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Abstract

Structured pruning and quantization are promising ap-
proaches for reducing the inference time and memory foot-
print of neural networks. However, most existing methods
require the original training dataset to fine-tune the model.
This not only brings heavy resource consumption but also
is not possible for applications with sensitive or proprietary
data due to privacy and security concerns. Therefore, a few
data-free methods are proposed to address this problem, but
they perform data-free pruning and quantization separately,
which does not explore the complementarity of pruning and
quantization. In this paper, we propose a novel framework
named Unified Data-Free Compression(UDFC), which per-
forms pruning and quantization simultaneously without any
data and fine-tuning process. Specifically, UDFC starts
with the assumption that the partial information of a dam-
aged(e.g., pruned or quantized) channel can be preserved
by a linear combination of other channels, and then de-
rives the reconstruction form from the assumption to restore
the information loss due to compression. Finally, we for-
mulate the reconstruction error between the original net-
work and its compressed network, and theoretically deduce
the closed-form solution. We evaluate the UDFC on the
large-scale image classification task and obtain significant
improvements over various network architectures and com-
pression methods. For example, we achieve a 20.54% accu-
racy improvement on ImageNet dataset compared to SOTA
method with 30% pruning ratio and 6-bit quantization on
ResNet-34. Code will be available at here.

1. Introduction
Model compression is the most common way to reduce

the memory footprint and computational costs of the model,
and it mainly includes two methods: pruning[22, 28, 4] and
quantization[8, 17, 43, 5, 3]. Among the pruning domain,
structured pruning[41, 36] is more actively studied than
unstructured pruning[20, 34] since it eliminates the whole

*Equal contribution.
†Corresponding author.

channel or even the layer of the model while not requiring
any special hardware or libraries for acceleration. Under
such conditions, we also focus our attention on structured
pruning in this paper. Quantization methods attempt to re-
duce the precision of the parameters and/or activations from
32-bit floating point to low-precision representations. Thus
the storage requirement for the model can be diminished
substantially, as well as the power consumption.

Although the existing compression methods achieve a
satisfactory compression ratio with a reasonable final per-
formance, most of them require the original training data
for a tedious fine-tuning process. The fine-tuning process
is not only data-dependent but also computationally expen-
sive, while users may not have access to sufficient or com-
plete data in many real-world applications, such as medi-
cal data and user data. Therefore, data-free compression
methods are proposed, which don’t require any real data
and fine-tuning process. For instance, Data-free parameter
pruning[38] first introduces the data-independent technique
to remove the redundant neurons, and Neuron Merging[18]
extends the data-free method from fully connected lay-
ers to convolutional layers. Meanwhile, there exist some
methods using the synthetic samples to perform the fine-
tuning process, such as Dream[44]. In the field of quan-
tization, recent works propose post-training quantization
methods[32, 2, 45, 24, 6, 46] that use the synthetic data to
replace the real data for quantization and achieve the SOTA
results. For instance, ZeroQ [2] uses the distilled data that
matches the statistics of batch normalization layers to per-
form post-training quantization. DSG[45] proposes a novel
Diverse Sample Generation scheme to enhance the diversity
of synthetic samples, resulting in better performance.

However, some problems still hinder the deployment of
data-free compression. On the one hand, the latest data-
free quantization approaches focus on improving the quality
of synthetic samples rather than releasing the quantization
from its dependence on data. In this case, generating the
synthetic samples introduces extra computational costs. On
the other hand, current approaches perform data-free prun-
ing and quantization separately, which does not explore the
complementarity of weight pruning and quantization.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. The general overview of UDFC, which performs the pruning and quantization simultaneously. S is the scale factor and S ̸= S′

. See Section 3 for details of S. After the output channels of l-th layer are pruned or quantized, our goal is to maintain the feature map
Z(l+1) of (l + 1)-th layer. We first deduce the reconstruction form based on our assumption and then reconstruct the input channels of
(l+1)-th layer to restore the information loss caused by compression of l-th layer. Finally, we formulate the reconstruction error between
the feature map Z(l+1) and Ẑ(l+1)/ Z̃(l+1).

In this paper, we propose a novel joint compression
framework named Unified Data-Free Compression(UDFC),
which overcomes abovementioned issues without any origi-
nal/synthetic data and fine-tuning process, as shown in Fig-
ure 1. Our contributions can be summarized as follows:

• We propose the assumption that the partial information
of a damaged(e.g., pruned or quantized) channel can
be preserved by a linear combination of other channels.
Based on this assumption, we derive that the informa-
tion loss caused by pruning and quantization of the l-th
layer can be restored by reconstructing the channels of
the (l+1)-th layer. The assumption and reconstruction
form are described in Section 3.2.

• Based on the reconstruction form, we formulate the re-
construction error between the original network and its
compressed network. The reconstruction error is de-
scribed in Section 3.3.

• Based on the reconstruction error, we prove that re-
construction error can be minimized and theoreti-
cally deduce the closed form solution in Section 4.

Furthermore, extensive experiments on CIFAR-10[19]
and ImageNet[35] with various popular architectures
demonstrate the effectiveness and generality of UDFC.
For example, UDFC on VGG-16 yields around 70%
FLOPS reduction and 28× memory footprint reduc-
tion, with only a 0.4% drop in accuracy compared to
the uncompressed baseline on CIFAR-10 dataset.

2. Related Work
2.1. Model Compression

Researchers have proposed various methods to ac-
celerate the model inference, mainly including network
pruning[12, 26] and network quantization[11]. The early
pruning methods concentrate around unstructured prun-
ing, which removes single parameters from networks[30].
These approaches, though theoretically interesting, are
more difficult to implement within current hardware and
software settings. Therefore, much recent work has focused
on structured pruning[1], where network channels can be re-
moved, and the models can be practically compressed and
accelerated. Weight quantization refers to the process of
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discretizing the range of weight values so that each weight
can be represented using fewer bits. [11] first quantizes the
network weights to reduce the model size by grouping the
weights using k-means. [16, 33] then introduce the binary
network, in which weights are quantized to 1-bit. How-
ever, these aforementioned methods require access to data
for fine-tuning to recover the performance. Fine-Tuning is
often not possible for applications with sensitive or propri-
etary data due to privacy and security concerns. Therefore,
we focus on pruning and quantization without any data and
fine-tuning process in this paper.

2.2. Data-Free Pruning

Some pruning methods attempt to eliminate the depen-
dency on the entire dataset and expensive fine-tuning pro-
cess. [29] formally establishes channel pruning as an opti-
mization problem and solves this problem without using the
entire dataset. [31] introduces a novel pruning algorithm,
which can be interpreted as preserving the total flow of
synaptic strengths through the network at initialization sub-
ject to a sparsity constraint. Meanwhile, there is a branch
of data-free pruning methods [39, 40, 44] that still fine-
tune the pruned model with limited or synthetically gener-
ated data. Although the above approaches propose effective
methods for channel or neuron selection, several epochs of
fine-tuning process and some training data are unavoidable
to enable adequate recovery of the pruned network.

In fact, there are only two methods to prune the model
without any data and fine-tuning process. Data-free param-
eter pruning[38] shows how similar neurons are redundant
and proposes a systematic way to remove them. Then Neu-
ron Merging[18] extends the data-free method from fully
connected layers to convolutional layers based on the as-
sumption that a pruned kernel can be replaced by another
similar kernel.

2.3. Data-Free Quantization

Data Free Quantization [32] suffers a non-negligible per-
formance drop when quantized to 6-bit or lower bit-width.
Therefore, more recent studies employ generator architec-
tures similar to GAN [9] to generate synthetic samples
that replace the original data. Such as, ZeroQ [2] gen-
erates samples that match the real-data statistics stored in
the full-precision batch normalization layer to perform the
post-training quantization resulting in better performance.
IntraQ[46] propose a local object reinforcement that lo-
cates the target objects at different scales and positions of
synthetic images, aiming to enhance the intra-class hetero-
geneity in synthetic images. DSG[45] slackens the batch
normalization matching constraint and assigns different at-
tention to specific layers for different samples to ensure
diverse sample generation. However, using the generated
samples to improve the accuracy of quantized models is

time-consuming and complex. In this paper, we do not use
any data to quantize the network.

3. Formualtion of Reconstruction Error
In this section, we first illustrate how to reconstruct the

channels based on our assumption after pruning and quan-
tization, and then mathematically formulate the reconstruc-
tion error.

3.1. Background Knowledge

CNN architecture. Assuming that a CNN model with L
layers, we use Nl−1 and Nl to represent the number of in-
put channels and the output channels for the l-th convolu-
tion layer. The l-th convolution layer transforms the input
feature map X(l−1) ∈ RNl−1×Hl−1×Wl−1 into the output
feature map Z(l) ∈ RNl×Hl×Wl . The convolution weights
of the l-th layer are denoted as W (l) ∈ RNl×Nl−1×K×K .
Note that K is the kernel size of each channel, and H ×W
is the corresponding feature map size. Therefore,

Z(l) = X(l−1) ⊛W (l), (1)

where ⊛ denotes the convolution operator. For CNN archi-
tectures, the convolution operation is widely followed by a
batch normalization(BN) procedure and an activation func-
tion, thus the activation feature map X(l+1) can be formu-
lated as:

X(l) = Θ(B(Z(l))) = Θ(
γ(Z(l) − µ)

σ
+ β), (2)

in which B(·) is the BN procedure and Θ(·) is the activation
function. γ, µ, σ and β are the variables of BN.

Pruning criterion. In channel pruning, most methods fol-
low a selecting strategy, i.e., selecting some original chan-
nels via the l2-norm[22] of weight and scaling factors[27]
in BN layer. In general, pruning criterion tends to be closely
related to model performance. In this paper, we do not focus
on proposing a complex criterion but on restoring the per-
formance of networks that are pruned in a simple criterion
such as l1-norm and l2-norm.

Uniform quantization. Quantization converts the
floating-point parameters W in the pretrained full-precision
model to low-precision fixed-point values W̃ , thus reducing
the model complexity. Uniform quantization [47] is the
simplest and most hardware-friendly method, which is
defined as:

W̃ =
2

2k − 1
round[(2k − 1)(

W

2max|W |
+

1

2
)]− 1, (3)
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where k is the quantization bit-width. In this case, we use
uniform quantization to preform the quantization process in
this paper.

3.2. Layer-wise Reconstruction

Assumption. In model compression, the performance of
the compressed network is usually worse than original net-
work. To improve the performance of compressed network
without any data and fine-tuning process, an ideal idea is
to preserve the information of these damaged channels(e.g.,
pruned channel or quantized channel). We assume that the
partial information of the damaged channels can be pre-
served by a linear combination of other channels. For clar-
ity, we describe the assumptions about pruning and quanti-
zation separately. Suppose that convolution weight W (l) is
pruned to its damaged versions Ŵ (l) ∈ RN̂l×Nl−1×K×K ,
where N̂l is the number of unpruned channels. The As-
sumption of pruning can be formulated as follows:

W
(l)
j ≈

N̂l∑
i=1

ŝi ×W
(l)
i , ∀j ∈ [N̂l, Nl], i ∈ [1, N̂l] (4)

where ŝ is a scale factor that measures the degree of asso-
ciation of the i-th channel with the j-th channel under the
pruning. We prove that there always exists ŝi minimizing
the MSE error (∥W (l)

j −
∑N̂l

i=1 ŝi×W
(l)
i ∥22) of Eq.4 in Sec-

tion 4.
Suppose that the m-th channel of l-th layer is quantized

to its damaged versions W̃
(l)
m , the assumption of quantiza-

tion can be formulated as:

W̃ (l)
m ≈ s̃m ×W (l)

m , ∀m ∈ [1, Nl] (5)

where s̃ is a scale factor that measures the degree of associ-
ation of the m-th channel with its quantized version under
the quantization. We prove that there always exists s̃i min-
imizing the MSE error (∥W̃ (l)

m − s̃m × W
(l)
m ∥22) of Eq.5 in

Section 4.

Reconstruction after pruning. Our goal is to maintain
the output feature map of the (l+1)-th layer while pruning
the channels of the l-th layer. For brevity, we prune only
one channel in the l-th layer to illustrate how the channels
of (l + 1)-th layer are reconstructed, which can easily be
generalized to multiple channels. Without loss of generality,
the j-th channel of the l-th layer is to be pruned.

As shown in Figure 1, after the j-th output channel of
the l-th layer is pruned, the output feature map Z

(l)
j is sub-

sequently deleted. Based on Eq.1 and Eq.4, we can deduce
that the pruned output feature map Z

(l)
j can be replaced by

a linear combination of other undamaged feature maps:

Z
(l)
j = X(l−1) ⊛W

(l)
j ≈ X(l−1) ⊛

Nl∑
i=1,i̸=j

ŝi ×W
(l)
i

=

Nl∑
i=1,i̸=j

ŝi × Z
(l)
i ,

(6)

When only considering the BN layer, we have X(l) =
B(Z(l)). Based on Eq.6, the k-th channel of output feature
map Z(l+1) can be represented as:

Z
(l+1)
k =

Nl∑
i=1

X
(l)
i ⊛W

(l+1)
k,i

≈
Nl∑

i=1,i̸=j

B(Z(l)
i )⊛ (W

(l+1)
k,i + ŝi ×W

(l+1)
k,j ),

(7)
(More details in Appendix A.)

in which (W
(l+1)
k,i +si×W

(l+1)
k,j ) is a reconstructed filter. In

this way, we can preserve the information of pruned chan-
nels in the l-th layer by adding its corresponding pruned
channel to each of the other channels in the next layer.
According to the Eq.7, we reconstruct the channels of the
(l + 1)-th layer to restore the information loss caused by
pruning the l-th layer in the following form:

Ẑ
(l+1)
k =

Nl∑
i=1,i̸=j

X
(l)
i ⊛ (W

(l+1)
k,i + ŝi ×W

(l+1)
k,j ), (8)

where Ẑ
(l+1)
k represents the reconstructed version after

pruning.

Reconstruction after quantization. The most significant
difference between pruning and quantization is whether the
channel exists or not. Quantized channels use the low bit-
width to save the weights instead of discarding it away. In
this case, we compensate for the information loss by adding
a scale factor to its corresponding channels on the next
layer. For simplicity, let W̃ (l)

m denotes the weight of m-th
channel of l-th layer after quantization. Based on Eq.1 and
Eq.5, we can deduce the reconstruction version of Z̃(l+1)

k

after quantization, which can be expressed as:

Z̃
(l+1)
k =

Nl∑
i=1,i̸=m

X
(l)
i ⊛W

(l+1)
k,i + X̃(l)

m ⊛ (s̃m ×W
(l+1)
k,m ),

(9)
where X̃(l)

m denotes the damaged version of X(l)
m after quan-

tification.
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3.3. Reconstruction Error

However, the above analyses are all under the assump-
tion, and the reconstruction error is inevitable in fact. Af-
ter restoring information loss caused by the compression in
the l-th layer, we measure the reconstruction error using
the feature map Z

(l+1)
k of (l + 1)-th layer before and after

compression.

Pruning error. After pruning, the difference ep between
Z

(l+1)
k and Ẑ

(l+1)
k can be expressed as:

ep = Zk
(l+1) − Ẑ

(l+1)
k

= {γj
σj

{X(l−1) ⊛ (W
(l)
j −

Nl∑
i=1,i̸=j

ŝi
γiσj

σiγj
W

(l)
i )}+

(βj −
γjµj

σj
)− (

Nl∑
i=1,i̸=j

ŝi(βi −
γiµi

σi
))}⊛W

(l+1)
k,j

(10)
(More details in Appendix B.)

Influence of Activation Function. The Relu activation
function is widely used in CNN architectures. Since we
cannot obtain the feature map after the activation function
in a data-free way, we qualitatively analyze the effects of
the Relu function on our pruning error ep. In this case, the
difference ep can be re-expressed as:

ep = Θ(B(Z(l)
j ))−

Nl∑
i=1,i̸=j

ŝi ×Θ(B(Z(l)
i ))

⩽
1

2
(A+ |A|),

(11)

(More details in Appendix C.)
where A = B(Z(l)

j ) −
∑Nl

i=1,i̸=j ŝi × B(Z(l)
i ) and we omit

the W
(l+1)
k,j as it doesn’t change with pruning. The term

1
2 (A + |A|) determine the upper boundary of ep and the
form of (B(Z(l)

j )−
∑Nl

i=1,i̸=j ŝi × B(Z(l)
i )⊛W

(l+1)
k,j is the

same as Eq.10, so the difference ep of pruning we obtained
is equal whether the Relu activation function is considered
or not.

Note that X(l−1) and W
(l+1)
k,j are not changed with prun-

ing. Therefore, we define the reconstruction error ℓp of
pruning as:

ℓp = ∥W (l)
j −

Nl∑
i=1,i̸=j

ŝi
γiσj

σiγj
W

(l)
i ∥22

+ α1∥(βj −
γjµj

σj
)−

Nl∑
i=1,i̸=j

ŝi(βi −
γiµi

σi
)∥22,

(12)

in which, we introduce a hyperparameter α1 to adjust the
proportion of different parts.

Quantization error. After quantization, the difference eq

of Z(l+1)
k can be expressed as:

eq = Zk
(l+1) − Z̃

(l+1)
k

= {(γmW
(l)
m

σm
− s̃m

γmW̃
(l)
m

σm
)⊛X(l−1) + s̃m

γmµm

σm

− γmµm

σm
+ βm − s̃mβm}⊛W

(l+1)
k,m ,

(13)
(More details in Appendix D.)

Same as pruning, X(l−1) and W
(l+1)
k,m are not changed

with quantization, while the activation function does not in-
fluence the form of the reconstruction error. Therefore, we
define the reconstruction error ℓq of quantization as:

ℓq = ∥γmW
(l)
m

σm
− s̃m

γmW̃
(l)
m

σm
)∥22+

α2∥(βm − γmµm

σm
)− s̃m(βm − γmµm

σm
)∥22

(14)

in which, we introduce a hyperparameter α2 to adjust the
proportion of different parts.

Reconstruction error Previously, we analyzed the errors
caused by pruning and quantization separately. When prun-
ing and quantization are performed simultaneously, the re-
construction error ℓre can be expressed as:

ℓre = ℓp + ℓq (15)

4. Solutions for Reconstruction Error

In this section, we prove the existence of the optimal so-
lution s by minimizing the reconstruction error. The j-th
channel is pruned and the m-th channel is quantized in l-th
layer, and we get the reconstruction error ℓre:

ℓre = ∥W (l)
j − ŝi

Nl∑
i=1,i̸=j

γiσj

σiγj
W

(l)
i ∥22

+ α1∥(βj −
γjµj

σj
)− (

Nl∑
i=1,i̸=j

ŝi(βi −
γiµi

σi
))∥22

+ ∥γmW
(l)
m

σm
− s̃m

γmW̃
(l)
m

σm
)∥22

+ α2∥(βm − γmµm

σm
)− s̃m(βm − γmµm

σm
)∥22,

(16)
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For simplicity, we have:

Gi =
γiσj

σiγj
W(l)

i , V = W
(l)
j ,

Q = [G1, · · · ,Gj−1,Gj+1, · · · ,GNl
],

Ki = βi − γiµi

σi
,

P = [K1, · · · ,Kj−1,Kj+1, · · · ,KNl
],

Ri =
γiW(l)

i

σi
,

ŝ = [ŝ1, · · · , ŝj−1, ŝj+1, · · · , ŝNl
],

(17)

where V is the vectorized W
(l)
i , Ki is the vectorized βi −

γiµi

σi
and Ri is the vectorized γiW(l)

i

σi
. Then the loss can be

simplified as follows:

ℓre = (V − ŝQ)T (V − ŝQ) + α1(Kj − ŝP)T (Kj − ŝP)

+ (Rm − s̃mRm)T (V − s̃mRm)

+ α2(Km − s̃mKm)T (Km − s̃mKm)
(18)

The first and second derivative of the ŝ is:

∂ℓre
∂ŝ

= −2QT V + 2ŝQT Q + α1(−2PT Kj + 2ŝPT P)

∂2ℓre

∂ŝ2
= 2QT Q + 2α1PT P

(19)
ℓre is a convex function and thus there exists an unique

optimal solution s such that ∂ℓre
∂ ŝ = 0, so we get the optimal

solution as follows:

ŝ = (QT V + α1PT Kj)(QT Q + α1PT P)−1 (20)

Similarly, we get the optimal solution of s̃m:

s̃m = (Rm
T Rm + α2KT

mKm)(Rm
T Rm + α2KT

mKm)−1

(21)
It is worth noting that the MSE error of Eq.4 and Eq.5 are

the main components of the reconstruction error. Therefore,
the optimal solution s not only minimizes the reconstruction
error but also satisfies the assumptions.
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Figure 2. Comparison of the accuracy of ResNet-56 with different
pruning ratios and bit widths on CIFAR-10 dataset.
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Values

Figure 3. The accuracy comparison of different α values on
ResNet-56. As the value α increases, the accuracy curve first rise
and then fall.

Implementation of the scale factors. As shown in Eq.8
and Eq.9, we replace the original convolutional layer with
the reconstruction form after getting the optimal scales.

5. Experiments
In this section, we conduct experiments with several dif-

ferent widely-used neural networks for image classification
task to evaluate the effectiveness of our data-free compres-
sion method that do not require any data and fine-tuning
process. In all experiments, we quantize the weights of
all model layers using uniform quantization and prune the
channels with the simple pruning criterion l1-norm and l2-
norm. In addition, we visualize the weights offset and loss

Table 1. Quantization results on ImageNet dataset. ’No-D’ denotes
whether to use synthetic samples or calibration sets.

Model Method No-D (W/A)Bit Size(MB) Top-1(%)

ResNet-18

Baseline - 32/32 44.59 71.47
DFQ[32] ✓ 6/6 8.36 66.30
DSG[45] × 6/6 8.36 70.46
SQuant[10] × 6/6 8.36 70.74
Ours ✓ 6/6 8.36 72.76
DDAQ[24] × 4/4 5.58 58.44
DSG[45] × 4/4 5.58 34.53
Ours ✓ 4/4 5.58 63.49

ResNet-50

Baseline - 32/32 97.49 77.72
ZeroQ[2] × 6/6 18.46 75.56
DSG[45] × 6/6 18.46 76.07
SQuant[10] × 6/6 18.46 77.05
Ours ✓ 6/6 18.46 77.57
OMSE[7] ✓ 4/32 12.28 67.36
GDFQ[42] × 4/4 12.28 55.65
SQuant[10] × 4/4 12.28 70.80
Ours ✓ 4/4 12.28 72.09

MobileNetV2

Baseline - 32/32 13.37 73.03
DFQ[32] ✓ 8/8 3.34 71.20
DDAQ[24] × 6/6 2.50 70.30
ZeroQ[2] × 6/6 2.50 69.62
Ours ✓ 6/6 2.50 71.87

DenseNet
Baseline - 32/32 31.92 74.36
OMSE[7] ✓ 4/32 6.00 64.40
Ours ✓ 4/32 6.00 70.15
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Table 2. Results of VGG-16 and ResNet-56 on CIFAR-10 dataset. ’P-R’ represents the pruning ratio. ’Ave-Im’ denotes the accuracy
improvement compared to Prune. ’W-bit’ denotes the bit-width of the weights.

V
G

G
-1

6
(A

cc
.9

3.
70

)

P-R Method Criterion Ave-Im(↑) W-bit Size(MB)
l2-norm l1-norm

60%
Prune 89.14 88.70 0 32 21.6
NM 93.16 93.16 4.24 32 21.6
Ours 93.40 93.40 4.48 6 4.04

70%
Prune 35.83 35.55 0 32 16.4
NM 65.77 65.35 29.87 32 16.4
Ours 93.32 93.20 57.31 6 3.08

80%
Prune 18.15 17.56 0 32 11.2
NM 40.26 39.49 22.02 32 11.2
Ours 91.79 91.26 73.67 6 2.12

R
es

N
et

-5
6

(A
cc

.9
3.

88
)

30%
Prune 76.95 74.46 0 32 2.4
NM 85.22 84.41 9.11 32 2.4
Ours 90.33 90.28 14.6 4 0.30

40%
Prune 46.44 49.68 0 32 2.0
NM 76.56 77.89 24.16 32 2.0
Ours 86.99 87.29 39.08 4 0.24

50%
Prune 24.34 25.58 0 32 2.15
NM 56.18 56.45 31.36 32 2.15
Ours 81.90 81.60 56.79 4 0.20

landscape [23] to further illustrate the validity of UDFC,
and the results are shown in Appendix E.

5.1. Ablation Study

Our proposed method consists of two compression tech-
niques, quantization and pruning. Meanwhile, there exist
hyperparameters α1 and α2 in the reconstruction error that
impacts the compressed network performance. We perform
the following ablation studies to evaluate the effects of dif-
ferent parts of our framework.

Study on pruning ratio and bit-width. UDFC performs
pruning and quantization, the appropriate variables(i.e.,
pruning ratio and bit-width) become critical to compression
ratio and performance of compressed model. Therefore,
we compress ResNet-56 with different pruning ratios and
bit-widths on CIFAR-10[21] dataset to explore the optimal
trade-off between pruning and quantization.

As shown in Figure 2, the model performance decreases
as the pruning ratio gradually increases. Similarly, the
model performance also decreases as the weight bit width
decreases, but at 4-bit the accuracy does not drop but rises.
This peculiar phenomenon indicates that our method can
maximize the restoration of information when quantizing
ResNet-56 with 4-bit. We do not present quantified results
for lower bits(i.e., 3-bit and 2-bit) because their accuracy
drops sharply. At lower bits quantization, the loss of infor-
mation is so great that our method cannot effectively restore
the information.

Study on hyperparameters α1 and α2. To explore the
effect of hyperparameters α1 and α2 on compressed net-
work, we prune and quantize ResNet-56 separately on
CIFAR-10 dataset. During the pruning, we use different
α1 values to prune 50% channels of ResNet-56. During the
quantization, we use different α2 values for 2-bit quantiza-
tion of ResNet-56.

As shown in Figure 3, when α1 increases from 0 to 0.01,
the final performance of the pruned model increase steadily.
However, when α1 is set to 0.04, the accuracy suffers a huge
drop. The curve of α2 is similar to that of α1, with the max-
imum performance at 0.008. This phenomenon confirms
that the hyperparameters we introduced have improved the
performance of the compressed model to some extent.

5.2. Quantization

We quantize ResNet-18[13], ResNet-50[13],
MobileNetV2[14] and DenseNet[15] on ImageNet[35]
dataset using the uniform quantization. In order to demon-
strate the effectiveness of our method on quantization,
we compare our method with DFQ[32], OMSE[7] and
SQuant[10], which do not require any data and fine-tuning
process. In addition, we also compare our method with
some Post Training Quantization(PTQ) methods including
ZeroQ[2], DDAQ[24], DSG[45] and ZAQ[25], which use
the synthetic samples or calibration sets to improve the
performance of quantized model.

Table 1 shows that our method has significant advantages
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Table 3. Results of ResNet-101 and ResNet-34 on ImageNet dataset. ’P-R’ represents the pruning ration. ’Ave-Im’ denotes the accuracy
improvement compared to Prune. ’W-bit’ denotes the bit-width of weights.

R
es

N
et

-1
01

(A
cc

.7
7.

31
%

) P-R Method Criterion Ave-Im (↑) W-bit Size(MB) FLOPS(G)
l2-norm l1-norm

10%
Prune 69.10 68.52 0 32 154.4 6.84
NM 72.46 71.95 3.40 32 154.4 6.84
Ours 74.69 74.61 5.84 6 28.8 6.84

20%
Prune 45.60 44.45 0 32 132.4 6.08
NM 62.41 60.57 16.46 32 132.4 6.08
Ours 71.36 71.00 26.16 6 24.8 6.08

30%
Prune 10.10 9.560 0 32 112.4 5.3
NM 38.44 37.68 28.23 32 112.4 5.3
Ours 65.76 65.22 55.66 6 21.2 5.3

R
es

N
et

-3
4

(A
cc

.7
3.

27
%

)

10%
Prune 63.51 61.95 0 32 78.8 3.24
NM 67.10 66.50 4.35 32 78.8 3.24
Ours 69.86 69.39 6.89 6 14.8 3.24

20%
Prune 42.80 40.62 0 32 70.0 2.88
NM 55.70 54.20 13.24 32 70.0 2.88
Ours 65.44 64.68 23.35 6 13.2 2.88

30%
Prune 16.80 12.60 0 32 61.6 2.52
NM 39.40 36.34 23.17 32 61.6 2.52
Ours 59.25 57.57 43.71 6 11.6 2.52

compared to DFQ, OMSE and other PTQ methods for var-
ious models. For instance, when quantizing the weights
of ResNet-18 with 6-bit, our method achieves 72.76% ac-
curacy that is 6.46% higher than DFQ and 1.9% higher
than DSG. Our method remains robust to low-bit quanti-
zation of the lightweight model MobileNetV2(71.87%) and
DenseNet(70.15%). In addition, our method has a tremen-
dous advantage in time consumption. ZeroQ takes 29 sec-
onds to quantize ResNet50 on an 8 Tesla V100 GPUs, while
UDFC only takes 2 seconds on a RTX 1080Ti GPU.

5.3. Unified Compression.

In this section, we compress the ResNet-56 and VGG-
16[37] on CIFAR-10[19] dataset, ResNet-34 and ResNet-
101 on ImageNet dataset to demonstrate the effective-
ness of our method. Since no data-free method can per-
form both pruning and quantization simultaneously, we
mainly compare our method with data-free pruning meth-
ods. In the field of pruning, our direct competitor is Neu-
ron Merging(NM)[18], which is a one-to-one compensation
method. Same as Neuron Merging, we do not perform any
compensation after pruning as a way to obtain the baseline
performance, called Prune.

Experiments on CIFAR-10. For the CIFAR-10 dataset,
we test UDFC on ResNet-56 and VGG-16 with different
pruning rates: 30%-80%. In addition, we quantize the un-
pruned channels to 4-bit and 6-bit respectively, further re-
ducing the memory footprint of parameters.

As shown in Table 2, UDFC achieves state-of-the-art
performance. For example, with about 28× parameters
drop(0.53M) and 80% FLOPS reduction, VGG-16 still has
excellent classification accuracy (91.26%), which is 51%
average accuracy higher than NM at a 80% pruning ratio.

Experiments on ImageNet. For the ImageNet dataset,
we test UDFC on ResNet-34 and ResNet-101 with prun-
ing rates: 10%, 20% and 30%. In addition, we quantize the
unpruned channels to 6-bit, further reducing the memory
footprint of parameters.

Table 3 shows that UDFC outperforms the previous
method. By varying the ratio of pruning from 10% to
30%, the Ave-Im increases accordingly compared to NM
and Prune. That means our method is more robust than one-
to-one compensation. For ResNet-101, we get a 55.66%
improvement in accuracy compared to Prune and a 27.23%
improvement compared to NM at a pruning ratio of 30%.
Meanwhile, the parameters are substantially reduced due to
the quantization, so that not only do we achieve higher per-
formance but also a lower memory footprint of parameters
both in ResNet-34 and ResNet-101.

6. Conclusion
In this paper, we propose a unified data-free compression

framework that performs pruning and quantization simulta-
neously without any data and fine-tuning process. It starts
with the assumption that the partial information of a dam-
aged channel can be preserved by a linear combination of
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other channels and then gets a fresh approach from the as-
sumption to restore the information loss caused by compres-
sion. Extensive experiments on benchmark datasets validate
the effectiveness of our proposed method.

7. Acknowledgement
This work was supported by a Grant from The

National Natural Science Foundation of China(No.
U21A20484)

References
[1] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Struc-

tured pruning of deep convolutional neural networks. ACM
Journal on Emerging Technologies in Computing Systems
(JETC), 13(3):1–18, 2017. 2

[2] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel
zero shot quantization framework. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13169–13178, 2020. 1, 3, 6, 7

[3] Jun Chen, Shipeng Bai, Tianxin Huang, Mengmeng Wang,
Guanzhong Tian, and Yong Liu. Data-free quantization via
mixed-precision compensation without fine-tuning. Pattern
Recognition, page 109780, 2023. 1

[4] Jun Chen, Hanwen Chen, Mengmeng Wang, and Yong Liu.
Learning discretized neural networks under ricci flow. arXiv
preprint arXiv:2302.03390, 2023. 1

[5] Jun Chen, Liang Liu, Yong Liu, and Xianfang Zeng. A learn-
ing framework for n-bit quantized neural networks toward
fpgas. IEEE transactions on neural networks and learning
systems, 32(3):1067–1081, 2020. 1

[6] Kanghyun Choi, Deokki Hong, Noseong Park, Youngsok
Kim, and Jinho Lee. Qimera: Data-free quantization with
synthetic boundary supporting samples. In Thirty-Fifth Con-
ference on Neural Information Processing Systems, 2021. 1

[7] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev.
Low-bit quantization of neural networks for efficient infer-
ence. In 2019 IEEE/CVF International Conference on Com-
puter Vision Workshop (ICCVW), pages 3009–3018. IEEE,
2019. 6, 7

[8] Allen Gersho and Robert M. Gray. Vector quantization and
signal compression. In The Kluwer international series in
engineering and computer science, 1991. 1

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 3

[10] Cong Guo, Yuxian Qiu, Jingwen Leng, Xiaotian Gao, Chen
Zhang, Yunxin Liu, Fan Yang, Yuhao Zhu, and Minyi Guo.
SQuant: On-the-fly data-free quantization via diagonal hes-
sian approximation. In International Conference on Learn-
ing Representations, 2022. 6, 7

[11] Suyog Gupta, Ankur Agrawal, K. Gopalakrishnan, and Pri-
tish Narayanan. Deep learning with limited numerical pre-
cision. In International Conference on Machine Learning,
2015. 2, 3

[12] Song Han, Jeff Pool, John Tran, and William Dally. Learn-
ing both weights and connections for efficient neural net-
work. Advances in neural information processing systems,
28, 2015. 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 7

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 7

[15] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 7

[16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks. Ad-
vances in neural information processing systems, 29, 2016.
3

[17] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew G. Howard, Hartwig Adam, and
Dmitry Kalenichenko. Quantization and training of neu-
ral networks for efficient integer-arithmetic-only inference.
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2704–2713, 2018. 1

[18] Woojeong Kim, Suhyun Kim, Mincheol Park, and Geun-
seok Jeon. Neuron merging: Compensating for pruned neu-
rons. Advances in Neural Information Processing Systems,
33:585–595, 2020. 1, 3, 8

[19] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009. 2, 8

[20] César Laurent, Camille Ballas, Thomas George, Nicolas Bal-
las, and Pascal Vincent. Revisiting loss modelling for un-
structured pruning. ArXiv, abs/2006.12279, 2020. 1

[21] Vadim Lebedev and Victor Lempitsky. Fast convnets using
group-wise brain damage. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2554–2564, 2016. 7

[22] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. ArXiv,
abs/1608.08710, 2017. 1, 3

[23] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom
Goldstein. Visualizing the loss landscape of neural nets. In
Neural Information Processing Systems, 2018. 7

[24] Zhikai Li, Liping Ma, Xianlei Long, Junrui Xiao, and Qingyi
Gu. Dual-discriminator adversarial framework for data-free
quantization. Neurocomputing, 2022. 1, 6, 7

[25] Yuang Liu, Wei Zhang, and Jun Wang. Zero-shot adversarial
quantization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1512–
1521, 2021. 7

[26] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2736–2744, 2017. 2

5884



[27] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. 2017
IEEE International Conference on Computer Vision (ICCV),
pages 2755–2763, 2017. 3

[28] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
ArXiv, abs/1810.05270, 2019. 1

[29] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression.
In Proceedings of the IEEE international conference on com-
puter vision, pages 5058–5066, 2017. 3

[30] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.
Variational dropout sparsifies deep neural networks. In In-
ternational Conference on Machine Learning, pages 2498–
2507. PMLR, 2017. 2

[31] Ben Mussay, Margarita Osadchy, Vladimir Braverman, Sam-
son Zhou, and Dan Feldman. Data-independent neural prun-
ing via coresets. arXiv preprint arXiv:1907.04018, 2019. 3

[32] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
Max Welling. Data-free quantization through weight equal-
ization and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1325–
1334, 2019. 1, 3, 6, 7

[33] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016. 3

[34] Masuma Akter Rumi, Xiaolong Ma, Yanzhi Wang, and
Peng Jiang. Accelerating sparse cnn inference on gpus
with performance-aware weight pruning. Proceedings of the
ACM International Conference on Parallel Architectures and
Compilation Techniques, 2020. 1

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 2, 7

[36] Yasufumi Sakai, Yusuke Eto, and Yuta Teranishi. Structured
pruning for deep neural networks with adaptive pruning rate
derivation based on connection sensitivity and loss function.
Journal of Advances in Information Technology, 2022. 1

[37] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2015. 8

[38] Suraj Srinivas and R Venkatesh Babu. Data-free param-
eter pruning for deep neural networks. arXiv preprint
arXiv:1507.06149, 2015. 1, 3

[39] Jialiang Tang, Mingjin Liu, Ning Jiang, Huan Cai, Wenxin
Yu, and Jinjia Zhou. Data-free network pruning for model
compression. In 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–5. IEEE, 2021. 3

[40] Yehui Tang, Shan You, Chang Xu, Jin Han, Chen Qian,
Boxin Shi, Chao Xu, and Changshui Zhang. Reborn filters:
Pruning convolutional neural networks with limited data. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 5972–5980, 2020. 3

[41] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured
pruning of large language models. In EMNLP, 2020. 1

[42] Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang
Cao, Chuangrun Liang, and Mingkui Tan. Generative low-
bitwidth data free quantization. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part XII 16, pages 1–17. Springer,
2020. 6

[43] Li yi Wei and Marc Levoy. Fast texture synthesis using tree-
structured vector quantization. Proceedings of the 27th an-
nual conference on Computer graphics and interactive tech-
niques, 2000. 1

[44] Hongxu Yin, Pavlo Molchanov, Jose M. Alvarez, Zhizhong
Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz.
Dreaming to distill: Data-free knowledge transfer via deep-
inversion. In The IEEE/CVF Conf. Computer Vision and Pat-
tern Recognition (CVPR), 2020. 1, 3

[45] Xiangguo Zhang, Haotong Qin, Yifu Ding, Ruihao Gong,
Qinghua Yan, Renshuai Tao, Yuhang Li, Fengwei Yu, and
Xianglong Liu. Diversifying sample generation for accu-
rate data-free quantization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15658–15667, 2021. 1, 3, 6, 7

[46] Yunshan Zhong, Mingbao Lin, Gongrui Nan, Jianzhuang
Liu, Baochang Zhang, Yonghong Tian, and Rongrong Ji. In-
traq: Learning synthetic images with intra-class heterogene-
ity for zero-shot network quantization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12339–12348, 2022. 1, 3

[47] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016. 3

5885


