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Figure 1: Virtual Pattern Projection for deep stereo. Either in challenging outdoor (top) or indoor (bottom) environments (a), a stereo
network such as PSMNet [8] often struggles (b). By projecting a virtual pattern on images (c), the very same network dramatically improves
its accuracy (d). Further training the model to deal with the augmented images (e) improves the results even more.

Abstract

This paper proposes a novel framework integrating the
principles of active stereo in standard passive camera sys-
tems without a physical pattern projector. We virtually
project a pattern over the left and right images according
to the sparse measurements obtained from a depth sensor.
Any such devices can be seamlessly plugged into our frame-
work, allowing for the deployment of a virtual active stereo
setup in any possible environment, overcoming the limita-
tion of pattern projectors, such as limited working range or
environmental conditions. Experiments on indoor/outdoor
datasets, featuring both long and close-range, support the
seamless effectiveness of our approach, boosting the accu-
racy of both stereo algorithms and deep networks.

1. Introduction

Depth perception is crucial in several computer vision
tasks, including autonomous driving, 3D reconstruction,
robotics, and augmented reality. Inferring depth from stan-
dard cameras, according to different setups and strategies,
is one of the most widely deployed techniques due to its

low cost and potentially unbounded image resolution. At
the core of these approaches, using multiple cameras or
a moving one, there is the problem of determining visual
correspondence. However, matching points across frames
is inherently ambiguous in the presence of textureless re-
gions, repetitive patterns, and non-Lambertian materials.
This task is even more challenging when performed densely
for each pixel in the input images. Although deep learning
has achieved excellent results, as witnessed by the recent
literature [53], it is also prone to the well-known domain
shift issue absent in conventional, less accurate hand-crafted
methods. Specifically, since learning-based methods rely on
training data, they suffer severe drops in accuracy when fac-
ing different data distributions [52]. A different approach to
depth perception relies on active sensing technologies, such
as LiDAR (Light Detection and Ranging), ToF (Time of
Flight), and Radar (Radio Detection and Ranging). How-
ever, each technology has limitations. LiDAR technology
is reliable but features a density much lower than the res-
olution of modern cameras, making it extremely expensive
as density increases. ToF suffers from the same limitation
and is also unreliable under sunlight and at longer distances.
Radar allows for a more extended depth range sensing, but
it is sparser, noisier, and with a narrower vertical field of
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view [39]. Finally, active systems that estimate depth from
images also exist, relying on structured [23] or unstructured
[31] pattern projection results more accurate than passive
imaging techniques and at higher resolution with respect to
the aforementioned devices. However, these systems are
bounded by the need for the projected pattern to be clearly
visible in images, and thus cannot work beyond very close
distances (i.e., a few meters), are unsuited for outdoor use
with sunlight, and the presence of multiple projectors might
make them interfere.

Due to their complementary strengths and limita-
tions, setups made of active and passive technologies are
widespread for several application fields, ranging from au-
tonomous driving, where almost all prototypes have het-
erogeneous sensor suites, to augmented reality with smart-
phones and tablets equipped with cameras and active depth
sensors. Consequently, different solutions exist in the lit-
erature to exploit the synergy between active and passive
depth sensing [51, 13, 73]. The common key trait of most
of these sensor-fusion methods consists in modifying the in-
ternal behavior of the camera-based stereo matcher or con-
catenating the sparse points with the color images. In con-
trast, this paper proposes a novel paradigm to leverage the
synergy between active and passive sensing. It works by
coherently hallucinating the vanilla stereo pair acquired by
a standard camera simplifying the visual correspondence
task performed by any stereo network/algorithm as if a vir-
tual pattern projector were present in the scene. Such vir-
tual coherent pattern projection is feasible by exploiting the
stereo geometry and a registered active depth sensor provid-
ing sparse yet accurate measurements, like in [51, 13, 73].
Our proposal shares the same motivations of active methods
based on unstructured pattern projection. However, unlike
these strategies, it does not rely on a specific physical pat-
tern projector with all the limitations outlined previously.
Instead, by selecting the depth sensor that is better suited
for the specific scenario, our approach can work in any en-
vironment and is agnostic to moving objects and camera
ego-motion, as shown in Fig. 1. Experimental results on
standard stereo datasets support the following claims:

• Even with meager amounts of sparse depth seeds (e.g.,
1% of the whole image), our approach outperforms by
a large margin state-of-the-art sensor fusion methods
based on handcrafted algorithms and deep networks.

• When dealing with deep networks trained on synthetic
data, it dramatically improves accuracy and shows a
compelling ability to tackle domain shift issues, even
without additional training or fine-tuning.

• By neglecting a physical pattern projector, our solution
works under sunlight, both indoors and outdoors, at
long and close ranges with no additional processing
cost for the original stereo matcher.

We believe that our proposal, dubbed Virtual Pattern
Projection (VPP), has the potential to become a standard
component for depth perception and pave the way to excit-
ing future developments in the field.

2. Related Work
Stereo Matching. Traditional stereo algorithms [85,

72, 81, 80, 37, 65, 33, 27, 5], thoroughly investigated in
[58], rely on handcrafted features and priors to compute
dense disparity maps from stereo pairs. Deep learning has
recently revolutionized stereo matching, providing signif-
icant improvements over conventional techniques on stan-
dard benchmarks [86]. Specifically, end-to-end stereo net-
works have become the most popular and effective solu-
tion for disparity estimation. These networks can be cat-
egorized into two main families: 2D and 3D architec-
tures, with the former adopting an encoder-decoder design
[46, 48, 38, 55, 62, 79, 82, 66], inspired by the U-Net model
[54], while the latter build a feature cost volume from fea-
tures extracted on the image pair and estimate the disparity
map using 3D convolutions [30, 8, 32, 87, 12, 14, 19, 78,
74, 25, 61], at the cost of a much higher memory require-
ment and runtime. A complete review of such works can
be found in [53]. More recent works [41, 35], instead, pro-
pose novel deep stereo networks that exploit the iterative
refinement paradigm in the state-of-the-art optical flow net-
work RAFT [67], or rely on Vision Transformers [36, 24]
to capture long-range contextual information. Despite their
superior performance, deep learning-based stereo methods
require amounts of annotated data for training and yet suf-
fer from limited generalization capabilities to unseen data
[88, 6, 1, 90, 42, 16, 76, 71]. To alleviate this require-
ment, self-supervised techniques have been proposed to
train deep stereo models without ground-truth annotations
by relying on photometric losses on stereo pairs or videos
[93, 70, 69, 34, 75, 15], traditional algorithms and con-
fidence measures [68, 2]. Others propose self-supervised
continual adaptation of stereo networks using images cap-
tured during deployment [70, 52].

Active Stereo Matching. Active stereo leverages a pat-
tern projector, typically working in the IR spectrum, to ease
the correspondence problem, particularly in low-textured
and repetitive areas. These systems [9] rely on structured
[23] or unstructured [31] light. A subclass of structured
light systems – coded light – relies on spatial [26] or tempo-
ral coded patterns [84], with the latter struggling in the pres-
ence of moving objects at standard frame rate. Regardless
of the technology, pattern projection is limited to shorter
distances and is unsuitable for outdoor use with sunlight.
Additionally, devices based on structured light patterns re-
quire carefully designed projectors and suffer from thermal
drifts [21] among other issues [56]. Nonetheless, active
stereo is a vivid research field [43, 20].
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Figure 2: Overview of the proposed Virtual Pattern Projection framework. The envisioned setup on the left relies on a
standard passive stereo camera and an active depth sensor. On the right, the step needed to obtain the coherently hallucinated
stereo pair from the vanilla input images and sparse depth points through Virtual Pattern Projection (VPP). The patterned
stereo pair in output can be processed by any stereo matcher, either handcrafted or learning-based.

Image-Guided Methods. Another approach to estimat-
ing depth involves integrating sparse depth measurements
from active sensors with RGB information. Specifically,
two main trends are typically adopted in the literature.

Depth Completion. This approach aims to estimate
dense depth maps from incomplete or noisy depth data
or from a single RGB image combined with sparse depth
measurements, which can be obtained from active sen-
sors such as LiDAR or structured light. A wide range
of methods have been proposed for this task, including
traditional methods based on interpolation and optimiza-
tion [7, 60, 44], as well as deep learning-based approaches
[45, 11, 49, 28, 10, 40, 91]. However, these approaches
typically suffer in estimating depth in regions with missing
external depth values [18].

Guided Stereo Matching. In addition to advances in
stereo matching, recent research has also explored the in-
tegration of stereo with active sensors. In Badino et al. [3],
the authors propose to directly integrate LiDAR data into
the stereo algorithm using dynamic programming. Gandhi
et al. [22], instead, propose a method to fuse time-of-
flight (ToF) camera and stereo pairs using an efficient seed-
growing algorithm. More recent works, instead, exploit
depth measurements, either by concatenating them as input
of CNN-based architectures [13, ?, 50, 89, 73] or by using
them to guide the cost aggregation of existing cost volumes
[51, 29, 92, 73]. Our approach augments the given stereo
pair to enhance RGB images, providing more discrimina-
tive information to the network and making it easier to solve
the correspondence problem, unlike other methods that only
concatenate sparse depths or guide cost aggregation.

3. Virtual Pattern Projection (VPP)

This section describes our approach to ease visual corre-
spondence across images acquired by a passive stereo cam-
era by means of the coherent virtual projection of patterns
leveraging the availability of reliable sparse depth points of
the same scene. The motivation for enriching the visual im-
age content of the original scene is the same as methods
relying on a physical projector: it aims at increasing local
distinctiveness to make the visual correspondence task more
robust. However, in contrast to previous methods, our strat-
egy follows an entirely different path discarding the need
for a physical projector with all its mentioned limitations.

3.1. Virtual Projection Principle

Our proposal is based on the observation that given a
rectified stereo rig, and availability of a set of sparse depth
points registered with the reference image, each of these
points implicitly allows us to determine the corresponding
pixels in the stereo pair. Hence, by knowing this correspon-
dence, we can augment the visual appearance of both pix-
els in the two images to make them as similar as possible
and as distinctive as possible from their neighbors, as if an
ideal smart virtual projector were sending its signal onto
the sensed scene. Fig. 2 outlines our basic virtual projec-
tion principle, showing on the left the envisioned setup con-
sisting of a calibrated stereo camera and a sensor perform-
ing sparse yet accurate depth estimation, registered with the
stereo reference camera through an initial calibration. The
vanilla stereo pair acquired by the passive cameras and the
input depth map are shown at the top. Since the stereo rig
and the active sensor are calibrated, the depth z(x, y) of
each sparse point allows us to locate corresponding points
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Figure 3: Virtual patterns. From top to bottom: (i) indis-
tinctive, (ii) randomly generated, (iii) distinctive, (iv) ran-
domly generated patch-based uniform, (v) distinctive patch-
based uniform, (vi) randomly generated patch-based, and
(vii) distinctive patch-based patterns. For (iii), (v), and (vii)
we report the search area of length L, set to 64 in our exper-
iments, and height as depicted for 3× 3 virtual patterns.

IL(x, y) and IR(x
′, y) in the two input images. For this

purpose, we transform z(x, y) into a disparity d(x, y) by
knowing [64] the focal length f and the baseline b of the
stereo camera with d(x, y) = b·f

z(x,y) . Such a disparity value
represents the offset needed to obtain the location along the
same epipolar line of the corresponding point IR(x′, y) in
the target image with x′ = x − d(x, y). Fig. 2 shows how
the two corresponding points A e B can be determined by
knowing the depth of A in the input sparse depth map, and
then we can augment them to achieve our goal.

3.2. Virtual Patterns

To properly hallucinate images and ease matching, cor-
responding points should be as similar as possible. Accord-
ingly, we propose two augmenting strategies: random pat-
tern and histogram-based pattern. Both operate on corre-
sponding points (x, y) and (x′, y) located along the epipolar
line with the same pattern A(x, x′, y) in the two images:

IL(x, y)← A(x, x′, y)

IR(x
′, y)← A(x, x′, y)

(1)

Their difference consists in how the operator A(x, x′, y)
generates the virtual pattern superimposed on the input im-
ages. Fig. 3 outlines the several possible patterns that we
will discuss in the remainder. Furthermore, as x′ is unlikely
to be an integer, A(x, x′, y) will apply to both IR(⌊x′⌋, y)
and IR(⌈x′⌉, y) by means of a weighted splatting on the
two.

IR(⌊x′⌋, y)← βIR(⌊x′⌋, y) + (1− β)A(x, x′, y)

IR(⌈x′⌉, y)← (1− β)IR(⌈x′⌉, y) + βA(x, x′, y)
(2)

where β = x′ − ⌊x′⌋ is the splatting weight.

Figure 4: Handling occlusions. I) P is framed by the ref-
erence camera and depth sensor but occluded in the target
camera (“NO” projection), II) Projection of the same pat-
tern (violet) onto the two input images according to depth
in the background (“BKGD”), III) Projection of the fore-
ground image content (Q) from the target image to the back-
ground in the reference image (“FGD”).

3.2.1 Random Patterning

To ease visual correspondence, the pattern should both in-
crease similarity across images, as well as distinctiveness
[83] along the epipolar line. As such, a pattern as the one
shown in Fig. 3 (i) would be suboptimal. To address this
issue, a method uses an operator A(x, x′, y) that samples a
random value from a uniform distribution

A(x, x′, y) ∼ U(0, 255) (3)

Fig. 3 (ii) depicts a possible outcome of this approach
whose extension to color images, as for any method dis-
cussed, is straightforward by applying the same strategy on
each color channel. This operator is fast and introduces dis-
tinctiveness to some degree, although not entirely. On the
contrary, an operator taking into account the image content
itself could enforce stronger distinctiveness [83].

3.2.2 Histogram-based Patterning

We argue that the patterns superimposed onto the vanilla
image should stand out from the background and be un-
ambiguous (at least) within nearby pixels along the same
horizontal scanline, as depicted in Fig. 3 (iii).

To achieve this goal, we employ a histogram-based oper-
ator A(x, x′, y), to select the pattern by analyzing the scan-
line content in the two hallucinated images. For (x, y) in
the reference image, we consider two windows of height 3
and length L centered on it and on (x′, y) in the target im-
age. Then, the histograms computed over the two windows
are summed up and the operator A(x, x′, y) picks the color
maximizing the distance from any other color in the his-
togram hdist(i), with hdist(i) returning the minimum dis-
tance from a filled bin in the sum histogramH
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(a) (b)

(c)

Figure 5: VPP in action. Hallucinated left and right images, zoomed-in view of the type (vi) pattern, showing FGD-
Projection (a), corresponding area (b) with sub-pixel splatting and left border occlusion projection (c).

hdist(i) =
{
min{|i− il|, |i− ir|},

il ∈ [0, i[: H(il) > 0,

ir ∈]i, 255] : H(ir) > 0
} (4)

If every bin in H is filled, the color with minimum occur-
rence is selected.

3.3. Advanced Virtual Patterns

We now extend the strategies described so far, taking into
account locality, the original image content, and occlusions.

3.3.1 Locality

The pointwise patterning strategy can be applied to larger
areas to enhance the visual appearance further. To this pur-
pose, we can extend previous methods to patches (e.g., 3×3
or 5 × 5), implicitly assuming the same disparity within
these small regions. Fig. 3, in (iv) and (v), shows the out-
come of the operatorA(x, x′, y) that selects a uniform color
within the patches according to, respectively, random sam-
pling or a selection based on histograms in a larger region
L. Further patterns can be generated by (vi) random sam-
pling or (vii) histogram-base selection being performed for
every pixel in the patch independently.

3.3.2 Alpha-Blending

Although a virtual pattern eases the match for traditional
algorithms [27], it might hinder a deep stereo model not
used to deal with it. Thus, we combine the original image
content with the virtual pattern through alpha-blending [64]
as follows, being α a hyperparameter:

IL(x, y)← (1− α)IL(x, y) + αA(x, x′, y)

IR(x
′, y)← (1− α)IR(x

′, y) + αA(x, x′, y)
(5)

3.3.3 Occlusions

Since occluded regions inevitably exist in a stereo setup,
even assuming a depth sensor perfectly aligned with the ref-
erence camera (although this is not always the case [17]),
we might not be able to project the pattern consistently on
the two views, as depicted in Fig. 4 I). Accordingly, it is
crucial to detect points hitting occluded regions to avoid
projecting the same pattern on both the occluded and the
occluder pixels, respectively, on the reference and target im-
ages. Purposely, we devise a simple yet effective heuristic
to classify sparse disparities warped onto the target image,
according to the difference in disparity and spatial distance
from other sparse points inferred by the sensor.

Specifically, we warp disparity d for (x, y) into an
image-like grid W at coordinates (x′, y). In case of col-
lisions – i.e., multiple d warped at the same location (x′, y)
– the largest d is kept. Then, each (xo, yo) in W is classified
as occluded if the following inequality holds for at least one
neighbor W (x, y) within a rx × ry patch:

W (x, y)−W (xo, yo)−λ(γ|x−xo|+(1−γ)|y−yo|) > t
(6)

with λ, γ, rx, ry, t being hyper-parameters. Finally, the oc-
cluded points are warped back to obtain a mask o.

When a depth point is classified as occluded, we can ne-
glect projection on both reference and target images (“NO”
projection strategy). This avoids projecting the same pat-
tern on the foreground (in the target image) and background
(in the reference), which would increase ambiguity at oc-
clusions – “BKGD” projection strategy. Nonetheless, we
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VPP Hyperparameters Error Rate (%) > 2
Pattern α Patch Occ. RAFT-Stereo [41] PSMNet [8] rSGM

✗ ✗ ✗ ✗ ✗ 11.5 29.3 34.3
✓ (ii) ✗ ✗ BKGD 5.2 15.3 20.6
✓ (iii) ✗ ✗ BKGD 5.1 15.2 20.2
✓ (ii) 0.4 ✗ BKGD 5.8 16.7 21.2
✓ (iii) 0.4 ✗ BKGD 5.6 16.1 20.5
✓ (iv) 0.4 3× 3 BKGD 4.9 15.0 16.7
✓ (v) 0.4 3× 3 BKGD 5.0 15.1 16.2
✓ (vi) 0.4 3× 3 BKGD 5.0 15.3 15.9
✓ (vii) 0.4 3× 3 BKGD 5.0 15.2 15.9
✓ (iv) 0.4 3× 3 NO 4.9 14.7 16.2
✓ (v) 0.4 3× 3 NO 4.9 14.8 15.7
✓ (vi) 0.4 3× 3 NO 5.1 14.9 15.7
✓ (vii) 0.4 3× 3 NO 4.9 14.9 15.4
✓ (iv) 0.4 3× 3 FGD 4.8 14.4 16.1
✓ (v) 0.4 3× 3 FGD 4.8 14.4 15.6
✓ (vi) 0.4 3× 3 FGD 5.0 14.6 15.6
✓ (vii) 0.4 3× 3 FGD 4.8 14.4 15.3

Table 1: Ablation on main projection hyperparameters. Results on Midd-A. Networks trained on synthetic data.

follow a third strategy: we avoid projection and instead re-
place the original content in (x, y) on the reference image
with the content at (x′, y) in the target image. This does
not alter the appearance of the correct match on foreground
(rays originating from Q), yet stimulates the stereo matcher
to establish a second correspondence with the same point
(x′, y) in the target image, i.e., with pixel (x, y) originating
from P. This strategy will be referred to as “FGD” projec-
tion. Additionally, points in the left border of the reference
image would project patterns outside the target. Although
irrelevant for traditional algorithms, we still project there to
avoid artifacts in the predictions by deep stereo networks.
Fig. 5 shows an example of hallucinated pair.

4. Experimental Results

We describe our experimental setup, including imple-
mentation details, datasets, and results analysis.

4.1. Implementation and Experimental Settings

All virtual pattern variants depicted in Fig. 3 from (ii)
to (vii) are implemented in Cython, sub-pixel disparities
splatted on adjacent pixels in the right view. Among the
hyper-parameters, we set λ = 2, γ = 0.4375, t = 1 and
rx × ry = 9 × 7 for the occlusion detection heuristic,
whose effectiveness is studied in the supplementary mate-
rial. To assess the effectiveness of VPP, we run several
experiments in comparison with existing approaches that
combine sparse depth points with stereo algorithms and net-
works. In particular, we consider the Guided Stereo Match-
ing framework [51], LidarStereoNet [13], and CCVNorm
[73] as main competitors.

Since the first two approaches are implemented over the
PSMNet [8] architecture, we apply VPP to PSMNet for a
direct and fair comparison. However, the original PSM-

Net weights used in [51] yielded poor generalization re-
sults; therefore, we retrain it following the original proto-
col [8], i.e., for 10 epochs on SceneFlow with a constant
learning rate equal to 1e-3. For fairness, LidarStereoNet
and CCVNorm have been retrained using the same setting.
Moreover, since guided stereo [51] represents our closest
competitor – i.e., it can be applied without any architec-
tural change to the stereo model – we implement it within
a more modern network, RAFT-Stereo [41], and compare
it against our VPP. To conclude, we extend this compari-
son with an implementation of the Semi-Global-Matching
method [27], i.e., rSGM [63], as a representative of tradi-
tional stereo algorithms. We run it by setting the maxi-
mum disparity to 192 disparity P1=11, adaptive P2 [4] (with
P2min=17, P2α = 0.5, P2γ = 35), applying left-right check
and a speckle filter to remove outliers, then filling holes with
background interpolation [47].

4.2. Evaluation Datasets & Protocol

We run experiments on three indoor/outdoor datasets.
Middlebury. The Middlebury dataset [57] is a high-

resolution stereo dataset featuring indoor scenes, captured
under controlled lighting conditions with accurate ground-
truth obtained using structured light. We evaluate our ap-
proach on three different splits: the Additional 13 scenes in
Middlebury 2014 (Midd-A), the 15 scenes from Middlebury
2014 training set (Midd-14), and the 24 scenes from Mid-
dlebury 2021 (Midd-21). Results are evaluated at full reso-
lution, with PSMNet models running at half and CCVNorm
at quarter (Midd-14) and one third (Midd-21) resolution.

KITTI 2015 [47]. This real-world stereo dataset depicts
autonomous driving scenarios, captured at a resolution of
approximately 1280×384 pixels with sparse ground-truth
depth maps collected using a LiDAR sensor. It provides
200 stereo pairs annotated with ground-truth, including in-
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Midd-14 Midd-21 ETH3D
Model Depth Points Error Rate (%) avg. Error Rate (%) avg. Error Rate (%) avg.

Train Test > 1 > 2 > 3 > 4 (px) > 1 > 2 > 3 > 4 (px) > 1 > 2 > 3 > 4 (px)
rSGM [63] ✗ ✗ 69.97 41.86 29.41 25.19 13.62 67.33 40.55 27.69 22.37 8.02 27.20 9.11 5.64 4.26 1.18
rSGM-gd [51] ✗ ✓ 63.47 30.64 17.03 13.57 9.98 59.32 26.26 13.51 10.04 4.44 19.95 3.18 1.72 1.28 0.76
rSGM-vpp ✗ ✓ 57.98 20.37 10.86 9.49 7.81 52.81 15.08 6.63 5.51 3.40 9.66 0.62 0.46 0.41 0.58
PSMNet [8] ✗ ✗ 48.52 31.11 24.29 20.58 10.05 47.25 28.03 20.19 15.88 4.52 19.73 6.48 4.09 3.11 0.88
PSMNet-gd [51] ✗ ✓ 48.24 30.66 24.03 20.47 10.50 46.61 27.18 19.60 15.59 4.49 18.96 5.91 3.56 2.85 0.84
PSMNet-vpp ✗ ✓ 26.30 16.08 13.06 11.60 6.11 22.26 10.52 6.96 5.36 1.63 10.83 2.01 1.46 1.30 0.53
PSMNet-gd-ft [51] ✓ ✓ 33.82 15.61 10.74 8.77 4.52 35.76 13.77 7.55 5.21 1.71 12.28 2.43 0.86 0.61 0.54
PSMNet-vpp-ft ✓ ✓ 25.07 14.92 11.87 10.43 6.19 21.21 10.17 6.78 5.26 1.66 2.86 1.40 1.21 1.11 0.38
PSMNet-gd-tr [51] ✓ ✓ 25.17 12.61 9.13 7.59 3.84 23.67 9.63 5.75 4.15 1.33 4.79 0.85 0.54 0.42 0.33
PSMNet-vpp-tr ✓ ✓ 21.32 12.95 10.52 9.35 5.09 18.24 8.57 5.73 4.50 1.57 2.18 1.48 1.36 1.29 0.34
LidarStereoNet [13] ✓ ✓ 32.72 16.30 12.10 10.34 4.48 27.32 11.67 7.58 5.88 1.80 10.39 1.05 0.47 0.30 0.45
CCVNorm [73] ✓ ✓ 30.22 12.49 7.54 5.58 2.27 20.88 7.63 4.47 3.28 1.14 17.63 4.69 2.16 1.28 0.66
RAFT-Stereo [41] ✗ ✗ 24.24 15.65 12.48 10.62 3.87 20.05 10.28 7.18 5.55 1.31 2.84 1.44 0.90 0.74 0.28
RAFT-Stereo-gd [51] ✗ ✓ 24.14 11.58 7.85 6.08 2.87 20.38 8.31 5.09 3.65 1.11 5.32 1.68 1.06 0.76 0.41
RAFT-Stereo-vpp ✗ ✓ 8.04 5.30 4.35 3.81 2.01 6.94 4.26 3.33 2.78 0.72 1.30 0.83 0.65 0.54 0.15
RAFT-Stereo-gd-ft [51] ✓ ✓ 15.22 8.02 5.97 5.05 2.67 15.51 6.76 4.63 3.63 1.21 2.52 1.28 1.00 0.77 0.29
RAFT-Stereo-vpp-ft ✓ ✓ 7.12 4.73 3.95 3.51 1.95 6.40 4.00 3.20 2.76 0.83 1.01 0.74 0.64 0.58 0.14
RAFT-Stereo-gd-tr [51] ✓ ✓ 6.39 3.29 2.35 1.93 0.91 6.45 3.14 2.25 1.82 0.64 0.94 0.59 0.46 0.38 0.14
RAFT-Stereo-vpp-tr ✓ ✓ 5.57 4.14 3.63 3.33 1.51 4.85 3.05 2.39 2.01 0.66 0.71 0.57 0.51 0.47 0.12

Table 2: Comparison with existing methods. Results on Midd-14, Midd-21, ETH3D. Networks trained on synthetic data.

dependently moving objects such as cars. Among the 200
samples, we select 142 stereo pairs for which raw LiDAR
measurements are provided [13], allowing for evaluating
VPP and competitors with data from a real sensor.

ETH3D [59]. This dataset collects indoor and outdoor
scenes, with a total of 27 grayscale low-resolution stereo
pairs and corresponding ground-truth disparity maps.

Evaluation Protocol. We compute the percentage of
pixels with a disparity error higher than a certain threshold
τ , with respect to the ground-truth. We report error rates by
varying τ to 1, 2, 3, and 4, together with the average dispar-
ity error (avg). We evaluate our computed disparity maps
across both occluded and non-occluded regions with valid
ground truth disparity unless otherwise noted.

4.3. Ablation Study

We start by studying the different pattern variants and
components under different settings. Tab. 1 summarizes
this ablation study, conducted on Midd-A at full resolution
with PSMNet [8], RAFT-Stereo [41] and rSGM. For each
stereo pair, we randomly sample 5% sparse depth points
from the dense ground-truth. Simply enabling virtual pro-
jection with pointwise virtual patterns (ii) and (iii), with-
out explicit handling of occlusions, gives a massive boost
in performance compared to the baseline, dropping the er-
ror rate to half for RAFT-Stereo (11 to 5%) and PSMNet
(29 to 15%), while also reducing the error rate from 34
to 20% for rSGM. Adding alpha-blending with pointwise
patterns yields similar, yet slightly worse results across all
methods. Nonetheless, projecting patterns on 3× 3 patches
in conjunction with alpha-blending enables additional and
consistent improvements to all methods with virtual pattern
(iv) the most effective except for rSGM, which is not sur-
prisingly more effective with pattern (vii) since it builds the
cost volume based on a pointwise cost function. By han-
dling occlusions thanks to our heuristic, we obtain some
further improvements when neglecting projection (“NO”

strategy). Finally, enabling occlusion handling through the
“FGD” strategy yields the best results for all methods, with
slight differences among them with the four patch-based
virtual patterns. Considering the outcome of the ablation,
despite the slightly worse accuracy, we conduct the remain-
ing experiments with virtual pattern vi) on 3 × 3 patches,
because of its a negligible computation overhead with re-
spect to histogram-based projection, while enabling at the
same time alpha-blending and “FGD” occlusion handling –
i.e., in yellow in the table.

4.4. Comparison with Existing Approaches

We now assess the performance of VPP and its main
competitors. If not differently specified, we randomly sam-
ple 5% depth points from ground-truth, as in [51].

Guided/VPP variants. Given the flexibility of both VPP
and guided stereo, we evaluate their application to stereo
networks under three different settings, respectively:

• Without retraining the stereo network (-gd/-vpp)

• After a brief fine-tuning of the pre-trained model, en-
hanced by guided or VPP frameworks (-gd-ft/-vpp-ft)

• By training from scratch a new model, enhanced by
guided or VPP (-gd-tr/-vpp-tr)

For -ft variants, one epoch of finetuning is carried out on
FlyingThings, with learning rate 1e-4 and 1e-5 for PSM-
Net and RAFT-Stereo, respectively. For -tr variants, PSM-
Net and RAFT-Stereo are trained for 10 and 20 epochs,
with learning rates 1e-3 and 1e-4, respectively. In any case,
PSMNet and RAFT-Stereo process 384×512 and 360×720
crops, respectively, with batch size 2 on a single 3090 GPU.

The three variants allow for evaluating guided stereo and
VPP when deployed with the least effort – i.e., by simply
taking a pre-trained stereo network off the shelf – or with
deeper intervention by the developer, either through a short
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Figure 6: Depth sparsity vs accuracy. Results by VPP and
competitors with different amounts of depth points.

Midd-14
Model Depth Points Error Rate (%) avg.

Train Test > 1 > 2 > 3 > 4 (px)
rSGM [63] ✗ ✗ 69.97 41.86 29.41 25.19 13.62
rSGM-gd ✗ ✓ 63.47 30.64 17.03 13.57 9.98
rSGM-vpp ✗ ✓ 57.98 20.37 10.86 9.49 7.81
rSGM-gd-vpp ✗ ✓ 57.74 19.55 10.05 8.69 8.62
PSMNet [8] ✗ ✗ 48.52 31.11 24.29 20.58 10.05
PSMNet-gd ✗ ✓ 48.24 30.66 24.03 20.47 10.50
PSMNet-vpp ✗ ✓ 26.30 16.08 13.06 11.60 6.11
PSMNet-gd-vpp ✗ ✓ 27.68 16.49 13.44 12.00 6.30
LidarStereoNet [13] ✓ ✓ 32.72 16.30 12.10 10.34 4.48
LidarStereoNet-vpp ✓ ✓ 30.02 15.32 11.48 9.86 4.46
CCVNorm [73] ✓ ✓ 30.22 12.49 7.54 5.58 2.27
CCVNorm-vpp ✓ ✓ 28.29 12.26 7.42 5.51 2.20
RAFT-Stereo [41] ✗ ✗ 24.24 15.65 12.48 10.62 3.87
RAFT-Stereo-gd ✗ ✓ 24.14 11.58 7.85 6.08 2.87
RAFT-Stereo-vpp ✗ ✓ 8.04 5.30 4.35 3.81 2.01
RAFT-Stereo-gd-vpp ✗ ✓ 12.85 6.52 4.78 3.93 2.10

Table 3: Combining VPP with existing methods. Results
on Midd-14, networks trained on synthetic data.

fine-tuning on the pre-existing model or, with major efforts,
by retraining it from scratch.

Comparison on Middlebury/ETH3D. Tab. 2 reports
the outcome on Midd-14, Midd-21 and ETH3D datasets us-
ing models trained on synthetic data only or the rSGM algo-
rithm. We can immediately notice one of the most promi-
nent figures of merit of our proposal, i.e., the remarkable
ability to largely boost cross-domain generalization on all
datasets without any retraining of the pre-existing model (-
vpp). On the contrary, guided stereo improves the results
only marginally under this setting (-gd), while CCVNorm
and LidarStereoNet need to be trained from scratch to pro-
cess depth points (i.e., they are concatenated to RGB im-
ages). Accordingly, VPP is the undisputed winner in boost-
ing the accuracy of stereo networks taken off the shelf.

By shortly fine-tuning the original networks to take ad-
vantage of sparse depth data is beneficial for both guided

Midd-21
Model Depth Points Error Rate (%) avg.

Train Test > 1 > 2 > 3 > 4 (px)
PSMNet [8] ✗ ✗ 44.75 24.98 17.31 13.37 3.42
PSMNet-gd ✗ ✓ 44.40 24.58 16.98 13.09 3.40
PSMNet-vpp ✗ ✓ 21.38 10.32 6.85 5.24 1.51
PSMNet-gd-ft ✓ ✓ 40.47 16.06 8.56 5.83 1.78
PSMNet-vpp-ft ✓ ✓ 21.36 10.12 6.68 5.12 1.56
PSMNet-gd-tr ✓ ✓ 23.15 9.44 5.60 4.04 1.29
PSMNet-vpp-tr ✓ ✓ 18.07 8.64 5.79 4.51 1.50
LidarStereoNet [13] ✓ ✓ 25.08 10.09 6.47 4.94 1.86
CCVNorm [73] ✓ ✓ 20.54 7.45 4.31 3.12 1.06
RAFT-Stereo [41] ✗ ✗ 19.22 9.38 6.28 4.68 1.26
RAFT-Stereo-gd ✗ ✓ 18.82 6.95 4.06 2.88 1.05
RAFT-Stereo-vpp ✗ ✓ 6.65 4.00 3.10 2.60 0.71
RAFT-Stereo-gd-ft ✓ ✓ 14.87 6.09 3.99 3.09 1.02
RAFT-Stereo-vpp-ft ✓ ✓ 6.68 4.16 3.34 2.85 0.82
RAFT-Stereo-gd-tr ✓ ✓ 6.04 2.91 2.08 1.70 0.58
RAFT-Stereo-vpp-tr ✓ ✓ 4.76 3.00 2.39 2.02 0.69

Table 4: Results with fine-tuned models. Results on
Midd-21, after fine-tuning on Midd-14.

KITTI 142
Model Depth Points Error Rate (%) avg.

Train Test > 1 > 2 > 3 > 4 (px)
rSGM [63] ✗ ✗ 43.53 15.66 8.27 5.68 1.56
rSGM-gd ✗ ✓ 35.65 10.00 5.50 4.03 1.30
rSGM-vpp ✗ ✓ 23.56 6.12 4.04 3.20 1.17
PSMNet [8] ✗ ✗ 32.50 11.70 6.40 4.51 1.32
PSMNet-gd ✗ ✓ 32.59 11.94 6.71 4.81 1.35
PSMNet-vpp ✗ ✓ 20.94 6.85 4.24 3.26 1.06
PSMNet-gd-ft ✓ ✓ 30.39 9.79 5.18 3.69 1.27
PSMNet-vpp-ft ✓ ✓ 21.97 6.63 3.91 2.91 1.07
PSMNet-gd-tr ✓ ✓ 25.84 8.30 4.73 3.47 1.17
PSMNet-vpp-tr ✓ ✓ 17.60 5.96 3.86 3.01 1.03
LidarStereoNet [13] ✓ ✓ 33.01 10.16 5.13 3.57 1.33
CCVNorm [73] ✓ ✓ 18.98 6.78 4.50 3.52 1.17
RAFT-Stereo [41] ✗ ✗ 24.57 8.74 5.09 3.66 1.10
RAFT-Stereo-gd ✗ ✓ 32.50 12.61 7.10 4.95 1.33
RAFT-Stereo-vpp ✗ ✓ 15.36 6.33 4.31 3.37 0.92
RAFT-Stereo-gd-ft ✓ ✓ 23.90 8.37 5.01 3.72 1.13
RAFT-Stereo-vpp-ft ✓ ✓ 13.86 5.65 3.93 3.12 0.89
RAFT-Stereo-gd-tr ✓ ✓ 15.51 6.30 4.22 3.27 0.95
RAFT-Stereo-vpp-tr ✓ ✓ 11.64 4.78 3.46 2.80 0.87

Table 5: Experiments on KITTI. Results on the 142 split
[13] with raw LiDAR. Networks trained on synthetic data.

stereo (-gd-ft) and VPP (-vpp-ft) although the latter fre-
quently, and always with RAFTStereo, outperforms the for-
mer even without any fine-tuning (-vpp), while training
from scratch the networks to exploit the depth data with
guided stereo (-gd-tr) results, sometimes, negligibly better
than with VPP (-vpp-tr). This fact emphasizes further how
VPP is much less training dependent, which is remarkable.
Moreover, acting at the image level (VPP) is more robust
than concatenating depth data to RGB (LidarStereoNet),
acting on cost volumes (guided stereo) or both (CCVNorm).

Depth Sparsity vs Accuracy. Fig. 6 shows the error rate
(> 2) on Midd-14 varying the density of sparse depth points
from 0% to 5%. We can notice that VPP generally reaches
almost optimal performance with a meagre 1% density and,
except few cases in the -tr configurations with some higher
density, achieves much lower error rates.

VPP + Existing Methods. Since our approach can be
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Midd-14 Midd-21 ETH3D KITTI 142
Depth Points Error Rate (%) avg. Error Rate (%) avg. Error Rate (%) avg. Error Rate (%) avg.

Model Model name Train Test > 1 > 2 > 3 > 4 (px) > 1 > 2 > 3 > 4 (px) > 1 > 2 > 3 > 4 (px) > 1 > 2 > 3 > 4 (px)
RAFT-Stereo [41] Middlebury ✗ ✗ 17.77 9.73 7.16 5.85 1.67 19.22 9.38 6.28 4.68 1.26 2.78 1.42 1.00 0.86 0.29 24.95 7.81 4.39 3.19 1.05
RAFT-Stereo-vpp Middlebury ✗ ✓ 6.78 4.20 3.34 2.86 1.11 6.64 3.99 3.11 2.60 0.71 1.15 0.75 0.59 0.50 0.15 15.54 5.45 3.64 2.85 0.87
RAFT-Stereo [41] ETH3D ✗ ✗ 24.70 16.25 13.09 11.35 4.82 20.25 10.18 7.09 5.48 1.39 2.61 1.26 0.94 0.76 0.27 24.42 8.62 4.99 3.64 1.09
RAFT-Stereo-vpp ETH3D ✗ ✓ 8.16 5.34 4.34 3.79 2.28 6.81 4.08 3.17 2.70 0.72 1.24 0.77 0.60 0.51 0.14 15.16 6.22 4.23 3.31 0.92
GMStereo [77] Sceneflow ✗ ✗ 50.13 29.15 20.19 15.67 4.10 44.60 23.04 15.88 12.44 2.59 6.43 2.51 1.67 1.13 0.39 30.17 10.46 5.54 3.85 1.20
GMStereo-vpp∗ Sceneflow ✗ ✓ 28.20 13.34 9.25 7.37 2.78 15.19 7.12 5.03 4.03 1.17 2.45 1.19 0.80 0.60 0.25 23.34 7.97 4.84 3.62 1.10
GMStereo [77] Mixdata ✗ ✗ 28.50 12.60 7.88 5.81 1.51 21.10 7.34 4.37 3.16 0.98 1.72 0.31 0.11 0.07 0.28 17.00 4.03 2.20 1.46 0.73
GMStereo-vpp∗ Mixdata ✗ ✓ 18.32 7.81 5.40 4.23 1.34 11.19 4.57 3.09 2.35 0.75 1.13 0.38 0.21 0.14 0.25 13.71 3.82 2.23 1.56 0.67
CFNet [61] Sceneflow ✗ ✗ 41.71 28.07 22.53 19.31 9.07 38.39 21.77 15.87 12.63 10.66 6.05 3.12 2.30 1.86 0.56 25.45 9.34 5.26 3.83 1.11
CFNet-vpp∗ Sceneflow ✗ ✓ 18.51 12.25 10.03 8.85 6.78 14.03 8.10 6.18 5.07 1.24 1.54 0.98 0.76 0.61 0.25 14.23 5.97 4.09 3.14 0.87
CFNet [61] Middlebury ✗ ✗ 22.38 11.87 8.40 6.56 1.91 28.96 14.44 9.88 7.45 2.16 1.15 0.33 0.21 0.17 0.22 11.08 3.01 1.73 1.17 0.59
CFNet-vpp∗ Middlebury ✗ ✓ 13.16 8.12 6.33 5.36 1.79 11.83 6.92 5.23 4.28 1.00 0.75 0.33 0.25 0.20 0.17 8.66 2.69 1.67 1.18 0.53
HSMNet [82] Middlebury ✗ ✗ 31.98 16.53 11.25 8.61 2.01 35.72 17.47 11.51 8.63 2.19 9.43 2.72 1.54 1.03 0.52 31.07 11.75 6.16 4.00 1.17
HSMNet-vpp Middlebury ✗ ✓ 18.46 8.96 6.29 5.07 1.81 16.96 7.73 5.18 3.97 1.13 6.26 1.97 1.17 0.86 0.48 27.09 9.98 5.47 3.69 1.09
CREStereo [35] ETH3D ✗ ✗ 19.80 9.99 7.01 5.44 1.51 21.81 9.86 6.76 5.38 1.36 1.54 0.51 0.32 0.22 0.19 21.97 7.26 4.21 3.07 0.98
CREStereo-vpp∗ ETH3D ✗ ✓ 12.84 7.08 5.31 4.40 1.42 9.46 5.69 4.39 3.64 1.03 1.17 0.69 0.50 0.39 0.13 14.76 5.88 3.90 2.96 0.85
LEAStereo [14] Sceneflow ✗ ✗ 55.49 36.73 28.68 24.04 13.45 50.17 30.29 21.66 16.82 3.73 8.63 3.81 2.48 1.80 0.57 42.99 18.62 10.50 7.16 1.66
LEAStereo-vpp Sceneflow ✗ ✓ 25.72 14.57 11.15 9.50 6.73 19.03 9.28 6.32 4.94 1.38 2.20 1.20 0.88 0.71 0.29 17.99 6.81 4.40 3.34 0.98
LEAStereo [14] KITTI12 ✗ ✗ 49.05 32.08 25.90 22.54 12.17 43.92 23.38 16.25 12.85 3.55 16.49 4.81 2.69 2.03 0.75 20.31 4.54 2.02 1.33 0.78
LEAStereo-vpp KITTI12 ✗ ✓ 29.17 15.36 12.52 11.31 8.11 22.01 10.09 7.45 6.21 1.90 11.89 2.84 1.66 1.28 0.51 11.98 3.12 1.81 1.27 0.63

Table 6: VPP with off-the-shelf networks. Results on Midd-14, Midd-21, ETH3D and KITTI. ∗ uses α = 0.2 for blending.

RAFT-Stereo RAFT-Stereo-vpp RAFT-Stereo RAFT-Stereo-vpp

Figure 7: Performance by RAFT-Stereo-vpp on thin objects. Most fine details are preserved by VPP.

used seamlessly with other image-guided methods, Tab.
3 reports results yielded by such joint deployment on the
Midd-14. VPP method alone is always more effective, ex-
cept with rSGM, which benefits from joint deployment with
guided stereo. Finally, using VPP with LidarStereoNet and
CCVNORN also leads to slight improvements.

Results after Fine-Tuning on Real Data. Tab. 4 col-
lects results analogous to those in Tab. 2, this time after
having fine-tuned PSMNet and LidarStereoNet on Midd-14
for ∼ 4000 steps [67], while for RAFT-Stereo we use the
official Middlebury weights released by the authors. We ob-
serve a similar trend, with most VPP variants consistently
outperforming the competitors, highlighting that VPP ef-
fectively improves cross-domain generalization as well as
domain specialization.

Comparison on KITTI. To prove VPP accuracy with
noisy depth data from a real sensor outdoor and at long-
range where a physical pattern would be unusable, Tab. 5
reports experimental results on the KITTI 2015 dataset us-
ing raw LiDAR. The results confirm the previous trends:
VPP constantly outperforms guided stereo – with any net-
work and configuration – LidarStereoNet and CCVNorm.

VPP with More Off-the-shelf Networks. To conclude,
Tab. 6 collects the results yielded VPP applied to several

off-the-shelf stereo models [77, 61, 82, 35, 14], by running
the weights provided by the authors. Again, VPP sensibly
boosts the accuracy of any model with rare exceptions, ei-
ther trained on synthetic or real data.

4.5. Qualitative results

To conclude, Fig. 7 shows qualitatively the effect of VPP
on the predictions by RAFT-Stereo. We can appreciate how
our virtual pattern can greatly enhance the quality of the dis-
parity maps, without introducing relevant artefacts in corre-
spondence of thin structures – despite applying the pattern
on patches. More examples in the supplementary material.

5. Conclusion

This paper proposed a novel paradigm to achieve the
robustness of active stereo without the need for a pattern
projector with all its inherent limitations. Purposely, our
technique replaces the projector with a generic depth sen-
sor to obtain virtually hallucinated stereo pairs, greatly eas-
ing the visual correspondence task. Experimental results on
standard stereo datasets highlight that our method achieves
state-of-the-art performance with much higher flexibility,
boosting the accuracy of stereo algorithms and networks.
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