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Abstract

We introduce Iterated Integrated Attributions (IIA) - a

generic method for explaining the predictions of vision mod-

els. IIA employs iterative integration across the input im-

age, the internal representations generated by the model,

and their gradients, yielding precise and focused explana-

tion maps. We demonstrate the effectiveness of IIA through

comprehensive evaluations across various tasks, datasets,

and network architectures. Our results showcase that IIA

produces accurate explanation maps, outperforming other

state-of-the-art explanation techniques.

1. Introduction

The emergence of deep learning has ushered in significant

breakthroughs within the realm of artificial intelligence, par-

ticularly in computer vision. Advanced deep Convolutional

Neural Networks (CNNs) architectures [50, 30, 32, 41],

and recent Vision Transformer (ViT) models [20, 28] have

demonstrated state-of-the-art performance in image classifi-

cation [37, 50], object detection [29, 17, 10], and semantic

segmentation [17, 4] tasks. Yet, many deep learning models

lack interpretability, making it difficult to explain the rea-

soning behind their predictions. As a result, Explainable

AI (XAI) has become a prominent research area in com-

puter vision, and numerous methods have been proposed

for explaining and interpreting the internal workings of dif-

ferent neural network architectures in various application

domains [60, 49, 46, 15, 7, 44, 6, 8, 26].

Explanation methods attempt to produce an explanation

map in the form of a heatmap (also known as relevance

or saliency map) that attributes the prediction to the input

by highlighting specific regions in the input image. Early

gradient-based methods produced explanation maps based

on the gradient of the prediction w.r.t. the input image

[49, 50, 52]. Then, Grad-CAM [46] and the follow-up works

*Denotes equal contribution.

by [12, 33, 5] proposed to compute the explanation maps

based on the internal activation maps (also known as Class

Activation Maps (CAM)) and their corresponding gradients.

In parallel, path integration methods such as Integrated Gra-

dients (IG) [54] proposed to produce an explanation map by

accumulating the gradients of the linear interpolations be-

tween the input and reference images. The aforementioned

techniques were formulated and evaluated on CNNs. Fol-

lowing the advent of Transformer-based architectures [55], a

variety of approaches has also been proposed for interpreting

Vision Transformer (ViT) models [15, 56, 14].

This paper presents Iterated Integrated Attributions (IIA)

- a universal technique for explaining vision models, applica-

ble to both CNN and ViT architectures. IIA employs iterative

integration across the input image, the internal representa-

tions generated by the model, and their gradients. Thereby,

IIA leverages information from the activation (or attention)

maps created by all network layers, including those from the

input image. We present comprehensive objective and sub-

jective evaluations that demonstrate the effectiveness of IIA

in generating faithful explanations for both CNN and ViT

models. Our results show that IIA outperforms current state-

of-the-art methods on various explanation and segmentation

tests across all datasets, model architectures, and metrics.

2. Related Work

Explaining CNNs Explanation methods for CNNs have

been studied extensively. Saliency-based methods [16, 49,

43, 62, 60, 61] and activation-based methods [21] use the

feature-maps obtained by forward propagation in order to

interpret the output prediction. Perturbation-based meth-

ods [23, 24] measures the output’s sensitivity w.r.t. the input

using random perturbations applied in the input space. Gradi-

ent methods produce explanation maps based on the gradient

itself or via a function that combines the activation maps

with their gradients [48, 53]. A prominent example is the

Grad-CAM (GC) [46] method that uses the pooled gradients

and the activation maps to produce explanation maps. GC
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attracted much attention from the XAI community with sev-

eral follow-up works [12, 25, 33, 5]. Another relevant line

of work is path integration methods. Integrated Gradients

(IG) [54] integrates over the interpolated image gradients.

Blur IG (BIG) [59] is concerned with the introduction of

information using a baseline and opts to use a path that pro-

gressively removes Gaussian blur from the attributed image.

Guided IG (GIG) [36] improves upon IG by introducing

the idea of an adaptive path method. By calculating the

integration along a different path, high gradient areas are

avoided which often leads to an overall reduction in irrel-

evant attributions. Differing from IG, GIG, and BIG, IIA

employs iterated integration, enabling interpolation of the

complete set of activation (attention) maps across all net-

work layers. Moreover, IIA does not limit the integrand

to plain gradients but accommodates any arbitrary function

involving the activation (attention) maps and their gradients..

Gradient-free methods produce explanation maps via manip-

ulation over the activation maps without relying on gradient

information [57, 19]. For instance, LIFT-CAM employs the

DeepLIFT [47] technique to estimate the activation maps’

SHAP values [42], which are then combined with the ac-

tivation maps to produce the explanation map. However,

since these methods do not consider gradient information,

their ability to effectively guide explanations towards the

predicted class is limited.

Explaining ViTs Initial attempts to interpret Transform-

ers utilized the inherent attention scores of ViT models to

gain insights into input processing [55, 11]. However, the

challenge lay in effectively combining scores from differ-

ent layers. Simple averaging of attention scores for each

token, for instance, often resulted in signal blurring [1, 15].

Abnar and Zuidema introduced the Rollout method, which

computes attention scores for input tokens at each layer by

considering raw attention scores within a layer as well as

those from preceding layers [1]. Rollout showed improve-

ments over the use of a single attention layer, but its reliance

on simplistic aggregation assumptions often led to high-

lighting irrelevant tokens. LRP [3], proposed to propagate

gradients from the output layer to the beginning, considering

all the components in the transformer’s layers beyond the

attention layers. Chefer et al. [15] presented Transformer

Attribution (T-Attr), a class-specific Deep Taylor Decompo-

sition method in which relevance propagation is applied for

positive and negative attributions. More recently, the authors

introduced Generic Attention Explainability (GAE) [14], a

generalization of T-Attr for explaining Bi-Modal transform-

ers. Both T-Attr and GAE are considered state-of-the-art

methods for explaining ViT models and have been shown

to outperform multiple strong baselines such as LRP, partial

LRP [56], ViT-GC [15], and Rollout [1]. IIA distinguishes

itself from the aforementioned approaches in three key ways:

Firstly, IIA introduces and utilizes the Gradient Rollout (GR)

- a variant of Rollout that combines attention matrices with

their gradients. Secondly, IIA employs GR as the integrand

in its iterative integration process, conducting integration

across interpolated attention matrices. Lastly, IIA stands out

as a universal method, capable of generating explanations

for both CNNs and ViTs.

3. Iterated Integrated Attributions

We start by describing the problem setup. Then, we

briefly overview IG [54] and continue to describe IIA in

detail.

3.1. Problem Setup

Let x ∈ R
c0×p0×q0 be an input image. We define

a generic neural network model with L intermediate lay-

ers, each is a function hl (1 ≤ l ≤ L) that outputs

xl := hl(xl−1), with x0 := x. The final layer is a clas-

sification head f that produces the prediction f(xL), and the

score for the class y is given by fy(x
L). Additionally, we

define the application of the neural network to the input x by

φ(x) = f(xL). (1)

For example, if φ is a ResNet (ViT) model, each hl would

be implemented as a residual convolutional (transformer

encoder) block. Our goal is to generate an explanation map

m ∈ R
p0×q0 that quantifies the attribution of each element

in x to the prediction φ(x). The attribution can be computed

w.r.t. φy(x) - the score assigned to the class y. Typically,

the class of interest y is either set to the target (ground-truth)

class or to the predicted class, which is the class receiving

the highest score in φ(x).

3.2. IG

In what follows, we quickly overview IG [54], which

is a special case of IIA. Given the input x and a reference

r ∈ R
c0×p0×q0 (that is designed to represent missing infor-

mation, hence usually set to the zero image), we define a

linear interpolant by

v = r+ a(x− r), (2)

with a ∈ [0, 1]. IG produces an explanation map by inte-

grating gradients along the linear path between r and x as

follows:

mIG =

∫ 1

0

∂φy(v)

∂v
◦
∂v

∂a
da = (x− r) ◦

∫ 1

0

∂φy(v)

∂v
da,

(3)

where ◦ stands for the Hadamard (elementwise) product. In

practice, the integral in Eq. 3 is numerically approximated

as follows:

mIG ≈
x− r

n
◦

n∑
k=1

∂φy(v)

∂v
, (4)
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by setting a = k
n

in Eq. 2. The approximation in Eq. 4 simply

sums the gradients of n interpolants on the linear path from r

to x. Finally, since mIG is in R
c0×p0×q0 (typically, c0 = 3

since x is a RGB image), mean reduction along the channel

axis is performed to obtain a 2D explanation map.

3.3. IIA - A Generic Formulation

IIA diverges from IG in several aspects: First, IIA does

not confine gradient computation to the input x. In fact,

recent studies have suggested that gradients derived from

internal activation maps can yield improved explanation

maps [46, 12, 25]. Secondly, IIA employs an iterated inte-

gral across multiple intermediate representations (such as

activation or attention maps) generated during the network’s

forward pass. This enables the iterative accumulation of

gradients w.r.t. the representations of interest. Lastly, unlike

IG, IIA does not restrict the integrand to plain gradients, but

encompasses a function of the entire set of representations

produced by the network and their gradients. In this section,

we assume a generic neural network model. In Sec. 3.4, we

describe the utilization of IIA for CNN and ViT models.

As outlined above, IIA utilizes linear interpolations on the

intermediate representations generated during the forward

propagation of the input through the layers of the model.

In order to incorporate interpolation, we modify the com-

putation in the l-th layer to accommodate an interpolation

to the intermediate representation of interest (produced as

part of the computational pipeline of hl). To facilitate the

formulation of the IIA approach, we introduce a set of nota-

tions: First, the input to the l-th layer undergoes processing

by a function ul to obtain the intermediate representation of

interest, denoted as ul. Subsequently, an interpolation step is

(optionally) performed to derive the interpolant vl (interpo-

lated version of ul). Finally, the interpolant vl is processed

by a function vl that completes the original computational

pipeline, yielding the input to the subsequent layer in the

model. This entire process can be expressed mathematically

using the following equations:

hl = vl(vl), (5)

with

vl = rl + (al)
bl(ul − rl), (6)

and

ul = ul(hl−1). (7)

The rationale behind Eqs. 5-7 is as follows: ul is a func-

tion that computes the intermediate representation of interest

ul (the representation that is to be interpolated) based on

the input to the l-th layer hl−1. ul is further subtracted by

a corresponding reference1 representation rl = min(ul),

1The reference should represent missing information. Other possible

choices include (but not limited to) the null representation or random noise.

which is the minimum value in each channel of ul that is

subsequently broadcast to a tensor with the same dimensions

as ul. Additionally, in Eq. 6, bl is an indicator parameter

that determines whether the interpolation is effectively ap-

plied to ul during the propagation via the l-th layer in the

model (bl = 1) or not (bl = 0), and al ∈ [0, 1] controls the

interpolation step, hence playing a similar role as a from

Eq. 3, resulting in the interpolant vl. Finally, vl is a function

that receives the (interpolated) intermediate representation

vl and completes the required computation for producing the

expected output from the l-th layer. Hence, the dimensions

of hl must match those of hl(xl−1). Moreover, if bj = 0 for

all j ≤ l, ul = hl and vl is the identity mapping, then hl and

hl(xl−1) are identical. Note that the implementation of ul,

vl, and the choice of representations to be interpolated all

vary based on the model’s architecture (as will be detailed in

Sec. 3.4).

We further define b = [b0, ..., bL] ∈ {0, 1}L+1, h−1 =
x, and set u0 and v0 to the identity mapping. Therefore, we

have

u0 = x and h0 = v0. (8)

Finally, the IIA explanation map is defined as follows:

ml
b
=

∫ 1

0

∫ 1

0

. . . (ul − rl) ◦

∫ 1

0

ql dal . . . da0, (9)

where the integrand ql is a function of the first l intermediate

representations produced by the model (including the input

representation) and their gradients.

It is worth exploring the versatility of Eq. 9: ql deter-

mines the integrand that is a function of the participating

representations and their gradients from the first l layers

in the model. b determines which of the representations

produced by the first l layers are effectively interpolated:

if bj = 1 (0 ≤ j ≤ l), then the integration is effectively

applied w.r.t. the variable aj , otherwise bj = 0 and both

Eqs. 6 and 9 become agnostic to aj . For example, one can

observe that by setting b0 = [1, 0..., 0], l = 0, ul = hl (for

l > 0), ql =
∂fy(h

L)
∂vl , and vl to the identity mapping, Eq. 9

(IIA) degenerates to Eq. 3 (IG) as follows:

m0
b0

= (u0 − r0) ◦

∫ 1

0

∂fy(h
L)

∂v0
da0

= (x− r0) ◦

∫ 1

0

∂φy(v
0)

∂v0
da0.

The first equality follows from Eq. 9, and the second is due

to Eqs. 1 and 8. Finally, by dropping the zero index, we

receive Eq. 3.

IIA (Eq. 9) provides the freedom to run over multiple

interpolated representations (including the input) in an itera-

tive manner. Once l is set, the integrand ql changes based on

the interpolated representations hj (j ≤ l) in the preceding
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layers that participate in the interpolation process, where

participation is determined by the indicator vector b. For

example, if we set l = L and b = [1, 1, . . . , 1], mL
b will

be the outcome of a L iterated integrals over qL. Thus, in

computing mL
b , all the intermediate representations within

the network (including the input) are iteratively interpolated.

In practice, ml
b is numerically approximated using:

ml
b
≈

1

n

n∑
k0=1

1

n

n∑
k1=1

. . .
1

n
(ul − rl) ◦

n∑
kl=1

ql

=
1

nβ

nb0∑
k0=1

nb1∑
k1=1

. . . (ul − rl) ◦

nbl∑
kl=1

ql ,

(10)

β =
∑l

i=0 bi, and aj =
kj

n
(Eq. 6). Again, Eq. 10 degen-

erates to Eq. 4 for b0 = [1, 0..., 0] and l = 0. Note that

if ql is not a 2D tensor, a subsequent mean reduction step

is required to obtain a 2D explanation map (followed by a

resize operation to align with the spatial dimensions of the

input x, if needed).

3.4. IIA Implementation

CNN Models In CNNs, φ follows a CNN architecture

(e.g., ResNet [31]). In this case, all hl are residual convolu-

tional blocks producing 3D tensors, i.e., activation maps. In

our implementation, we choose to apply the interpolation on

the activation maps, hence we set all vl to the identity map-

ping, ul = hl, and the min reduction operation in the com-

putation of rl is applied channel-wise (followed by broad-

casting). Additionally, we set the integrand ql = vl◦ ∂f(hL)
∂vl .

The motivation for this choice is as follows: vl is the (inter-

polated) activation map that highlights regions where filters

are activated, facilitating pattern detection. Its gradient quan-

tifies the attribution level of the particular class of interest

to each element in the activation map. Thus, we anticipate

that areas where both the gradient and activation exhibit sub-

stantial magnitude with a consistent sign will yield effective

explanations. This characteristic is achieved through the

Hadamard product between vl and its gradient. Finally, we

apply a mean reduction to the channel axis, followed by a

resize operation to obtain a 2D explanation map.

ViT Models In the case of ViT [20], the input x is a 2D ten-

sor corresponding to a sequence of tokens (vectors), where

the first token is the [CLS] token, and the rest represent

patches from the input image. In our implementation, we

opted to interpolate the attention matrices. To this end, we

set ul to the attention function which involves the softmax

operation on the scaled dot-product between the query and

key representations across multiple attention heads. Assum-

ing there are p attention heads, for each head, we perform

interpolation on the attention matrix. In this process, the

reference rl is assigned as the zero tensor since all entries

in the attention matrices are positive due to the softmax

operation. Accordingly, vl continues the self-attention com-

putation by multiplying the interpolated attention matrices

with the value representations for each head. This is fol-

lowed by the necessary computational steps that generate

a new set of token representations for the subsequent trans-

former encoder layer [20]. Finally, we propose setting the

integrand ql to the Gradient Rollout (GR) - a variant of the

Attention Rollout (AR) method [1]. Similarly to AR, GR

amalgamates information from the [CLS] attention across

all attention heads in the model. However, with a notable

distinction, each (interpolated) attention matrix is substituted

by the Hadamard product of the attention matrix and its cor-

responding gradient. The exact implementation of GR is

detailed in our git repository. Given that the output of GR is

already in the form of a 2D tensor, only a subsequent resize

operation is necessary to achieve an explanation map that

corresponds to the spatial dimensions of the input image.

Finally, it is noteworthy that our experimentation indicates

that replacing the matrix product operation with the matrix

sum (as part of the GR computation) leads to comparable

performance.

Due to the large combinatorial space (2L possible combi-

nations for b), and the fact we evaluate on large models, in

this work, we consider double and triple integration in our

complete experiments.

For double integration (IIA2), we set l = L, and b =
[1, 0, 0, ..., 0, 0, 1], in Eq. 10, i.e., b0 = 1 and bL = 1, and

the rest bl = 0 (1 < l < L). This means IIA effectively in-

terpolates over the input image and the activation (attention)

maps from the last layer in the CNN (ViT) model. Inter-

polating on the input image, enables us to examine various

interpolations of the image and study the significance of

pixel features along the integration path. Moreover, integrat-

ing on the last layer allows us to explore the importance of

the aggregated information from the different layers of the

network, as it combines all the network’s features.

For triple integration (IIA3), we further interpolate on the

penultimate layer L−1, i.e., b0 = 1, bL−1 = 1, bL = 1, and

the rest bl = 0 (1 < l < L). This is motivated by the fact

that the penultimate layer captures more comprehensive ob-

jects and features, as it is closer to the classification head. By

including a broader aggregation of features, it assists in pre-

dicting specific classes. In contrast, earlier layers primarily

focus on detecting low-level features such as edges.

Finally, for both IIA2 and IIA3, we set n = 10 and l = L

in Eq. 10, i.e., 10 interpolation steps for each selected layer,

and the integrand is computed w.r.t. the last layer.

3.5. Computational Complexity

The computational complexity of IIA is determined by

the order of the iterated integral being computed. We uti-
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lized the approximation from Eq. 10, which is based on

nested sums (each comprising n terms). Each term necessi-

tates the application of ql, whose computational complex-

ity varies based on the specific implementation. For in-

stance, in Sec. 3.4, ql combines both activation (attention)

maps and their gradients, leading to computations involv-

ing both forward and backward passes. Therefore, if the

computational complexity of ql is O(Q), the overall com-

putational complexity of Eq. 10 is O(nβQ). Yet, the com-

plexity induced by nβ can be significantly reduced through

the utilization of batch processing via GPUs. For exam-

ple, in IIA2 (iterated integration on the input and the last

layer), performing n interpolations on the input in a batch

is straightforward. Next, we can extend this process to in-

ternal layers: creating batches for all interpolations of each

activation map, concatenating these batches into a single

batch, propagating it from the last layer to the prediction

head, and computing gradients of f w.r.t. the activation

maps. Formally, the runtime complexity of IIA can be ex-

pressed as R(IIAM ) = (
∑M

m=1
nm

B
cim−1,im) + nM

B
ciM ,K ,

where ci,j denotes the cost of propagating the data from

layer i to layer j (or backpropagating from j to i), K de-

notes the index of the prediction layer f , n indicates the

number of interpolation steps, B is the maximal batch size

that can be accommodated by the GPU, and M is the num-

ber of layers where interpolation is effectively applied (e.g.,

in IIA2, M = 2). Note that the first and second terms in

R(IIAM ) are the costs of the forward and backward passes,

respectively. Assuming a GPU with B ≥ nM , it follows

that nm

B
= O(1) for all 1 ≤ m ≤ M , resulting in the

cost of IIAM being bounded by a single forward-backward

pass. For example, for IIA2 and IIA3 with n = 10, hav-

ing B = 100 and B = 1000, respectively, is adequate to

achieve nM

B
= O(1), which should be manageable with a

high performance GPU. In these scenarios, the runtimes of

GC, IG, and IIA are comparable. Theoretically, if B ≥ nM ,

IIA can become faster than IG, since in IG the gradients are

backpropagated through the entire network back to the input,

while in IIA2 gradients are backpropagated to the layer iM
(usually one of the penultimate layers). Lastly, distributing

IIA computations across multiple machines can yield further

speed-up.

4. Experimental Setup and Results

Our evaluation include five models: ViT-Base (ViT-B),

ViT-Small (ViT-S) [20], ResNet101 (RN) [30], DenseNet201

(DN) [32], and ConvNext-Base (CN) [41]. Preprocessing

details and links to all models are provided in our GitHub

repository.

Evaluation Tasks and Metrics We present an extensive

evaluation of both explanation and segmentation tasks. It

is worth noting that having superior segmentation accuracy

does not necessarily equate to having superior explanatory

proficiency. Nevertheless, we conduct segmentation tests to

ensure comprehensive comparison with previous works [15,

14, 33, 58]. The explanation metrics include Area Under

the Curves (AUCs) of Positive (POS) and Negative (NEG)

perturbations tests [15], AUC of the Insertion (INS) and

Deletion (DEL) tests [45], AUC of the Softmax Information

Curve (SIC) and Accuracy Information Curve (AIC) [35],

Average Drop Percentage (ADP), and Percentage Increase in

Confidence (PIC) [12]. For POS, DEL, and ADP the lower

the better, while for NEG, INS, SIC, AIC, and PIC the higher

the better. The segmentation metrics include Pixel Accuracy

(PA), mean-intersection-over-union (mIoU), mean-average-

precision (mAP), and the mean-F1 score (mF1) [15]. A

detailed description of the metrics is provided in Appendix A.

Finally, in Appendix C, we provide extensive evaluation on

sanity tests [2] that further validate IIA as a machinery for

generating faithful explanation maps.

Datasets Explanation maps are produced for the Ima-

geNet [18] ILSVRC 2012 (IN) validation set, consisting

of 50K images from 1000 classes. We follow the same setup

from [15], where for each image, an explanation map is pro-

duced twice: (1) w.r.t. the ground-truth class (Target) and (2)

w.r.t. the class predicted by the model (Predicted), i.e., the

class that received the highest score. Accordingly, results are

reported for both the predicted and target classes. Segmen-

tation tests are conducted on three datasets: (1) ImageNet-

Segmentation [27] (IN-Seg): This is a subset of ImageNet

validation set consisting of 4,276 images from 445 classes for

which annotated segmentations are available. (2) Microsoft

Common Objects in COntext 2017 [39] (COCO): This is

a validation set that contains 5,000 annotated segmentation

images from 80 different classes. Some images consist of

multi-label annotations (multiple annotated objects). In our

evaluation, all annotated objects in the image are considered

as the ground-truth. (3) PASCAL Visual Object Classes

2012 [22] (VOC): A validation set that contains annotated

segmentations for 1,449 images from 20 classes.

Evaluated Methods and Hyperparameter Setting The

following explanation methods for CNN models are eval-

uated as baselines: (1) Grad-CAM (GC) [46]. (2) Grad-

CAM++ (GC++) [12]. (3) FullGrad (FG) [53]. (4) Ablation-

CAM (AC) [19]. (5) Layer-CAM (LC) [33]. (6) LIFT-CAM

(LIFT) [34], a state-of-the-art method that was shown to

outperform other strong baselines like ScoreCAM [57]. (7)

Integrated Gradients (IG) [54]. (8) Guided IG (GIG) [36].

(9) Blur IG (BIG) [59]. (10) X-Grad-CAM (XGC) [25].

For ViT models, we considered the following two methods:

(11) Transformer Attribution (T-Attr) [15], a state-of-the-

art method that was shown to outperform a variety of other

strong baselines such as LRP [9], partial LRP [56], Raw-

Attention [14], GC [14] for transformers, and Rollout. (12)
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Figure 1. Explanation maps produced for IIA (IIA3) and three path

integral baselines using CN w.r.t. the ‘Kerry blue terrier’ (top)

and ’tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui’

(bottom) classes.

Generic Attention Explainability (GAE) [14] - This is an-

other state-of-the-art method that was shown to outperform

T-Attr on several metrics. When applied, hyperparameters

for all methods were configured according to the recom-

mended configuration by the authors. (13) Our generic IIA

method is evaluated on both CNN and ViT models. A de-

tailed description of the baselines is provided in Appendix B.

4.1. Results

Explanation Tests Tables 1 and 2 present explanation tests

for CNN and ViT models, respectively. The results encom-

pass all combinations of datasets, models, explanation meth-

ods, explanation metrics, and settings (target and predicted).

Notably, IIA consistently outperforms all baselines across all

metrics and architectures. Among the IIA variants, IIA3 sur-

passes IIA2 for both ViTs (Tab. 2) and CNNs (Tab. 1, hold-

ing true for the vast majority of model-metric combinations).

This trend underscores the advantage of triple integration,

which incorporates information from layer L− 1. In CNNs,

GC and GC++ are the runner up, utilizing both activation

and gradients, and outperforming other methods across most

metrics. Furthermore, path integration methods (IG, BIG,

and GIG) exhibit competitive results on POS and DEL met-

rics but demonstrate weaker performance on other metrics.

This divergence could be attributed to the granular output

maps generated by integration-based methods, as depicted in

Fig. 1. These methods focus solely on integration within the

input space, ignoring activations, and thus might overlook

key features. Notably, achieving high performance on POS

and poor performance on NEG metrics reinforces this obser-

vation. As path integration methods yield sparse maps that

may impact performance in certain metrics, we also report

results for the SIC and AIC metrics [35], employed in the

evaluation of GIG[36] and BIG[59]. However, the inclusion

of SIC and AIC metrics does not alter the observed trends in

the results. This finding emphasizes that IIA is exceptionally

effective in generating high-quality explanation maps.

Segmentation Tests Tables 3 and 4 present segmentation

tests results on CNN and ViT models, respectively. The

Figure 2. Qualitative Results: Explanation maps produced using

ConvNext w.r.t. the classes (top to bottom): ‘accordion, piano

accordion, squeeze box’, ‘warthog’, ‘alp’, and ‘trombone’.

results are reported for all combinations of datasets, models,

explanation methods, and segmentation metrics. For these

experiments, we exclusively consider the top 5 performing

CNN explanation methods from Tab. 1. Once again, it is

evident that IIA is the best performer, yielding the most

accurate segmentation results for both CNN and ViT models.

Qualitative Evaluation Figures 2 and 3 present a quali-

tative comparison of the explanation maps obtained by the

top-performing CNN explanation methods and ViT expla-

nation methods, respectively. These examples are randomly

selected from multiple classes within the IN dataset. Ar-

guably, IIA (IIA3) produces the most accurate explanation

maps in terms of class discrimination and localization. These

results align well with the trends observed in Tabs. 1-4. For

example, in Fig. 2, IA distinguishes itself by capturing multi-

ple objects related to the target class, setting it apart from the

other methods. We further observe that in the case of class

‘accordion, piano accordion, and squeeze box’, IIA focuses

mostly on the correct item, while the gradient-free methods

like AC and LIFT focus mostly on different parts of the im-

age, showcasing their class-agnostic behavior. Interestingly,

in the second row, LIFT generates a flat explanation map,

a phenomenon warranting further investigation in future re-

search. Additional qualitative results for both CNN and ViT

models are provided in Appendix E.

4.2. Ablation Study

In this work, we employ IIA with double and triple in-

tegrals. In this section, we investigate the contribution and

necessity of these choices. To this end, we consider three

alternatives: (1) IMG - only the input image is interpolated,

i.e., we set b0 = 1 and bj = 0 for all j > 0. (2) ACT - only

the representation (activation or attention maps) produced by

the L-th layer in the model is interpolated, i.e., we set bL = 1
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GC GC++ LIFT AC IG GIG BIG FG LC XGC IIA2 IIA3

RN

NEG
Predicted 56.41 55.20 55.39 54.98 45.66 43.97 42.25 54.81 53.52 53.46 56.29 56.63

Target 56.54 55.95 55.23 55.46 42.02 41.93 41.22 54.65 54.19 53.93 56.22 56.89

POS
Predicted 17.82 18.01 17.53 19.38 17.24 17.68 17.44 18.06 17.92 21.02 16.62 16.19

Target 17.65 18.12 17.48 19.73 16.93 17.48 17.26 17.89 17.79 20.61 16.69 15.78

INS
Predicted 48.14 47.56 45.39 47.85 39.87 37.92 36.04 42.68 46.11 43.26 48.01 49.12

Target 48.22 47.27 44.94 47.75 37.55 34.41 34.68 43.08 45.91 43.13 48.05 48.53

DEL
Predicted 13.97 14.17 15.32 14.23 13.49 14.18 13.95 14.64 14.31 14.98 13.18 12.74

Target 13.63 13.94 15.48 15.05 13.46 14.31 14.26 14.98 13.71 14.72 12.82 12.16

ADP
Predicted 17.87 16.91 18.03 16.19 37.52 35.28 40.85 21.06 24.34 17.02 12.79 12.84

Target 17.83 15.97 17.36 15.30 36.51 36.00 41.98 20.29 23.78 16.39 12.31 12.40

PIC
Predicted 36.69 36.53 35.95 35.52 19.94 18.72 24.53 31.59 35.43 36.18 42.96 42.91

Target 37.84 38.37 37.64 37.31 21.43 15.81 23.94 33.18 35.64 37.54 45.21 45.06

SIC
Predicted 76.91 76.44 76.73 73.36 54.67 55.04 56.98 75.35 73.93 72.64 78.52 79.92

Target 76.87 76.62 76.81 73.55 51.54 54.87 55.23 75.39 73.71 72.71 78.13 79.94

AIC
Predicted 74.36 71.97 72.76 70.35 51.92 53.38 53.36 71.49 65.77 69.85 75.49 76.12

Target 72.49 71.42 73.45 70.48 52.71 52.54 54.24 71.38 66.18 70.24 75.88 76.59

CN

NEG
Predicted 52.86 53.82 53.98 53.68 45.24 41.43 40.72 52.06 54.12 52.13 55.94 57.19

Target 53.02 53.05 53.24 53.27 44.56 42.12 40.03 52.65 53.21 52.91 56.61 57.34

POS
Predicted 17.52 17.85 18.23 18.19 17.42 18.03 18.14 18.26 17.58 20.83 15.67 15.28

Target 17.34 17.51 18.05 18.41 17.53 17.32 17.61 17.92 18.03 18.12 15.25 15.21

INS
Predicted 45.65 45.19 43.86 49.18 37.22 32.99 31.02 42.01 44.14 42.07 50.36 51.23

Target 46.21 45.27 43.94 49.75 36.83 33.58 33.92 42.08 44.91 42.14 50.91 51.45

DEL
Predicted 13.43 14.17 15.18 14.73 12.36 13.08 13.29 14.21 13.64 14.78 11.68 11.29

Target 13.32 14.39 14.86 14.44 12.83 13.45 13.69 14.55 14.28 14.29 11.24 10.80

ADP
Predicted 22.46 22.35 29.13 24.38 36.98 35.79 41.73 30.75 37.62 25.68 16.73 16.47

Target 22.39 21.13 28.06 23.03 35.62 34.12 40.82 29.64 36.61 24.74 16.28 15.94

PIC
Predicted 23.16 24.42 22.34 24.59 17.65 13.12 20.69 22.13 22.17 23.26 27.11 27.44

Target 24.53 24.26 22.59 24.33 18.15 13.46 20.48 23.93 22.38 23.59 27.95 28.13

SIC
Predicted 65.93 67.94 54.75 63.95 53.36 58.35 57.27 62.84 69.11 59.12 69.63 70.46

Target 66.86 67.63 56.22 64.78 53.48 58.48 57.40 63.93 68.93 59.09 69.43 70.21

AIC
Predicted 75.64 75.52 57.06 71.53 51.68 55.82 53.82 67.15 75.41 62.38 77.89 78.75

Target 76.92 75.81 60.82 71.85 50.98 55.25 53.86 69.53 74.12 61.78 77.62 78.64

DN

NEG
Predicted 57.40 57.16 58.01 56.63 40.74 37.31 36.67 56.79 56.96 55.74 57.32 58.01

Target 58.56 58.33 58.07 57.78 41.32 41.95 40.88 58.05 58.49 56.87 58.51 59.15

POS
Predicted 17.75 17.81 18.87 18.67 17.31 17.46 17.38 17.84 17.62 18.67 16.82 16.51

Target 17.52 17.78 17.79 19.69 17.00 17.41 17.34 17.46 16.92 18.57 16.63 16.01

INS
Predicted 51.09 50.89 50.63 50.41 37.58 33.31 31.32 50.44 50.60 49.62 50.98 51.86

Target 51.98 51.64 50.31 50.56 38.94 34.11 32.76 51.61 49.76 49.28 51.90 52.65

DEL
Predicted 13.61 13.63 13.29 15.31 13.26 13.27 13.54 14.34 13.85 14.75 13.02 12.79

Target 13.42 13.57 13.36 15.21 13.12 13.84 13.68 14.18 13.69 14.37 12.19 11.93

ADP
Predicted 17.46 17.01 19.45 17.13 35.61 34.51 40.04 20.21 24.23 19.59 13.42 13.56

Target 17.52 16.06 18.76 16.21 29.72 29.14 34.74 19.35 23.59 18.88 13.95 13.93

PIC
Predicted 34.68 35.21 34.13 31.22 22.35 16.62 26.18 31.05 33.81 30.39 39.54 39.69

Target 34.82 35.38 34.59 31.85 23.96 20.56 23.51 31.33 33.95 31.32 39.98 39.83

SIC
Predicted 75.62 74.75 74.72 73.94 54.59 58.55 57.66 72.93 74.34 73.94 77.71 78.13

Target 75.79 74.91 74.35 73.31 53.45 59.02 56.85 73.64 73.93 74.22 76.85 77.27

AIC
Predicted 74.22 71.82 72.65 70.21 54.74 54.56 56.08 70.63 71.82 70.12 75.22 77.16

Target 74.18 72.14 73.29 70.97 54.91 54.77 56.25 71.31 71.88 70.36 75.49 76.99

Table 1. Explanation tests results on the IN dataset (CNN models): For POS, DEL and ADP, lower is better. For NEG, INS, PIC, SIC and

AIC, higher is better. See Sec. 4 for details.

2079



T-Attr GAE IIA2 IIA3

ViT-B

NEG
Predicted 54.16 54.61 56.01 57.68

Target 55.04 55.67 57.47 58.31

POS
Predicted 17.03 17.32 15.19 14.96

Target 16.04 16.72 15.81 15.02

INS
Predicted 48.58 48.96 49.31 50.71

Target 49.19 49.65 50.49 51.26

DEL
Predicted 14.20 14.37 12.89 12.25

Target 13.77 13.99 13.12 12.38

ADP
Predicted 54.02 37.84 33.93 34.05

Target 56.68 36.09 31.08 32.64

PIC
Predicted 13.37 23.65 26.18 30.41

Target 14.97 25.53 28.97 31.75

SIC
Predicted 68.59 68.35 68.92 69.68

Target 68.53 68.26 70.34 70.61

AIC
Predicted 61.34 57.92 62.38 64.46

Target 62.82 60.67 63.93 64.59

ViT-S

NEG
Predicted 53.29 52.81 55.76 56.39

Target 53.93 53.58 58.71 59.46

POS
Predicted 14.16 14.75 13.06 12.15

Target 13.08 14.38 12.97 11.86

INS
Predicted 45.72 45.21 46.55 47.68

Target 46.12 45.69 47.83 48.53

DEL
Predicted 11.28 11.92 11.18 10.31

Target 11.06 11.69 10.98 10.16

ADP
Predicted 51.94 36.98 36.74 36.40

Target 50.59 64.72 39.58 39.43

PIC
Predicted 13.67 8.68 15.49 17.79

Target 15.00 10.02 18.14 19.59

SIC
Predicted 69.46 70.19 70.54 72.13

Target 69.38 72.44 73.43 74.52

AIC
Predicted 63.86 64.49 65.02 65.58

Target 63.45 65.05 66.89 67.62

Table 2. Explanation tests results on the IN dataset (ViT models):

For POS, DEL and ADP, lower is better. For NEG, INS, PIC, SIC

and AIC, higher is better. See Sec. 4 for details.

and bj = 0 for all j < L. Note that for both IMG and ACT,

we set l = L in Eq. 10, i.e., the integrand is computed w.r.t.

the L-th layer. (3) IIA2 (L-1) - performs double integral, but

interpolates on the layer L− 1 instead of the last layer L (by

setting b0 = 1, bL−1 = 1, and bj = 0 for all other layers).

Table 5 reports the results for the RN and ViT-B models

on the IN dataset under the target settings. For the sake of

completeness, we further include the results for IG, IIA2,

and IIA3 (Tabs. 1 and 2). We see that IIA2 and IIA3 per-

form the best. While ACT is inferior to IIA2, it outperforms

IMG. This underscores the need to interpolate on the acti-

vations. Yet, the contributions from both IMG and ACT are

complementary, as can be seen in IIA2 that combines both.

Interestingly, IIA2 (L-1) outperforms IIA2 and IIA3 in

terms of POS and DEL metrics, on the RN model. Figure 4

demonstrates this trend visually. This finding suggests that

IIA2 (L-1) generates more focused maps as it utilizes the

penultimate layer, which has a higher spatial feature map

GC GC++ LIFT AC IIA2 IIA3

IN-SEG

CN

PA 77.01 77.54 63.77 77.04 78.94 79.36

mAP 81.01 85.63 69.40 86.93 87.32 88.13

mIoU 56.58 58.35 53.81 58.42 60.98 61.57

mF1 36.88 38.26 35.91 41.29 41.96 42.32

RN

PA 71.93 71.96 71.68 70.36 72.35 73.31

mAP 84.21 84.23 83.79 81.14 84.83 85.64

mIoU 53.06 53.29 52.17 52.91 53.74 54.68

mF1 42.51 42.68 41.95 42.08 43.91 44.42

DN

PA 73.00 73.21 72.87 72.44 73.64 73.56

mAP 85.04 85.53 84.82 84.62 86.03 86.19

mIoU 54.18 54.57 54.11 54.89 55.04 55.62

mF1 41.74 42.58 41.61 43.51 43.89 44.17

COCO

CN

PA 68.75 66.49 60.37 64.10 70.38 70.73

mAP 75.02 75.21 67.98 76.09 76.21 76.52

mIoU 43.46 44.01 37.08 44.27 46.48 46.90

mF1 28.96 29.85 26.92 30.81 32.45 32.56

RN

PA 64.17 64.39 64.02 63.90 64.89 65.77

mAP 74.19 74.27 73.78 72.80 75.12 75.49

mIoU 42.37 43.25 42.59 42.88 44.56 44.93

mF1 31.64 32.82 31.77 32.41 34.95 35.03

DN

PA 63.50 64.06 63.25 64.51 64.68 64.45

mAP 72.61 73.07 72.15 73.85 74.14 74.39

mIoU 43.02 43.75 42.85 44.16 44.30 44.57

mF1 31.04 32.31 30.83 33.93 34.72 34.98

VOC

CN

PA 72.54 72.09 63.32 69.83 72.96 73.02

mAP 77.27 79.47 68.83 80.45 80.81 82.47

mIoU 50.28 50.63 48.86 49.76 52.11 52.64

mF1 35.24 35.67 33.26 34.51 36.83 36.89

RN

PA 68.74 69.01 68.61 68.00 69.45 70.12

mAP 79.68 79.96 79.41 78.02 80.58 81.26

mIoU 49.44 49.91 49.15 49.32 50.40 53.68

mF1 33.08 33.56 32.69 32.74 34.57 34.82

DN

PA 68.43 68.78 68.24 68.36 69.33 70.15

mAP 78.68 79.06 78.52 78.62 79.96 80.27

mIoU 49.29 49.68 49.03 49.11 50.26 50.44

mF1 32.92 33.83 32.28 32.56 34.18 34.50

Table 3. Segmentation tests on three datasets (CNN models). For

all metrics, higher is better. See Sec. 4 for details.

resolution of 14× 14 (compared to 7× 7 in the last convo-

lutional layer in RN), hence is capable of producing more

focused explanation maps that lead to better performance on

POS and DEL metrics. This is due to the fact that the dele-

tion of the most relevant pixels results in fewer pixels being

removed, and the mask is more focused on a subset of pixels

compared to IIA2. IIA2 (that operates on the last layer with

lower resolution) produces less focused explanation maps

that may highlight irrelevant areas. Such coarse highlighting

leads to a slower decrease in the prediction score during the

deletion process. Yet, on all other metrics (except POS and

DEL) IIA2 (L-1) is inferior to IIA2. Moreover, in the case

of ViT, where the resolution is fixed across all layers (as

all layers output the same number of token representations),

IIA2 outperforms IIA2 (L-1) across the board. Thus, we

conclude that under the same spatial resolution, the last layer

(both in RN and ViT) enables better feature aggregation than

the penultimate layer.
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T-Attr GAE IIA2 IIA3

IN-Seg

ViT-B

PA 79.70 76.30 79.80 80.71

mAP 86.03 85.28 87.27 87.38

mIoU 61.95 58.34 62.59 63.04

mF1 40.17 41.85 44.91 45.16

ViT-S

PA 80.86 76.66 81.44 81.49

mAP 86.13 84.23 86.91 86.85

mIoU 63.61 57.70 64.09 64.47

mF1 43.60 40.72 46.14 46.70

COCO

ViT-B

PA 68.89 67.10 68.81 69.32

mAP 78.57 78.72 80.64 81.03

mIoU 46.62 46.51 47.75 47.89

mF1 26.28 31.70 33.87 34.01

ViT-S

PA 69.90 67.95 70.31 70.60

mAP 79.28 78.65 80.53 80.89

mIoU 48.62 46.52 50.86 51.26

mF1 30.88 30.96 35.64 35.75

VOC

ViT-B

PA 73.70 71.32 75.36 75.59

mAP 81.08 80.88 81.96 81.87

mIoU 53.09 51.82 53.64 53.79

mF1 31.50 35.72 36.41 36.46

ViT-S

PA 74.96 71.85 76.44 76.53

mAP 81.76 80.60 82.79 82.61

mIoU 55.37 51.55 55.92 55.78

mF1 36.03 34.95 39.33 39.26

Table 4. Segmentation tests on three datasets (ViT models).

IMG ACT IG IIA2 (L-1) IIA2 IIA3

RN

NEG 51.33 53.74 42.02 52.07 56.22 56.89

POS 19.94 21.76 16.93 12.61 16.69 15.78

INS 44.54 45.38 37.55 46.82 48.05 48.53

DEL 15.28 14.36 13.46 10.32 12.82 12.16

ADP 17.21 15.30 36.51 38.46 12.31 12.40

PIC 35.12 39.59 21.43 21.08 45.21 45.06

SIC 72.79 75.37 51.54 72.26 78.13 79.94

AIC 68.87 71.29 52.71 67.28 75.88 76.59

ViT-B

NEG 48.15 46.43 40.94 56.52 57.47 58.31

POS 19.40 22.83 22.43 17.78 15.81 15.02

INS 45.86 41.66 35.07 50.24 50.49 51.26

DEL 16.31 18.19 17.90 14.76 13.12 12.38

ADP 34.39 39.62 41.35 38.19 31.08 32.64

PIC 25.78 22.90 16.89 25.64 28.97 31.75

SIC 68.83 69.16 58.91 69.22 70.34 70.61

AIC 62.86 63.51 54.93 63.42 63.93 64.59

Table 5. Ablation study results on the IN dataset (Sec. 4.2).

5. Conclusion

We introduced Iterated Integrated Attributions (IIA) - a

universal machinery for generating explanations for vision

models. IIA employs iterative accumulation of information

from interpolated internal network representations and their

gradients. Our experiments highlight IIA’s effectiveness in

Figure 3. Qualitative Results: Explanation maps produced using

ViT-B w.r.t. the classes (top to bottom): ‘spoonbill’, ‘cello, violon-

cello’, ’bucket, pail’, ‘snowmobile’, and ‘tiger shark’.

Figure 4. Explanation maps produced using RN (rows 1,2) and

ViT (rows 3,4) w.r.t. the classes (top to bottom): ‘bighorn, bighorn

sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep,

Ovis canadensis’,’Irish terrier’, ’alp’, ’Egyptian cat’.

explaining both CNN and ViT models, consistently outper-

forming state-of-the-art explanation methods across diverse

tasks, datasets, models, and metrics.
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