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Figure 1: Comparison of our self-supervised approach with existing training strategies on the real-world BurstSR [2] dataset,

using the same architecture [3]. Training a model on only synthetically generated data often leads to artifacts on real images,

due to the domain shift. The same model trained in a supervised manner using real data provides better results. However,

collecting paired ground-truth for real data requires specialized setups and signifiant manual labor, which makes it hard to

scale. Furthermore, the smartphone and DSLR used to capture the input and ground-truth often has spatial misalignment and

different color responses. Models trained with such “weakly-paired” ground-truth exhibit color shifts in their predictions.

Our self-supervised approach alleviate these issues. Despite using only easy-to-acquire, unpaired noisy low-resolution bursts

during training, our method produces clean, artifact-free high-resolution results,

Abstract

We introduce a self-supervised training strategy for burst
super-resolution that only uses noisy low-resolution bursts
during training. Our approach eliminates the need to care-
fully tune synthetic data simulation pipelines, which of-
ten do not match real-world image statistics. Compared
to weakly-paired training strategies, which require noisy
smartphone burst photos of static scenes, paired with a
clean reference obtained from a tripod-mounted DSLR cam-
era, our approach is more scalable, and avoids the color
mismatch between the smartphone and DSLR. To achieve
this, we propose a new self-supervised objective that uses
a forward imaging model to recover a high-resolution im-
age from aliased high frequencies in the burst. Our ap-
proach does not require any manual tuning of the forward
model’s parameters; we learn them from data. Further-
more, we show our training strategy is robust to dynamic
scene motion in the burst, which enables training burst
super-resolution models using in-the-wild data. Extensive

experiments on real and synthetic data show that, despite
only using noisy bursts during training, models trained with
our self-supervised strategy match, and sometimes surpass,
the quality of fully-supervised baselines trained with syn-
thetic data or weakly-paired ground-truth. Finally, we show
our training strategy is general using four different burst
super-resolution architectures.

1. Introduction

Recent RAW burst super-resolution pipelines have sig-

nificantly improved the quality of modern smartphones pho-

tos [33, 8]. State-of-the-art algorithms use specialized deep

learning models that learn to merge the burst frames into

a single high-resolution image [3, 19, 18, 23, 24]. Train-

ing them requires paired datasets, in which each noisy burst

is matched to a clean reference. Most approaches synthe-
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size realistic bursts from the reference using carefully tuned

degradation models [2, 3, 19, 24]. But because of low-

level mismatches between the real and synthetically gen-

erated bursts (e.g., noise distribution, blur kernels, camera

trajectories, scene motions, etc), models trained syntheti-

cally often do not generalize well to real-world inputs (Fig-

ure 1). To avoid this, other works collect weakly-paired
datasets in which the reference is a high-resolution image

of the same scene captured using a DSLR and a zoom lens

on tripod [2, 39]. However, this capture process is tedious

and time-consuming, and the resulting image pairs are often

misaligned, exhibit color and detail mismatches because of

the different sensors, and permit limited scene motion.

In this work, we propose a new self-supervised training

strategy for burst super-resolution that alleviates the limita-

tions of both synthetic and weakly-supervised datasets. Our

approach only requires real-world noisy bursts for training,

which are easy to collect. It eliminates the data collection

complexity of weakly-paired approaches, and, by using real

bursts, avoids the domain gap issues that plague syntheti-

cally trained models.

We derive a self-supervised reconstruction objective that

models the relationship between the noisy burst and the

ideal clean reference image we wish to recover. In partic-

ular, we exploit the property that burst images are noisy,

aliased, and subsampled measurements of a scene, at ran-

dom spatial offsets due to hand tremor [33], to recover high-

frequency image details. Specifically, during training, we

randomly split each burst into two sets of images. The

first is passed as input to a burst super-resolution network

to produce a high-resolution output, from which we derive

low-resolution images using a forward image degradation

model. We compare these low-resolution frames against

the second set of burst images to compute our reconstruc-

tion loss. Optimizing this loss on a single burst provides too

sparse a signal to train burst super-resolution models. But in

a stochastic optimization involving a large dataset of bursts

with random camera displacements, our self-supervised ob-

jective enables learning a robust image prior, and lets us

recover high-resolution merged images.

Our loss function uses an explicit but general parame-

terized image formation model. Crucially, we do not make

any limiting assumption about the parameters of this model

(e.g., the precise noise distribution, the lens point spread

function). Instead, we jointly learn the model’s parame-

ters along with the super-resolution network from data. Our

training approach is general: it can be used to train any neu-

ral network architecture using bursts captured from any sen-

sor. By using only noisy low-resolution bursts, which are

easy to collect, our approach opens the opportunity to de-

ploy state-of-the-art super-resolution network architectures

for various cameras in real-world settings. In short, our con-

tributions are the following:

• To the best of our knowledge, we introduce the first

self-supervised training approach for raw burst super-

resolution using only noisy, low-resolution inputs.

• We develop a robust self-reconstruction loss for train-

ing on bursts with dynamic object motion, which are

prevalent in real in-the-wild bursts.

• Our approach can be used learn a lens blur kernel

jointly with a burst super-resolution model, thereby al-

leviating the need of explicit blur kernel estimation.

• We perform extensive experiments on two real world

burst datasets, using four different network architec-

tures. Our approach obtains promising results com-

pared to the model trained using weakly-paired data,

despite using only low-resolution bursts.

2. Related Work

Learning real-world single image super-resolution. A

number of approaches aim to manually design sophisti-

cated synthetic pipelines which can generate realistic train-

ing data [37, 36, 30] for fully-supervised training. However,

accurately modeling the real world degradation process is

challenging. Thus, a number of approaches aim to learn

this degradation process, which can then be used to gener-

ate training data [21, 4, 17, 32, 25, 22]. In contrast, a few

approaches [39, 5, 7] collect real LR-HR pairs for super-

vised training using specialized data collection procedures.

Burst Super-Resolution. Classical approaches [16, 1,

14, 12, 13] minimize a reconstruction error computed us-

ing the physical image formation model to perform multi-

frame super-resolution. Wronski et al. [33] propose a ker-

nel regression based approach for burst SR using hand-held

cameras. Recent approaches aim to exploit deep learning

to perform burst SR [2, 19, 9, 23, 26]. Bhat et al. [2] uses

a weighted-sum approach to merge the encodings of input

images. [24] performs non-local fusion of images in feature

space. Bhat et al. [3] minimize the classical reconstruction

error [16, 13] in a learned feature space. Lecouat et al. [19]

on the other hand leverage the plug-and-play [6, 29] frame-

work to integrate a CNN-based regularizer into the classical

model-based objective. Dudhane et al. [9] introduce a trans-

former based architecture for burst restoration.

Learning burst super-resolution. Compared to single im-

age SR, modeling real-world burst SR is even more chal-

lenging, as one needs to accurately model the real-world

blur kernels, noise distribution, camera motion, and ob-

ject motion. Bhat et al. [2] introduce a synthetic pipeline

to generate training data for burst super-resolution. How-

ever, this pipeline does not accurately model real world blur

kernels, assumes burst frames are related by homographies,

and does not consider object motion. Alternatively, Bhat

et al. [2] also collect a real world dataset containing bursts

captured from a handheld smartphone camera, along with
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Figure 2: Motivation for our self-supervised training ap-

proach. Due to camera motion, the different low-resolution

images in a burst provide samples at different spatial lo-

cations in the high-resolution image (depicted as colored

dots). By comparing downsampled versions of the pre-

dicted HR image to the different LR images (after align-

ment), we can obtain sufficient supervision signal to train

a burst SR model. Such supervision is also sufficient for

removing any i.i.d. zero-mean noise in the LR images, as

each LR image is a noisy observation of the same signal.

corresponding HR reference captured using a DSLR with a

zoom lens on a tripod. Sophisticated alignment is done at

patch-level to align the reference frame with the smartphone

bursts, after which the authors still need to use a flow-based

robust loss for handling the remaining misalignments. Fur-

thermore, due to the mismatched camera characteristics be-

tween a smartphone and a DSLR (e.g., color), the learned

burst SR models tend to alter the output image. By training

directly from a dataset of only low-resolution noisy bursts,

which we stress are much easier to collect, our approach

addresses all the aforementioned issues.

Self-supervised training for image restoration. A few

works have explored unsupervised or self-supervised alter-

natives for training image restoration models [35, 10, 27].

Yuan et al. [35] utilize cycle consistency to train single im-

age SR model using unpaired data. Lehtinen et al. [20]

show that in case of zero-mean noise, denoising networks

can be trained using only independent noisy instances of a

clean image. Ehret et al. [10] utilize a similar principle to

train a video denoising network. This approach, denoted

frame-to-frame, is also employed to perform joint denois-

ing and demosaicking using a burst which contains multi-

ple noisy, albeit shifted, versions of the same scene [11].

Nguyen et al. [27] extend this idea to train a multi-frame

super-resolution model for grayscale satellite images. In

contrast to [27], we introduce a general approach for train-

ing raw burst SR models for natural images, which is ag-

nostic to the model architecture. Instead of excluding the

base frame from model input during training, we use a set

of held-out burst images to compute a self-supervision loss.

[27] assumes a fixed blur kernel when computing the train-

ing loss. Instead, our approach learns the blur kernel from

data. Furthermore, our approach is robust to the dynamic

motions prevalent in real-world bursts.

3. Method

We address the problem of training self-supervised mod-

els for raw burst super-resolution, and introduce a general

strategy for training any burst SR model to produce a high-

resolution image, given only noisy low-resolution data. Our

approach is based on the property that the frames in a low-

resolution handheld burst provide independent noisy, sub-

sampled versions of an underlying ground truth image be-

cause of camera motion due to hand shake (see Fig. 2).

These different degraded observations of the same scene

can provide information to recover the underlying high-

resolution image. Over a large training dataset, this can

provide sufficient supervision signal to train a deep learn-

ing model to recover the high-resolution images.

Notably, our method is designed to handle challenges

with real-world training data. We jointly learn the camera

lens blur, along with the SR model parameters, to alleviate

the need of lens calibration. We also introduce a robust loss

function to handle object motions present in real bursts.

3.1. Self-Supervised Training

Here, we introduce our self-supervised training objec-

tive. Given a burst B = {bi}Ni=1 of N images from the train-

ing dataset, as illustrated in Fig. 3, we partition it into two

disjoint sets Bmodel = {bi}Ki=1 and Bunseen = {bi}Ni=K+1

containing K and N − K images, respectively. The first

set is passed to the burst SR model f , which outputs an HR

prediction ŷ = f(Bmodel). Next, we use an image formation

model Πmi,k to synthesize LR burst frames b̂i:

b̂i = Πmi,k(f(Bmodel)). (1)

Our image formation model treats a LR burst image as a

shifted and degraded version of HR image y. It is param-

eterized by the motion mi from frame i to our prediction,

and a spatially-invariant lens blur kernel k, as follows

Πmi,k(y) = HDkΦmi
(y) , (2)

Here, the original image y is first warped by Φ to account

for camera motion mi. The warped image is then blurred by

lens blur Dk, then subsampled and mosaicked by the linear

operator H to obtain the observation bi. These synthetic

burst frames are then compared to the remaining real frames

Bunseen using the following reconstruction error:

� =
1

N −K

N∑

i=K+1

‖bi −Πmi,k(f(Bmodel))‖1. (3)
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Figure 3: An overview of our self-supervised training framework. Given a noisy low-resolution training burst, we split it into

two parts. The first part is passed through a burst SR model f to obtain a putative HR prediction ŷ. Next, we utilize a simple

image formation model to simulate the unseen images from the second part of the input burst. This involves estimating the

motion mi for each image bi. The estimated motion is used to warp the prediction ŷ to bi, followed by blur with kernel k,

downsampling, and mosaicking. The simulated images b̂i are compared with the observed images bi to compute the training

loss �. We additionally compute a validity mask vi in order to obtain a robust loss in presence of dynamic objects. The burst

SR model parameters, as well as the blur kernel k are jointly learned by minimizing the self-supervised objective �.

We use the L1 loss as it is more robust to clipped noise [10].

Note that in loss (3), we use the observed noisy image as

the ground truth for the LR image synthesized using the HR

prediction, as in the Noise2Noise frameworks [20]. If the

camera sensor noise is i. i. d. and zero-mean, as is com-

monly the case, we can train the burst SR model f to make

accurate HR predictions by minimizing the reconstruction

error � over a large training dataset [20, 34].

3.2. Motion Estimation

In real-world settings, the motion mi is unknown and

needs to be estimated for each image bi. We parameterize

the motion parameters mi as pixel-wise optical flow which

aligns the prediction ŷ to input image bi. This allows us

to better handle object motions and perspective shifts com-

pared to, e.g. using a homography. We use an off-the-shelf

flow network, PWC-Net [28]. Note that directly comput-

ing the optical flow between ŷ and bi is challenging due to

differences in spatial resolution and color space (RGB vs.

Raw). Furthermore, in the early stages of training, ŷ and bi
can be misaligned and have widely different appearances.

This can lead to training instabilities and the network may

start hallucinating undesired spatial shifts. We avoid this by

instead estimating the flow between the first image in the

burst b1 and the i-th image bi, which we bilinearly upsam-

ple to the spatial resolution of ŷ to obtain mi. This strategy

constrains the burst SR model f to generate predictions that

are aligned w.r.t. the first burst image.

Robust Loss. Since mi is an optical flow estimate, it in-

evitably contains errors, especially in the presence of noise.

Furthermore, real-world bursts contain dynamic objects and

occlusions where accurate alignment is impossible. Conse-

quently, the reconstruction error (Eq. (3)) is invalid in these

regions, and naively including them in the loss leads to arti-

facts in the HR prediction (see Sec. 4.3). We robustly handle

errors in motion estimation using a simple binary validity
mask vi that indicates which pixels in each image bi can re-

liably be used in the reconstruction loss. First, consider the

magnitude of the warping residual |bi − Φmi(b1)|. We ex-

pect it to be high at misalignments and occlusions, and low

where the flow is accurate. However, it can also be high

at well aligned regions due to noise or aliasing. Discarding

those regions would discard the very information needed for

denoising and super-resolution. To combat gross alignment

errors but preserve the useful regions that are challenging to

align, we found it sufficient to filter the residual with a low-

pass Gaussian F with a standard deviation of 2.7 pixels:

|F (bi) − F (Φmi
(b1))|. We threshold this filtered residual

and apply morphological dilation to suppress thresholding

noise. Our final reconstruction loss is:

� =
1

N −K

N∑

i=K+1

‖vi�(bi −Πmi,k(f(Bmodel))) ‖1, (4)

where � denotes point-wise multiplication.

3.3. Blur Kernel Estimation

Unlike a synthetic training strategy, we do not assume

a known blur kernel or calibrate it for each camera, which

is cumbersome and labor-intensive. We instead opt to di-

rectly learn the per-camera kernel from data, jointly with
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DBSR [2] DeepRep [3] BIPNet [8] Burstormer [9]

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Supervised, Synthetic 36.27 0.918 0.135 36.53 0.920 0.133 36.71 0.924 0.133 36.73 0.923 0.134

Supervised, Weakly-paired 36.01 0.922 0.089 34.62 0.904 0.089 36.77 0.926 0.097 36.84 0.925 0.100

Self-Supervised, Ours 38.23 0.940 0.079 38.73 0.943 0.075 38.44 0.941 0.093 38.81 0.943 0.085

Table 1: Comparison of our self-supervised training with existing training alternatives using synthetic or weakly-paired data,

on a synthetic SynBSR benchmark. Results are shown for 4 different architectures, in terms of PSNR, SSIM, and LPIPS.

Burst image Supervised, synthetic Supervised, weakly-paired real Self-supervised (Ours)

Figure 4: Comparison with supervised training strategies using the DeepRep [3] architecture on the real-world BurstSR

dataset [2]. The first column shows an input burst image processed using Adobe Camera Raw. The model trained using only

synthetic data struggles to handle dynamic scenes. The real data supervised training provides better results, but can introduce

small color shifts (second row) due to the color shift in the ground-truth. Furthermore, it requires high-resolution ground

truth which is cumbersome to collect. Our self-supervised approach can recover most of the high-frequency details without

introducing any artifacts or color shifts, despite using only low-resolution noisy bursts for training.

the parameters of the burst SR model, to avoid domain shift.

We represent the blur using an unnormalized 9 × 9 kernel,

which we pass through a softmax operator to guarantee that

the weights are non-negative and sum to 1.

4. Experiments

We perform a thorough evaluation our of approach on

synthetic as well as real-world data. First, we compare

our self-supervised training method with alternate training

strategies. Experiments are performed using 4 different net-

work architectures, highlighting the generality of our ap-

proach. Next, we demonstrate our ability to train models for

a different sensor, where the high-resolution ground truths

are not available. Finally, we perform a detailed analysis of

our self-supervised training framework. More details, train-

ing parameters, and results are provided in the supplement.

4.1. Comparison With Existing Methods

We propose a self-supervised approach to train burst

super-resolution models using only low-resolution, noisy

bursts. In this section, we compare our approach with exist-

ing training methods using 4 different architectures.

Baselines. As discussed in Section 1, one of the major chal-

lenges when training real-world burst super-resolution mod-

els is the unavailability of accurately aligned input-ground

truth pairs. We compare our approach with the two train-

ing alternatives that are commonly employed to tackle this

issue. i) Synthetic: Training bursts are generated using a

synthetic pipeline introduced in [2], using bilinear down-

sampling kernel and heteroscedastic Gaussian noise model.

The model is then trained in a fully supervised manner using

the generated bursts [19, 18]. ii) Weakly-paired real: The

model is trained using real-world training pairs containing

unavoidable spatial and color misalignments. An explicit
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Figure 5: Comparison with alternate training strategies using Burstormer [9], BIPNet [8], and DBSR [2] on BurstSR [2]. The

models trained using only synthetic data introduce severe artifacts due to the domain gap. Our approach recovers most of the

high-frequency details and provides results comparable to the models trained using weakly-paired HR ground truth.

alignment strategy [2] is employed during training in order

to handle these misalignments [2, 3, 8, 9]. Note that this

training strategy requires manually collecting ground truth

image for each burst, which is cumbersome.

Datasets and metrics. We evaluate our approach for the

4× super-resolution task on two benchmarks, namely the

real-world BurstSR dataset [2], and a synthetically gener-

ated SynBSR benchmark. The real-world BurstSR dataset

contains 200 bursts, each with 14 images, captured using

a Samsung Galaxy S8 smartphone camera. For each burst,

the dataset also contains a high-resolution, weakly-paired

ground truth captured using a DSLR. A subset containing

160 bursts can be used to training models, while the re-

maining are set aside for evaluation. Due to the presence of

misalignments between the bursts and the HR ground truth,

computing robust evaluation metrics for quantitative com-

parison is challenging. Hence we only perform a qualitative

comparison of different methods on this dataset. In order to

perform quantitative comparison of our approach with al-

ternate methods, we introduce a synthetic SynBSR bench-

mark which simulates the real-world training challenges.

SynBSR consists of training and test bursts generated using

a synthetic pipeline, similar to the one employed in [2]. For

each training burst, a slightly misaligned HR ground truth is

provided, as in the BurstSR dataset. This models the prac-

tical real-world training challenges. We simulate the mis-

alignments in our setup by introducing small random global

rotation and translation, and a linear color transformation to

the ground truth image. We utilize a test set containing 200

bursts. Since the bursts are synthetically generated, a per-

fectly aligned groundtruth is available for the test set, which

can be used to compute quantitative metrics. We employ

PSNR, SSIM [31], and LPIPS [38] metrics for comparisons.

Implementation details. Similar to the strategy employed

for weakly-paired training [2], we first pretrain models on

synthetic data. These are then further trained on real low-

resolution bursts using our self-supervised strategy.

Quantitative Results on SynBSR. We compare our self-

supervised training approach to the synthetic and weakly-
paired training baselines on the synthetic SynBSR dataset.

The results for 4 different network architectures, DBSR [2],

DeepRep [3], BIPNet [8], and Burstormer [9], are reported

in Tab. 1. Note that the weakly-paired data training can in-

troduce global spatial shifts in the model predictions since it

uses an alignment based loss. In order to not penalize these

global shifts, we first align the prediction of the weakly-

paired network to the ground truth using a global transla-

tion, and then compute the performance metrics. Synthetic

data training can lead to sub-optimal results due to domain

mismatches between the training and the test data distribu-

tions. Predictions from the supervised weakly-paired train-

ing can have small spatial deformations and color shifts,

due to the presence of misalignments in the training data.

This leads to lower performance scores. Our self-supervised

training provides the best results for all 4 network architec-

tures. For the Burstormer architecture, the model trained us-

ing our self-supervised approach obtains a PSNR of 38.81,

outperforming the model trained using weakly-paired data

10610



Burst image Weakly-paired, BurstSR Self-supervised, HDR+
Figure 6: Our self-supervised training can be used on existing raw burst datasets with no ground-truth, such as HDR+ [15]

captured using a Google Nexus 6. We achieve superior SNR at higher resolution. In contrast, the weakly-paired model

(trained on the BurstSR dataset), produces visible splotches and color shifts due to differences in noise distribution.

by +1.97 dB in PSNR. This improvement is obtained de-

spite using less information for training, compared to the

weakly-paired method.

Qualitative Results on real-world BurstSR. Here, we

evaluate our approach on the real-world BurstSR [2]

dataset, using DBSR [2], DeepRep [3], BIPNet [8], and

Burstormer [9] architectures. For each architecture, we

compare a model trained using our self-supervised strat-

egy with the official models provided by the authors trained

using synthetic and weakly-paired training strategies. A

qualitative comparison using the DeepRep architecture is

shown in Figure 4. For visualization, we render linear

network predictions to sRGB using Adobe Camera Raw.

Since the synthetic pipeline models only static scenes, a

network trained this way produces artifacts when given a

burst with scene motion (third row). The network trained

using weakly-paired data provides better results. However,

it can introduce small shifts in color (second row). This is

because the ground truth high-resolution images are cap-

tured using a different camera featuring a sensor with a

different color response. Compared to the weakly-paired

model, our approach preserves color and recovers most

of the high-frequency details, despite not using any high-

resolution ground truths for training.

Figure 5 provides further qualitative comparisons using

DBSR, BIPNet, and Burstormer architectures. The mod-

els trained using only synthetic data introduce severe ar-

tifacts, even in static regions in case of Burstormer and

BIPNet. The models trained using our approach robustly

handle dynamic scenes and exhibits no color shifts, achiev-

ing results comparable to the weakly-paired training ap-

proach. We reiterate that our approach utilizes only low

resolution bursts for training, which are much easier to ob-

tain compared to collecting weakly paired high resolution

groundtruths. These results demonstrate the generality of

our training framework.

4.2. Deployment On Other Sensor

Since our method only requires low-resolution noisy

bursts, it can be adapted to train models for different sensors

or domains, obviating current methods’ need for extensive

data-collection with specialized setups. As a proof of con-

cept, we evaluate our strategy on the HDR+ dataset [15],

which consists of 3640 bursts and no HR ground truth.

Compared to BurstSR [2], HDR+ bursts cover a greater dy-

namic range, with bright highlights as well as dark shadows

in the same image. To minimize shifts in noise and blur dis-

tribution, we use only bursts captured on the Nexus 6 cam-

era. This yields 77 bursts, of which we use 70 for training.

This experiment uses the 4× DeepRep architecture.

We start with an initial self-supervised model trained on

the BurstSR dataset and finetune it on HDR+ data. Fig-

ure 6 shows our results as compared to the supervised real

data baseline trained exclusively with BurstSR images. Un-

like our method, the supervised approach is unable to use

any images from HDR+ since high-resolution ground truth

is unavailable. Consequently, it struggles with the noise

present in the intentionally underexposed images, introduc-

ing “splotches” and color shifts.

4.3. Analysis of Self-Supervised training

We analyze different components of our self-supervised

training framework in this section. Our analysis is per-

formed on synthetic datasets generated using different blur
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Known Unit Impulse Gaussian Isotropic Gaussian Isotropic Gaussian Isotropic Gaussian Anisotropic

y k mi Read & Shot, Mix Read & Shot, Mix Read & Shot, Fixed Only read, Fixed Read & Shot, Mix

(I) Fully Sup. SISR � 34.681 34.074 35.767 35.557 34.683

(II) Fully Sup. burst SR � 39.810 37.254 39.002 38.761 37.590

(III) Self Sup. known k, mi � � � 40.359 36.765 38.469 38.236 37.040

(IV) Self Sup. known k � � � 38.999 36.347 37.872 37.577 36.544

(V) Self Sup. fixed k � � � 28.328 28.575 28.970 29.493 34.822

(VI) Self Sup. learned k � � � 38.451 35.853 37.337 37.201 36.205

Table 2: Analysis of our self-supervised training approach on synthetic datasets generated using different combinations of

blur kernels and noise distributions. All numbers are in dB PSNR. We evaluate our approach under different settings where

the scene motion mi and the blur kernel k are assumed to be known or estimated. We also include comparisons with a burst

SR model and a single image SR model training using fully-supervised paired HR ground truth. Despite using exclusively

low-resolution bursts our method is within ∼2 dB of the fully-supervised upper bound (second row). This holds even when

motion and blur are estimated (bottom row).

Unit Impulse Iso. Gauss. Ani. Gauss.

Figure 7: (Top) Blur kernels used to generate synthetic

bursts. (Bottom) The blur kernels learned by our self-

supervised method.

Incorrect kernel Learned kernel

Figure 8: Using an incorrect blur kernel (inset) leads to poor

results (left). Jointly learning the kernel with the SR model

produces much better results (right).

kernels and noise distributions. We consider 3 different blur

kernels: the unit impulse, an isotropic Gaussian, and an

anisotropic Gaussian (see Figure 7). We also consider 3

noise distributions: i) heteroscedastic Gaussian with vary-

ing noise levels, which models camera shot and read noise

at different gains (ISO), ii) heteroscedastic Gaussian with

a fixed noise level, and iii) homoscedastic Gaussian with a

fixed noise level, which only models sensor read noise. For

each combination of blur and noise, we synthesize train-

ing and test datasets using the pipeline introduced in [2].

We train and evaluate a set of models on exclusively that

dataset. Our experiments are conducted on the 2× super-

resolution task, using a smaller variant of the DeepRep

model [3]. We use a burst size of 14 frames for both train-

ing and test.

Analysis of reconstruction loss. We study whether our re-

construction loss (4) provides enough supervision for train-

ing a burst SR model. We first consider the ideal scenario

where the blur kernel k, as well as the motion mi are known.

For comparison, we also evaluate oracle burst SR and sin-

gle image SR models, i.e. models which are trained in a

fully-supervised manner using paired HR ground truth. The

results of our analysis, in terms of PSNR, are shown in

Table 2. Our self-supervised approach obtains promising

results for each of the 5 data distributions. When motion

and blur kernel are known (third row), the performance of

our approach is only 0.55 dB PSNR lower than the fully-

supervised upper-bound (second row) in the worst case.

Impact of using estimated motion. We consider the prac-

tical scenario where the motion mi is unknown and must

be estimated (Section 3.2). Even when using the estimated

scene motion (fourth row), our approach obtains PSNR

scores within 1.2 dB of the fully-supervised setting, despite

using only the noisy LR bursts for training.

Analysis of learning the blur kernel. Next, we consider

the scenario where the blur kernel is also unknown, and ana-

lyze the impact of jointly learning the blur kernel k with the

parameters of the burst SR model. For each data distribu-

tion, we initialize the blur kernel to an isotropic Gaussian

with large standard deviation (which does not match the

true standard deviation). We then jointly learn the kernel

with the parameters of the burst SR model by minimizing

our self-supervised reconstruction loss (4). As a baseline,

we fix the blur kernel to its initial incorrect value and learn

only the burst SR model. Table 2 (fifth row) shows that

using an incorrect blur kernel drastically degrades perfor-

mance for nearly all data distributions. In contrast, our ap-

proach achieves significantly better performance (last row),

while learning accurate blur kernels (Figure 7). A quali-

tative comparison showing the impact of learning the blur

kernel is shown in Figure 8.

Impact of validity mask. We train models with and with-

out a validity mask vi on the BurstSR dataset [2]. Figure 9

shows that the validity mask is crucial to avoid ghosting

around moving objects.
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Without validity mask With validity mask

Figure 9: If trained without a validity mask, our models

introduce ghosting artifacts around moving objects.

5. Conclusion
We showed how to train deep learning models for raw

burst super-resolution without using any high resolution

ground truth. We are able to simultaneously estimate lens

defocus and predict a high resolution image while being ro-

bust to scene motion. Our strategy compares favorably to

the state of the art despite being restricted to data that is

significantly easier to collect.

Limitations and Future Work. Our image formation

model assumes that the lens blur kernel is fixed over the

full dataset. This may not hold in practise. Furthermore, we

do not model any motion blur, which may limit the perfor-

mance of the model. Extending our approach to incorporate

spatially varying blur is an interesting future work. Another

future direction is to integrate additional supervision in the

form of unpaired high-resolution images.
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