaptive, Dynamic)
+ Wimn (Global,Spatially-Adaptive, Dynamic)

0 50 100 150 200 250 300

Epoch

0.05

0.06

0.07

0.08

0.09

0.10

0.11

R
ec

on
st

ru
ct

io
n
 L

o
ss

Method

SpiralNet+ + (ch = 64)
+ Wk (Local)
+ Wkn (Local, Spatially-Adaptive)
+ Wikn (Local, Spatially-Adaptive, Dynamic)
+ Wimn (Global,Spatially-Adaptive, Dynamic)

Figure 9: Study on the effect of different inductive biases. The SpiralNet++ baseline is augmented with different layers for three different
network sizes ch=16,32,64 (from left to right). Training curves show how the effect of layers incorporating different inductive biases in the
network impacts the overall performance. Interestingly, different characteristics play different roles in different network sizes. In all cases,
our method (orange) is capable to integrate global reasoning, vertex-wise adaptivity (i.e. spatially-adaptive), and instance-wise adaptivity
(i.e. dynamic) achieving the best performance.

5.3.2 Effect of Different Characteristics

We recall that our layer acts as a non-linear generalization
for the SpiralConvolution layer. It has three main char-
acteristics: i) is spatially adaptive ii) is dynamic (i.e. its
weight tensor responds to each mesh in a unique way) and
iii) is capable to enlarge its receptive field up via learnable
pooling, potentially including all the vertices in the mesh.
In Figure 9 we study the contribution of each characteris-
tic using a SpiralNet++ backbone with three different sizes
(ch = 16, 32, 64). The baseline operator in SpiralNet++ can
be defined from a static weight tensor Wkcd of fixed recep-
tive field K = 9. In this experiment, we incorporate oper-
ators characterized by different inductive biases (which are
made explicit by the subscripts in the corresponding weight
tensors) into the central 2 stages of the architectures to eval-
uate their individual contribution over the baseline in terms
of final reconstruction loss. Specifically, we evaluate four
additions to SpiralNet++: i) a layer parametrized with a
tensor Wk implemented as a depth-wise convolution with
K = 9 (cyan line), ii) a layer parametrized with a tensor
Wkn representing a depth-wise spatially adaptive convolu-
tion with K = 9 (green line), iii) a layer parametrized with
a tensor Wikn implemented as a spatially adaptive and dy-
namic depth-wise convolution with K = 9, analogous to
that one described in Equation (5) (yellow line), and lastly
iv) a layer parametrized with a tensor Wimn that is global,
spatially adaptive and dynamic, implemented containing
both components from Equation (5) and Equation (6) (or-
ange line). As clearly visible from the figure, for all network
sizes, the use of Wk does not provide any particular advan-
tage over the baseline, since the information contained in

Wk is already included in the baseline tensor Wkcd. As
expected, the other operations increasingly improve perfor-
mance, although their relative contributions change depend-
ing on the size of the network. For instance, characteris-
tics of spatial adaptivity are more effective for small net-
work sizes, because intuitively, the ability of the network
to process larger receptive fields is limited by its capacity.
However, in all cases, our method achieves the best perfor-
mance, and vastly outperforms the baseline configuration,
thus demonstrating that characteristics of adaptive process-
ing with dynamic receptive field cannot be easily captured
by naı̈vely increasing the number of parameters.

5.3.3 Effect of Kernel Sizes
To validate the impact of the proposed approach with dif-
ferent receptive fields, we follow the experimental setup
of [17] and extend the results on shape reconstruction for
two extra values of local kernel size (K = 4 and K = 14)
while keeping the remaining architecture and experimental
setup unchanged. Moreover, we extend the previous section
results evaluating our method in 3 variants (-II, -III, -IV),
depending on the number of encoder-decoder stages aug-
mented in the original architecture. Results are provided in
Table 3. As visible from the table, our method shows con-
sistent improvement across network dimensions and kernel
sizes, thus providing state-of-the-art performance on all the
evaluated setups with +11.98%, +16.13% and +16.26%
improvement for K = 4, K = 9 and K = 14 respectively.
Notably, the use of tensor factorization and Summed-Area-
Tables limits the overall complexity of the network, allow-
ing our method to leverage vertex awareness, mesh aware-

14627

K=4 K=9 K=14
Method Mean Error Median Error Params Mean Error Median Error Params Mean Error Median Error Params

ChebNet* 0.659 ± 0.783 0.391 92K 4.329 ± 3.591 3.453 155K 4.348 ± 3.587 3.469 217K
SpiralNet++* 0.554 ± 0.674 0.320 92K 0.430 ± 0.542 0.239 155K 0.385 ± 0.491 0.214 217K

FeaStNet* 0.599 ± 0.730 0.342 94K 0.524 ± 0.646 0.297 158K 0.488 ± 0.599 0.279 222K
MoNet* 0.671 ± 0.760 0.450 93K 0.528 ± 0.604 0.354 155K 0.480 ± 0.551 0.321 218K

Aff -MoNet [17] 0.499 ± 0.579 0.298 105K 0.406 ± 0.455 0.251 168K 0.347 ± 0.386 0.218 230K
Ours -II 0.512 ± 0.665 0.296 106K 0.389 ± 0.521 0.214 172K 0.343 ± 0.481 0.197 239K
Ours -III 0.472 ± 0.611 0.271 119K 0.373 ± 0.507 0.207 198K 0.340 ± 0.468 0.188 276K
Ours -IV 0.439 ± 0.599 0.244 160K 0.345 ± 0.481 0.186 289K 0.314 ± 0.454 0.166 419K

Table 3: 3D shape reconstruction results for different kernel sizes K. Methods are trained on the COMA [43] dataset, with a 4-stage
encoder-decoder structure. All errors are given in millimeters. Our method, in the -II and -III variants, augment the central 2 and 3 stages of
SpiralNet++ with our proposed layer, respectively. Variant -IV augment all 4 stages. Results for the methods presenting a ”*” are reported
from [17]. Our method’s results are consistent across kernel and network sizes, outperforming competitors in all their variants.

ness, and dynamic learning of the receptive field without
adding unnecessary complexity overhead. In additional ma-
terial, we extend these results on two additional datasets.

5.3.4 Adaptive Weights Visualization

We provide extra visualizations of the behavior of the adap-
tive weights produced by our method. We extend the analy-
sis done on 3D shape correspondence to the task of 3D mesh
generation using 3DMM. We start by randomly selecting a
subset of 10 meshes from the COMA test set. Then, we
extract the learnable kernels from the two inner stages of
Ours-II model, specifically grouping together encoder and
decoder kernels according to the size of the resolution of
the mesh. We follow the setup described for the FAUST
dataset, and we select an equidistanced subset of 10 ver-
tices, projecting their specialized kernels into 2D points us-
ing t-SNE. Figures 10 and 11 show the mesh-adaptive and
instance-adaptive design of our operators. In the plots, ker-
nels grouped together are associated with different vertices,
and furthermore, inside each group, a different response can
be identified for every different mesh. This trend is repli-
cated across stages and tasks, providing insights into the
adaptive nature of our method.

0

34

69

104

139

173

208

243

278

313

Figure 10: t-SNE plot of the adaptive kernels used by our
method on the task of 3D shape generation on COMA. Stage 2

0

8

17

26

34

43

52

60

69

78

Figure 11: t-SNE plot of the adaptive kernels used by our
method on the task of 3D shape generation on COMA. Stage 1

6. Conclusion

Drawing inspiration from modern deep learning archi-
tectures in the Euclidean domain, we propose a new adap-
tive operator for 3D meshes that extends SpiralConvolu-
tion to its non-local, mesh-aware, and vertex-aware vari-
ant. The adaptive nature of our operator does not come
at a large computational cost, because it is specifically de-
signed to factorize individual operations into lighter pro-
cessing blocks, without sacrificing performance. In the task
of shape correspondence, compared to SpiralNet++, our
operator reduces the Giga Floating Point Operations per
second by almost 94% without any loss in performance.
Further, using our operator to enrich the representation of
3DMM, we report state-of-the-art performance. We pro-
vide evidence of the adaptive behavior of our method using
t-SNE plots. In additional material we extend the experi-
mental section with results on additional datasets, extra vi-
sualization, and ablations, providing more insights into the
inner workings of our method. These results demonstrate
that adapting operators to the underlying graph structure can
be accomplished without significantly increasing complex-
ity, showcasing our method as a promising new operator
for 3D representation learning. However, extracting spirals
from meshes with different topologies necessarily limits our
method to separately process the spirals for each individ-
ual mesh, which could be cumbersome in real applications.
In the future, we plan to address this problem by explicitly
adapting our method to work with heterogeneous meshes
and sampling trajectories. Additional interesting directions
would be considering different, non-necessarily spiral, tra-
jectories in order to adapt to different representations such
as point clouds or even 2D images on a grid.

7. Acknowledgement

S. Zafeiriou and part of the research were funded
by the EPSRC Fellowship DEFORM(EP/S010203/1)
and by the EPSRC Project GNOMON (EP/X011364/1).

14628

References
[1] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Se-

bastian Thrun, Jim Rodgers, and James Davis. Scape: shape
completion and animation of people. In ACM SIGGRAPH
2005 Papers, pages 408–416. 2005. 6

[2] Federica Bogo, Javier Romero, Matthew Loper, and
Michael J Black. Faust: Dataset and evaluation for 3d
mesh registration. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3794–3801,
2014. 5

[3] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and
Michael Bronstein. Learning shape correspondence with
anisotropic convolutional neural networks. Advances in neu-
ral information processing systems, 29, 2016. 5

[4] Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis,
Michael Bronstein, and Stefanos Zafeiriou. Neural 3d mor-
phable models: Spiral convolutional networks for 3d shape
representation learning and generation. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 7213–7222, 2019. 2, 3, 5, 7

[5] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are
graph attention networks? arXiv preprint arXiv:2105.14491,
2021. 3

[6] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Mag-
azine, 34(4):18–42, 2017. 2

[7] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong
Chen, Lu Yuan, and Zicheng Liu. Dynamic convolution:
Attention over convolution kernels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11030–11039, 2020. 2

[8] Zhixiang Chen and Tae-Kyun Kim. Learning feature aggre-
gation for deep 3d morphable models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13164–13173, 2021. 2, 3

[9] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017. 4

[10] Grigorios G Chrysos, Stylianos Moschoglou, Giorgos
Bouritsas, Jiankang Deng, Yannis Panagakis, and Stefanos
Zafeiriou. Deep polynomial neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
44(8):4021–4034, 2021. 3

[11] Franklin C Crow. Summed-area tables for texture mapping.
In Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, pages 207–212, 1984. 4

[12] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. Advances in neural informa-
tion processing systems, 29, 2016. 2, 5, 7

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2, 3

[14] Mohammad Farazi, Wenhui Zhu, Zhangsihao Yang, and
Yalin Wang. Anisotropic multi-scale graph convolutional
network for dense shape correspondence. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 3146–3155, 2023. 7

[15] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Hein-
rich Müller. Splinecnn: Fast geometric deep learning with
continuous b-spline kernels. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
869–877, 2018. 2, 5

[16] Zhongpai Gao, Junchi Yan, Guangtao Zhai, Juyong Zhang,
and Xiaokang Yang. Robust mesh representation learning
via efficient local structure-aware anisotropic convolution.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 2022. 2, 3

[17] Shunwang Gong, Mehdi Bahri, Michael M Bronstein, and
Stefanos Zafeiriou. Geometrically principled connections in
graph neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 11415–11424, 2020. 2, 7, 8, 9

[18] Shunwang Gong, Lei Chen, Michael Bronstein, and Stefanos
Zafeiriou. Spiralnet++: A fast and highly efficient mesh con-
volution operator. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision workshops, pages 0–0,
2019. 2, 3, 5, 6, 7

[19] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,
and Mohammed Bennamoun. Deep learning for 3d point
clouds: A survey. IEEE transactions on pattern analysis and
machine intelligence, 43(12):4338–4364, 2020. 2

[20] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
arXiv preprint arXiv:1609.09106, 2016. 2, 4

[21] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A sur-
vey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(11):7436–7456, 2021. 2

[22] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: A network with
an edge. ACM Trans. Graph., 38(4), jul 2019. 2

[23] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 2

[24] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato,
and Yann LeCun. What is the best multi-stage architecture
for object recognition? In 2009 IEEE 12th international con-
ference on computer vision, pages 2146–2153. IEEE, 2009.
2

[25] Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser.
Blended intrinsic maps. ACM transactions on graphics
(TOG), 30(4):1–12, 2011. 5

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[27] Tamara G Kolda and Brett W Bader. Tensor decompositions
and applications. SIAM review, 51(3):455–500, 2009. 3, 4

14629

[28] Sören Laue, Matthias Mitterreiter, and Joachim Giesen. A
simple and efficient tensor calculus. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages
4527–4534, 2020. 3

[29] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-
eledets, and Victor Lempitsky. Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. arXiv
preprint arXiv:1412.6553, 2014. 3

[30] Qinsong Li, Shengjun Liu, Ling Hu, and Xinru Liu. Shape
correspondence using anisotropic chebyshev spectral cnns.
In Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pages 14658–14667, 2020.
2, 6

[31] Isaak Lim, Alexander Dielen, Marcel Campen, and Leif
Kobbelt. A simple approach to intrinsic correspondence
learning on unstructured 3d meshes. In Proceedings of the
European Conference on Computer Vision (ECCV) Work-
shops, pages 0–0, 2018. 3

[32] Zhi-Hao Lin, Sheng-Yu Huang, and Yu-Chiang Frank Wang.
Convolution in the cloud: Learning deformable kernels in 3d
graph convolution networks for point cloud analysis. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 1800–1809, 2020. 2

[33] Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay at-
tention to mlps. Advances in Neural Information Processing
Systems, 34:9204–9215, 2021. 2, 4

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 2, 3

[35] Jonathan Masci, Davide Boscaini, Michael Bronstein, and
Pierre Vandergheynst. Geodesic convolutional neural net-
works on riemannian manifolds. In Proceedings of the
IEEE international conference on computer vision work-
shops, pages 37–45, 2015. 5

[36] Thomas W Mitchel, Vladimir G Kim, and Michael Kazh-
dan. Field convolutions for surface cnns. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 10001–10011, 2021. 2, 6

[37] Federico Monti, Davide Boscaini, Jonathan Masci,
Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using
mixture model cnns. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
5115–5124, 2017. 2, 5, 7

[38] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin,
and Dmitry P Vetrov. Tensorizing neural networks. Advances
in neural information processing systems, 28, 2015. 3

[39] Yannis Panagakis, Jean Kossaifi, Grigorios G Chrysos,
James Oldfield, Mihalis A Nicolaou, Anima Anandkumar,
and Stefanos Zafeiriou. Tensor methods in computer vision
and deep learning. Proceedings of the IEEE, 109(5):863–
890, 2021. 3

[40] Adrien Poulenard and Maks Ovsjanikov. Multi-directional
geodesic neural networks via equivariant convolution. ACM
Transactions on Graphics (TOG), 37(6):1–14, 2018. 2

[41] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 2

[42] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 2

[43] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J Black. Generating 3d faces using convolutional
mesh autoencoders. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 704–720, 2018. 7,
9

[44] Alex Rogozhnikov. Einops: Clear and reliable tensor manip-
ulations with einstein-like notation. In International Confer-
ence on Learning Representations, 2021. 3

[45] Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks
Ovsjanikov. Diffusionnet: Discretization agnostic learn-
ing on surfaces. ACM Transactions on Graphics (TOG),
41(3):1–16, 2022. 2

[46] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 945–953,
2015. 1

[47] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models
and faster training. In International Conference on Machine
Learning, pages 10096–10106. PMLR, 2021. 3

[48] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6411–6420, 2019. 2

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2, 3

[50] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. arXiv preprint arXiv:1710.10903, 2017. 2,
3

[51] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet:
Feature-steered graph convolutions for 3d shape analysis. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2598–2606, 2018. 2, 5, 7

[52] Paul Viola and Michael J Jones. Robust real-time face detec-
tion. International journal of computer vision, 57(2):137–
154, 2004. 4

[53] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 2

[54] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018. 2

[55] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic

14630

graph cnn for learning on point clouds. ACM Trans. Graph.,
38(5), oct 2019. 3

[56] Ruben Wiersma, Elmar Eisemann, and Klaus Hildebrandt.
Cnns on surfaces using rotation-equivariant features. ACM
Transactions on Graphics (ToG), 39(4):92–1, 2020. 2, 6

[57] Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin,
and Michael Auli. Pay less attention with lightweight and dy-
namic convolutions. arXiv preprint arXiv:1901.10430, 2019.
2

[58] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 1

[59] Yuqi Yang, Shilin Liu, Hao Pan, Yang Liu, and Xin Tong.
Pfcnn: Convolutional neural networks on 3d surfaces using
parallel frames. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13578–
13587, 2020. 2

[60] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng,
Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. Do
transformers really perform badly for graph representation?
In Advances in Neural Information Processing Systems, vol-
ume 34, pages 28877–28888, 2021. 3

[61] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,
Will Hamilton, and Jure Leskovec. Hierarchical graph rep-
resentation learning with differentiable pooling. In Advances
in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. 3

[62] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang,
and Hyunwoo J Kim. Graph transformer networks. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates, Inc.,
2019. 3

[63] Linguang Zhang, Maciej Halber, and Szymon Rusinkiewicz.
Accelerating large-kernel convolution using summed-area
tables. arXiv preprint arXiv:1906.11367, 2019. 4

14631

