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Abstract

We introduce the first multitasking vision transformer
adapters that learn generalizable task affinities which can
be applied to novel tasks and domains. Integrated into
an off-the-shelf vision transformer backbone, our adapters
can simultaneously solve multiple dense vision tasks in
a parameter-efficient manner, unlike existing multitasking
transformers that are parametrically expensive. In con-
trast to concurrent methods, we do not require retraining
or fine-tuning whenever a new task or domain is added.
We introduce a task-adapted attention mechanism within
our adapter framework that combines gradient-based task
similarities with attention-based ones. The learned task
affinities generalize to the following settings: zero-shot task
transfer, unsupervised domain adaptation, and generaliza-
tion without fine-tuning to novel domains. We demonstrate
that our approach outperforms not only the existing con-
volutional neural network-based multitasking methods but
also the vision transformer-based ones. Our project page is
at https://ivrl.github.io/VTAGML.

1. Introduction
In the past few years, vision transformers [5, 15, 16,

26, 30, 57] have grown in popularity at an incredible pace.
They have now achieved state-of-the-art results, outper-
forming Convolutional Neural Network (CNN) based meth-
ods not only in image classification [22, 23, 26] but also
in many dense prediction tasks such as semantic segmenta-
tion [11, 47, 59, 68], monocular depth estimation [40, 61],
and surface normal prediction [24, 62]. Therefore, utiliz-
ing the power of vision transformers in a unified framework
to simultaneously solve multiple tasks seems a natural way
forward. Nevertheless, only a few works [3, 7, 21, 35, 44]
have attempted this so far, and all of them rely on hand-
crafted transformer architecture designs. Specifically, IPT
and ST-MTL [7, 35] exploit a multi-head multi-tail archi-
tecture tailored to solve specific tasks; MulT [3] lever-
ages a pairwise task attention strategy handcrafted to uti-
lize surface normal prediction as reference task for dense

Figure 1: Motivation of our work. Unlike existing MTL
methods, our vision transformer adapters generalize to
novel tasks and domains.

predictions; and UniT [21] as well as Vid-MTL [44] use
a multimodal transformer architecture to achieve multi-
ple pairwise task predictions across different modalities.
While these multitasking vision transformer-based meth-
ods [7, 3, 21, 35, 44] outperform their multitasking CNN-
based counterparts [29, 31, 34, 45, 48, 52, 53, 58, 65, 66],
none of the existing vision transformer-based or CNN-
based MTL methods can adapt to new tasks as well as to
novel domains. In fact, it was observed in the seminal work
of [66] and confirmed in subsequent MTL studies [3, 45, 65]
that the multitask affinities learned by existing MTL frame-
works are not transferable or generalizable.

This raises the following question: Is there a way we can
learn transferable and generalizable task affinities such that
multitask affinities transfer to novel tasks and generalize
to novel domains, thereby allowing us to reuse an existing
network? To answer this, we introduce vision transformer
adapters for generalizable multitask learning and propose
an automated framework that can learn transferable and
generalizable task affinities which can adapt to new tasks
or domain representations in a parameter-efficient manner.
Additionally, unlike existing transformer-based handcrafted
MTL methods [7, 3, 21] that learn task affinities in a pair-
wise manner, our vision transformer adapters learn task
affinities in an automated way and across all the tasks.

To achieve this, we equip our vision adapters with three
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mechanisms: (1) An improved gradient-based task similar-
ity approach (TROA) first introduced in [8]; (2) a novel
task-adapted attention mechanism (TAA) that combines the
gradient-based task similarities with attention-based ones,
thereby learning transferable and generalizable task affini-
ties; and (3) a task-scaled normalization to account for the
different task scales. The resulting module can then be
seamlessly integrated with a pre-trained, frozen encoder
backbone architecture such as ViT [16], Swin [30], Pyramid
Transformer [56], or Focal Transformer [63]. Our approach
is independent of the choice of the vision transformer back-
bone, unlike existing transformer-based MTL methods. Our
contributions are summarized as follows:

• We introduce vision adapters for generalizable multi-
task learning that leverages a pre-trained vision trans-
former backbone to learn transferable and generaliz-
able features at a low computational cost.

• At the heart of our vision adapter, we introduce a novel
task-adapted attention mechanism (TAA) that auto-
matically learns task dependencies from the shared
representation, by combining gradient-based task sim-
ilarities (TROA) with attention-based ones.

• Our task affinities transfer to different settings includ-
ing multitask learning, zero-shot task transfer learning,
and unsupervised domain adaptation. Moreover, our
task affinities generalize to novel domains without re-
quiring any fine-tuning.

• Our multitasking vision transformer adapters can be
integrated with different transformer backbones such
as ViT [16], Swin [30], Pyramid Transformer [56],
and Focal Transformer [63], achieving a significant in-
crease in performance in a parameter-efficient way.

Our experiments evidence that our method outperforms
both state-of-the-art CNN-based multitasking methods [8,
29, 31, 34, 37, 48, 52, 65, 66] as well as transformer-based
ones [3, 21].

2. Related Work
Multitask Learning. Multitask learning has been a fun-
damental problem for years; see Vandenhende et. al. [52]
for a great survey. As noted by multiple works [18, 45, 52],
MTL networks are unstable and require a strong balance
between tasks to perform well. Prior works [29, 31, 34,
45, 48, 52, 53, 58, 65, 66] aim to strike this balance either
using a gradient-based learning of task affinities in the en-
coded representations [8, 29, 34, 52, 64], or applying task
conditioned gates to the decoder [48], attention-based task
similarities [31, 53, 58] or weighted task losses [9, 13, 37].
While these works, all based on the convolutional neural
network (CNN) backbone, show promising results, they re-
main challenged by negative task transfer, i.e., the degraded

performance of certain tasks when learned jointly. To over-
come this, Standley et. al [45] developed subsets of comple-
mentary tasks where each of these subsets, when trained,
can overcome negative task transfer. Being a handcrafted
approach, [45] resulted in a large number of subsets com-
prising different task combinations.

Following this, IPT [7] was the first transformer-based
multitask network aiming to solve low-level vision tasks
after fine-tuning a large pre-trained network. Subse-
quently, [35], jointly addressed the tasks of object detec-
tion and semantic segmentation, and [44] used a similar
architecture for scene and action understanding in videos.
Recently, Hu et.al. [21] proposed a framework that tackles
several language tasks but a single vision one. MulT [3]
showed the superiority of vision transformers over CNN-
based networks in modeling the multitask affinities via its
shared attention mechanism, thereby solving all the tasks
in a single model. While these transformer-based frame-
works [3, 7, 21, 35, 44] clearly outperform the existing
CNN-based multitasking methods, they are handcrafted and
cannot be integrated into a different transformer backbone.
By contrast, our vision transformer adapters can be inte-
grated into an off-the-shelf vision transformer backbone,
while learning task affinities based on all the tasks in an
automated manner.
Learning generalizable task affinities. Taskonomy [67]
studied the relationships between multiple visual tasks for
transfer learning. Following this, a number of recent
works have studied tasks relationships for transfer learn-
ing [1, 17, 18, 38, 45, 55]. These works analyze a network
that is trained on a source task and is applied to a different
target task. None of these mentioned works demonstrate a
correlation between the transfer task affinities and the mul-
titask affinities. To address this, we introduce our multitask
vision transformer adapters that can successfully transfer
the multitask affinities to novel tasks and novel domains.

Vision Transformer Adapters. First introduced for lan-
guage tasks to leverage knowledge embedded in large pre-
trained transformers, adapters [20] are trainable modules
that are attached to specific locations of a pre-trained trans-
former network, providing a way to limit the number of
parameters needed when confronted with a large num-
ber of tasks. This approach is also effective with pre-
trained vision transformers that have rich semantic infor-
mation [10, 25, 27]. Specifically, Li et al. [25, 27] pro-
posed ViT-based adapters for object detection, whereas
Chen et al. [10] added feed-forward bottlenecks in every
transformer block for the separate downstream tasks of ob-
ject detection and semantic segmentation. Such methods,
however, adapt to a single downstream task. By contrast,
we propose vision transformer adapters that can infer on
multiple dense-vision tasks in a single run in a parameter-
efficient manner. To the best of our knowledge, only the
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Architecture Task-affinity generalization

Methods Encoder-focused Decoder-focused Attention Task-loss MTL Task-transfer UDA Novel domain

CNN-based

MTL-baseline [52] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Consistency [65] ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
XTAM [31] ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗
TAWT [8] ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗
Cross-stitch [34] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
MTAN [29] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
TSwitch [48] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗
TTNet [37] ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗
Taskonomy [67] ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗

Vision Transformer-based
ST-MTL [35] ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
MulT [3] ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗
Our ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Taxonomy of MTL approaches. Our vision transformer adapter method is an encoder-focused, task-balanced
approach that uses task-adapted attention (TAA) to learn generalizable task affinities, unlike existing CNN-based and vision
transformer-based MTL methods. Here, we list the methods that we evaluate in this work. A detailed taxonomy of other
MTL methods is provided in supplementary.

prior works of [46, 49]—both in the field of NLP—mix
multitask learning and adapters within large pre-trained lan-
guage transformers by creating local task modules that are
controlled by a global task-agnostic module. This approach,
however, has the drawback of adding new non-shared pa-
rameters whenever a new task is added, thereby failing to
generalize on novel tasks. By contrast, our vision trans-
former adapters share all parameters across the tasks and
can re-modulate the existing weights when a new task is
introduced. Moreover, the task affinities learned by our vi-
sion transformer adapters generalize to novel domains, un-
like any existing work.
Transformer Attention Mechanisms. While many
works exploit the long-range dependencies of transformers
by computing a task-specific attention [6, 12, 56, 57, 60, 63]
and pairwise task attention for MTL [3], none of these
attention mechanisms learn task-affinities based on all the
tasks in an automated manner. We, therefore, introduce a
task-adapted attention (TAA) mechanism that learns the
task affinities by combining gradient-based task similarities
with the attention ones. In essence, our TAA conditions
the self-attention of the transformer backbone on the
gradient-based task similarities.

3. Method
Our novel vision transformer adapter method achieves

predictions for a novel task or domain by learning transfer-
able and generalizable task affinities. Our adapters lever-
age pre-trained vision transformer models that are readily
and ubiquitously available. While these easily available vi-
sion transformer models are pre-trained for classification
on ImageNet, we aim to integrate them with multitasking.
This calls for learning multitask affinities. To achieve this,
within our vision adapters, we compute the gradient-based
task similarity approach (TROA—Section 3.2.1), that is,
in turn, used by a novel task-adapted attention mechanism
(TAA—Section 3.2.2). This yields representations that are
then normalized according to the task scales (Section 3.2.3),
and finally decoded by the task-specific decoders and their

respective task heads. Our overall framework is shown in
Figure 2. Below, we discuss its different modules in de-
tail. Note that, although we present it using the Swin-B
architecture, which is the most widely used backbone for
dense prediction, our method can be integrated with any ex-
isting vision transformer backbone, such as ViT [16], Pyra-
mid Transformer [56] or Focal Transformer [63], as will be
shown by our experiments in the supplementary.

3.1. Encoder Module

For the encoder, we adopt a pre-trained Swin-B V2 [30]
model initialized with ImageNet-22K-trained weights. The
encoder comprises four successive transformer stages em-
ploying a patch embedding that gradually decreases the res-
olution of the input image in a pyramidal manner while
increasing the channel dimension. As shown in Figure 2,
the first, second, and fourth stages have 2 transformer
blocks while the third stage has 18 blocks. That is, fol-
lowing [19], most of the computation is concentrated in the
third stage. Therefore, we propose to add trainable vision
adapters on top of this stage — specifically for transformer
blocks 15 to 18 — to leverage the rich embeddings it ex-
tracts. Nonetheless, to further reason about the high-level
semantic information encoded in the final representation,
we add two vision adapters for both transformer blocks in
the fourth Swin stage. For any other vision transformer
backbone [16, 56, 63], our vision transformer adapters work
best when integrated with layers comprising mid-level to
high-level information.

3.2. Vision Transformer Adapter Module

Our vision transformer adapters, depicted in Figure 3,
build on a sequence of transformer layers of length consis-
tent with the Swin’s inter-window connectivity configura-
tions. We connect the consequent adapter layers by using
skip connections where the output of the previous layer is
an input to the next layer. This connectivity allows infor-
mation to flow from preceding layers to later ones. Within
each vision adapter, different mechanisms are at play. In
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Figure 2: Detailed overview of our method. The frozen transformer encoder module (in orange) extracts a shared repre-
sentation of the input image, which is then utilized to learn the task affinities in our novel vision transformer adapters (in
purple). Each adapter layer uses gradient task similarity (TROA) (in yellow) and Task-Adapted Attention (TAA) to learn
the task affinities, which are communicated with skip connections (in blue) between consecutive adapter layers. The task
embeddings are then decoded by the fully-supervised transformer decoders (in green) for the respective tasks. Note that the
transformer decoders are shared but have different task heads (in grey). For clarity, only three tasks are depicted here and
TAA is explained in a separate figure.

particular, these mechanisms are (i) TROA, which builds
on [8], and optimizes the task representations by comput-
ing their gradient similarity; (ii) a novel task-adapted atten-
tion (TAA) module to combine gradient-based task affini-
ties from TROA with attention ones; and (iii) a novel task-
scaled normalization (TSN) approach to balance the task
scales. The adapter framework also relies on a bottleneck
network consisting of a linear down-projection (FF down),
a non-linearity, and a linear up-projection (FF up), used
to decrease the number of parameters. In detail, for a
batch of input images, where each image can be denoted
as X ⊂ RH×W×3, the vision adapter encodes the repre-
sentation of the batch of images as ϕ̂. These batch em-
beddings are normalized using a layer norm operation [2].
Once normalized, the embeddings are passed onto our novel
TAA module which triggers the TROA mechanism within
it to find the task similarities. We now explain the gradient-
based task similarity computed by TROA.

3.2.1 Task Representation Optimization Algorithm
(TROA)

TROA computes a task representation θ̂ and a task affin-
ity matrix ω̂ that depends on how correlated the tasks are.
It is, therefore, named the Task Representation Optimiza-
tion Algorithm, since it optimizes the task representations
based on the task gradients. Specifically, this is computed
by a gradient-based task affinity which gives an interpretive

Figure 3: Overview of our vision transformer adapter
module. Our vision adapters learn transferable and general-
izable task affinities in a parameter-efficient way. We show
two blocks to depict the skip connectivity between them.

measure of the influence of an inductive task n ∈ [1, N ] on a
target task t ∈ [1, N ] based on the similarity between their
learned representations. In TROA, we estimate these task
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affinities as the cosine similarity, dubbed simt,n in Algo-
rithm 1, between the gradient of the inductive task and the
gradient of the target task. This cosine similarity is com-
puted for all task combinations. Specifically, at iteration
i, TROA starts with

(
θi,

{
mi

n

}N

n=1

)
, i.e., the feature rep-

resentation and the corresponding N task-specific decoder
functions. Upon making a forward pass, it learns the task
weights by minimizing the overall multitask learning objec-
tive described by

∑N
n=1 ω

i
tnL̂n (θ,mn) via Adam [32]. We

then calculate the cosine similarity between the task gradi-
ents to, ultimately, compute the task affinities. We employ a
closed-form solution for the analytical weight update, wi+1

t ,
given by the approximate mirror descent formula [51] with
a step-size κ = 1. Note that the task weight vector ω̂t is
updated via a combination of alternating minimization and
mirror descent, where the minimization step prevents mode
collapse if the task weights become equal. At the end of the
ith iteration, we obtain a new task representation and a new
weight vector ω̂t for the tth task, identifying its affinity with
all the tasks.

Algorithm 1 TROA

Input: Batch embedding from vision adapter ϕ̂
Output: Task representation θ̂, task-specific decoder function m̂t

and weight vector ω̂t for the ’t’th task .
Initialize: ω1

t ∈ RN uniformly,
θ1 ← ϕ̂,

{
m1

n

}N

n=1
⊂M;

for i = 1, . . . , I − 1 do
Starting With

(
θi,

{
mi

n

}N

n=1

)
; % ith iteration.

Run a few steps of Adam to minimize∑N
n=1 ω

i
tn L̂n (θ,mn) and get

(
θi+1,

{
mi+1

n

}N

n=1

)
;

Run simi
t,n := cossim(∇θL̂t(θ

i+1,mi+1
t ),

∇θL̂n

(
θi+1,mi+1

n

)
); % gradient similarity.

Update ωi+1
t :=

ωi
t exp{−κsimi

t,n}∑N
n′=1

ωi
n′ exp{−κsimi

t,n′}
;

end for
return θ̂ = θI , m̂t = mI

t , ω̂t = ωI
t

In Figure 4 we show the task affinities from TROA
when four tasks comprising semantic segmentation (Sem-
Seg), depth, surface normal, and edges are jointly learned.
We show that TROA learns a strong task affinity between
the same task gradients, for example, segmentation with
segmentation. This is a self-explanatory observation. Con-
sequently, TROA also learns task affinities between proxi-
mate tasks such as segmentation and depth, and task affini-
ties between non-proximate tasks such as segmentation and
normal. Note that task dependence is assymetric, i.e. seg-
mentation does not affect normal as normal effects segmen-
tation. This is evidenced in Figure 4 and also by prior
works [3, 18, 45]. These task affinities are used by our novel
task-adapted attention module as described in the following
section.

Figure 4: We show the gradient-based task affinities, ω̂ ∈
RN×N returned by TROA for N tasks.

3.2.2 Task-Adapted Attention (TAA)

Our task-adapted attention module, as shown in Figure 5,
combines gradient-based task affinities, represented by ω̂t,
with attention-based ones, represented by q · kT . The

Figure 5: Overview of our Task-Adapted Attention (TAA)
mechanism that combines task affinities with image atten-
tion. Note that the process, in the foreground, is for a single
attention head which is repeated for M heads to give us the
task-adapted multi-head attention.

Figure 6: Detailed overview of Feature Wise Linear
Modulation (FiLM) which linearly shifts and scales tasks
representations to match dimensions of the feature maps.
The orange rectangular area is FiLM.

19019



gradient-based task affinities, ω̂t, are obtained from TROA
as discussed in Section 3.2.1. In a parallel branch, we ex-
tract a query q, key k, and value v matrix from ϕ̂, following
the standard approach in attention-based methods [54]. The
widely-known self-attention (SA) [54] is computed as,

SA(q, k, v) = softmax[q · kT /√cqkv]v , (1)

where cqkv is the channel dimension of the query, key, and
value. In contrast to this standard formulation, we condition
the self-attention on the gradient-based task affinities, ω̂t

from TROA (Section 3.2.1). Formally, for a given task t,
our task-adapted attention is
TAA(q, k, v, ω̂t) = softmax[A′(ω̂t) + q · kT /√cqkv]v ,(2)

where A′(ω̂t) = Aγt(ω̂t) + βt(ω̂t) .(3)

Here, ω̂t is the N -dimensional vector of affinities for task
t, i.e., the tth column of ω̂. As ω̂t ∈ RN , we apply the
widely-used Feature Wise Linear Modulation [39] to match
its dimension to the spatial dimensions of the feature maps
and thus get A′(ω̂t). Specifically, the Feature Wise Lin-
ear Modulation (FiLM) [39] performs weighted averaging
of the task representations w.r.t the task affinity weights,
and then linearly shifts and scales the task representations as
seen in Figure 6. It is more stable, unlike other dimension-
matching techniques and we use this technique in our TAA
module to match the dimensions of the affinity matrix ω̂t

to the spatial dimensions of the feature maps and thus get
A′(ω̂t).

Formally, as indicated in Eq. 3, A′(ω̂t) is computed by
first mapping ω̂t ∈ RN to matrices of size hw × hw via
the Feature Wise Linear Modulation [39] functions γt, βt.
The matrix output by γt(ω̂

t) is then linearly transformed by
a randomly-initialized learnable matrix A. Subsequently,
we combine A′(·) with the q · kT /√cqkv matrix to obtain
the TAA as in Eq. 2. In essence, for the tth task, the TAA
module aids the query and key matrix to compute atten-
tion from the most similar tasks. Note that we generically
use h and w to denote the spatial dimensions of the feature
maps at different stages (i.e., H/16,W/16 for stage 3, and
H/32,W/32 for stage 4).

The process described above corresponds to a single at-
tention head. In practice, as shown in Figure 5, we perform
this for M heads, where M = 24 and 48 for the third and
fourth stage, respectively, resulting in M task-specific fea-
ture vectors. We then concatenate these vectors into a rep-
resentation. Note that we apply the same procedure for the
task-adapted attention in all the vision adapters. We defer
qualitative comparisons of our TAA module w.r.t the typical
self-attention (SA) to the supplementary.

Referring to Figure 3, the output of the task-adapted
multi-head attention is employed in a residual connection
followed by a layer norm operation, a feed-forward net-
work, and another residual addition resulting in an ω̃t ma-
trix. This matrix is scaled w.r.t. the task t. Our vision

adapters achieve task-scaling by employing the Task-Scaled
Norm, which is described in the following section.

3.2.3 Task-Scaled Normalization (TSN)

TSN balances the different scales of the tasks. Balancing
the task scales is necessary to avoid learning interference in
a multitasking framework [52]. To this end, inspired by the
Conditional Batch Normalization [33] strategy, we formu-
late TSN as follows. For task t; t ∈ 1, . . . , N ,

TSN t =
1

σ
∗ (at − µ) ∗ γ̂t (ω̃t) + βt (ω̃t) ,

where γ̂t(ω̃t) = γ′γt (ω̃t) + β′ ,
(4)

at, as shown in Figure 3, is the task-specific activation ob-
tained from the residual connection, and ω̃t is the summed
output of the feed-forward network with the residual con-
nection. Furthermore, µ and σ are the mean and the vari-
ance of all the inputs within each layer, as defined in [2], and
γ′ and β′ are the Swin’s Layer Normalization weight and
bias functions. Our TSN mechanism contrasts with Layer
Norm in the following two ways: 1) While the Layer Norm
weight and bias functions are kept fixed, the TSN ones are
trained; 2) while Layer Norm normalizes the input across
features, TSN modulates the normalization output based on
the task weights.

3.3. Decoder Module

Leveraging the idea in [30, 3], our decoder architecture
comprises four stages, each containing 2 sequential trans-
former blocks for a total of 8. In each stage, the two sequen-
tial transformer blocks alternate regular and shifted window
attention mechanisms, as in [30]. Between each stage, we
employ an upsampling layer to double the spatial resolution
and halve the channel dimension; we therefore adjust the
number of attention heads accordingly to 48, 24, 12, and 6,
in the first, second, third, and fourth stage, respectively. Un-
like in [3], where the lower-resolution stages of the decoder
are guided by the higher-level deeper encoded features and
vice versa, our model employs trainable vision adapters to
guide the stages of the decoder in a sequential manner. To
perform predictions on multiple tasks, we share the vision
adapters across all tasks and use task-specific decoders with
the same architecture but different parameter values. We
then simply append task-specific heads to the decoder.
Task Heads and Training. The decoded feature represen-
tations are passed into the linear task-specific heads, such
that the task head outputs an H×W×K map, where H , W ,
and K are the input image dimensions and the task-specific
channels, respectively. We jointly train the adapters and
the decoders by employing a linear combination of the task
losses, where the losses are calculated between the ground
truth and predictions for each task. To maintain consistency
with the baselines [3, 31, 65], we use the cross-entropy for
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segmentation, the rotated loss for depth, and the l1 loss for
surface normal and 2D edges, respectively.

4. Experiments and Results
Considering the number of experiments and results we

report, we highlight in the main paper one consistent set
of results and defer additional qualitative and quantitative
results to the supplementary material. For easier compari-
son, we only report here the results of our vision adapters
with the SWIN-B transformer backbone. Results with
other transformer backbones like ViT [16], Pyramid Trans-
former [56], and Focal Transformer [63] are also in the sup-
plementary along with descriptions of the datasets, base-
lines, and evaluation metrics that we use.

Experimental Setup. The experiments were performed
using the following 4 dense prediction tasks: semantic seg-
mentation (S), depth (zbuffer) (D), surface normal (N), and
2D (Sobel) texture edges (E). We report results in the fol-
lowing settings: 1) The MultiTask Learning (MTL) setting;
2) the Zero-shot Task Transfer setting; 3) the Unsupervised
Domain Adaptation (UDA) setting; and 4) Generalization
to Novel Domains.

For the MTL setting, the methods are jointly trained in
a fully-supervised manner on task combinations such as ‘S-
D’ (segmentation + depth), ‘S-D-N’ (segmentation + depth
+ normal) and ‘S-D-N-E’ (segmentation + depth + nor-
mal + edges) on the Taskonomy benchmark [67] and the
NYUDv2 benchmark [36]. We also evaluate all models on
Synthia [42], Cityscapes [14], and Vkitti2 [4] for the task
combinations ‘S-D’ and ‘S-D-N’.

For the Zero-shot Task Transfer setting, all the meth-
ods are first trained on Vkitti2 [4] and then fine-tuned on
Cityscapes or Synthia using the ground-truth segmentation
labels in the ’S-D’ case, and the ground-truth segmentation
and depth labels in the ’S-D-N’ one.

For the UDA setting, we deal with distribution shifts be-
tween a source domain, with labeled data, and a target do-
main, in which only unlabeled data is available for train-
ing. All models are trained with the source domain labels
of Vkitti2 [4] with the models aware of the images in both
the source [4] and target [14] domain.

To evaluate the generalizability of our learned task affini-
ties to novel domains, wherein the model is unaware of the
images in the target domain, we train the models on Taskon-
omy [67] and apply them to NYUDv2 [36] without any fine-
tuning. Furthermore, we train our model on MS-Coco [28]
and apply them to a highly disparate comics domain that
differs in styles and contents from real-world imagery.

4.1. Qualitative Results

We qualitatively compare the results of our model with
different baselines [3, 8, 31, 35] in Figure 7 for the tasks

Figure 7: Qualitative comparison on Taskonomy bench-
mark [67] for ’S-D-N-E’. From top to bottom, we show re-
sults on segmentation, depth, surface normal, and edges.
Our model outperforms all the multitask baselines. We re-
port the best-performing methods from Table 2. Best seen
on screen and zoomed within the yellow circled regions.

of segmentation, depth, normal and edge prediction on the
Taskonomy [67] benchmark for the MTL setting. Our
method yields higher-quality predictions than all the base-
lines. This is noticeable when looking at thin elements (e.g.,
flower vases, and table lamps) and object contours. The vi-
suals correspond to the quantitative analysis. More qualita-
tive results are provided in the supplementary material.

4.2. Quantitative Results
Multitask Setting: Table 2 reports our main experi-

mental results on two datasets where all models are ini-
tialized with the pre-trained ImageNet 22k model weights
for a fair comparison. The baselines are selected based on
their encoder-focused architectures that compare with our
encoder-focused framework, as well as their task-affinity
generalization, shown in Table 1. On Taskonomy [67]
with the ’S-D-N-E’ labels, our method outperforms both
the CNN-based [8, 29, 31, 34, 37, 52, 65, 67] and vision
transformer-based MTL [35, 3] baselines by a considerable
margin, showing the benefit of leveraging task-adapted at-
tention. The same trend can be seen on Cityscapes [14].
Furthermore, we observe an increase in performance across
all tasks with the addition of more tasks. This evidences
the benefit of injecting additional geometrical cues in the
form of surface normal or edges, respectively, to help the
other tasks. We do not evaluate on IPT [7] because it was
built to specifically solve deraining, denoising, and super-
resolution. We also do not compare Vid-MTL [44] or
UniT [21] as they cater to different modalities of learning
such as video and text, respectively. The NYUDv2 [36],
Synthia [42], Vkitti2 [4] MTL results are provided in the
supplementary material.
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Quantitative results on Taskonomy [67] Quantitative results on Cityscapes [14]

’S-D’ ’S-D-N’ ’S-D-N-E’ ’S-D’ ’S-D-N’

Methods SemSeg
mIoU%↑

Depth
RMSE↓

SemSeg
mIoU%↑

Depth
RMSE↓

Normal
mErr.↓

SemSeg
mIoU%↑

Depth
RMSE↓

Normal
mErr. ↓

Edges
F1%↑

SemSeg
mIoU%↑

Depth
RMSE↓

SemSeg
mIoU%↑

Depth
RMSE↓

Normal
mErr.↓

CNN

MTL-baseline [52] 41.22 0.5640 45.16 0.5398 29.30 47.64 0.5091 25.11 53.96 70.66 6.726 70.93 6.721 43.60
Cross-stitch [34] 30.83 0.7780 32.84 0.7530 34.11 34.91 0.6980 32.04 37.58 50.33 7.683 54.99 7.311 44.10
MTAN [29] 32.94 0.6800 35.79 0.6440 32.25 38.88 0.6030 30.55 40.19 53.86 7.318 57.23 7.050 42.09
TTNet [37] 42.75 0.5270 45.85 0.5011 24.88 52.79 0.4872 24.11 56.10 71.00 6.655 71.40 6.511 41.23
Taskonomy [67] 42.00 0.5633 43.11 0.5391 29.67 48.40 0.5086 26.62 53.99 60.02 7.204 63.41 7.044 41.91
TSwitch [48] 42.79 0.5222 45.91 0.5007 24.82 52.81 0.4873 24.00 56.72 71.13 6.634 71.45 6.509 41.00
Consistency [65] 42.46 0.5293 45.69 0.5013 27.22 52.55 0.4899 24.02 55.50 70.23 6.671 71.67 6.575 41.46
XTAM [31] 43.24 0.4966 45.77 0.4888 25.05 52.71 0.4701 22.19 58.10 75.02 6.653 75.92 6.419 40.39
TAWT [8] 44.07 0.4935 48.92 0.4833 24.86 53.15 0.4658 22.02 61.77 74.95 6.649 76.08 6.407 40.05

Transformer
ST-MTL [35] 45.12 0.4990 49.34 0.4750 23.11 53.17 0.4600 21.80 62.85 75.01 6.655 76.13 6.429 39.95
MulT [3] 49.73 0.4981 52.13 0.4501 21.86 54.04 0.4429 20.10 65.62 76.05 6.650 77.50 6.391 39.84
Our 52.46 0.4524 57.03 0.4291 19.46 60.80 0.3903 17.13 71.09 78.00 6.503 80.55 6.307 39.05

Table 2: Quantitative comparison on the Taskonomy [67] and Cityscapes [14] benchmarks for different multitask settings
of ’S-D’, ’S-D-N’ and ’S-D-N-E’. Our model consistently outperforms both CNN-based and vision transformer-based MTL
baselines. We show that adding more tasks improves their respective performances based on their task affinities. Bold and
underlined values show the best and second-best results, respectively.

Zero-Shot Task Transfer: In Table 3, we apply the mod-
els trained on Vkitti2 [4] to Cityscapes [14]. As the name
suggests, a model that infers a zero-shot task is not trained
with any labels corresponding to that task. However, it
should have a notion of the zero-shot task, which it lever-
ages from the trained Vkitti2 labels. As shown in Ta-
ble 3, our method outperforms all the baselines on zero-
shot depth prediction and zero-shot normal prediction on
Cityscapes by at least 0.196, and 1.59 points, respectively.
For the zero-shot task transfer experiments, we compare
with the baselines that have investigated task transfer learn-
ing [8, 37, 65, 67], shown in Table 1. We also compare with
methods that use the same transformer backbone such as
Vanilla MTL Swin [30] and MulT [3]. See the supplemen-
tary for the results on Synthia.

Although we have shown experiments on dense tasks
throughout our paper, note that our model is not restricted
to just dense tasks. In the supplementary, we further report
our model’s performance for the zero-shot image caption-
ing task (IC) on the ’noCaps out-of-domain’ benchmark.

Unsupervised Domain Adaptation: In this setting, the
goal is to perform well on average on all tasks in the target
domain, when the model is trained only on source domain
labels but is aware of the target domain images. We argue
that task adaptation is beneficial for multitasking UDA as
semantic and geometrical tasks exhibit complementary be-
haviors. We report results for the typical synthetic to real
scenario, namely Vkitti2→Cityscapes, in Table 4 for the
‘S-D’ multitask setup. We adopt a simple multitask Do-
main Adaptation (DA) solution based on output-level DA
adversarial training [43] for all the models. We also report
the 1-task Swin-target (Oracle), trained on the labeled tar-
get data. The use of our vision transformer adapters’ task-
adaptation mechanism significantly improves performance
on all metrics. The selected baselines for UDA evalua-

’S-D’ ’S-D-N’

Methods SemSeg
mIoU%↑

Depth
RMSE↓

SemSeg
mIoU%↑

Depth
RMSE↓

Normal
mErr.↓

CNN

TTNet [37] 71.00 8.101 71.40 6.511 49.22
Taskonomy [67] 60.02 8.694 63.41 7.044 53.57
Consistency [65] 70.23 7.773 71.67 6.575 48.51
TAWT [8] 75.02 7.596 75.92 6.419 45.28

Transformer
Vanilla MTL Swin [30] 75.10 8.003 75.97 8.000 49.05
MulT [3] 76.05 7.115 77.50 6.391 42.69
Our 78.00 6.919 80.55 6.307 41.10

Table 3: Results on zero-shot task transfer. Our method
outperforms all the MTL baselines. All the methods are
first trained on the Vkitti2 benchmark and then fine-tuned to
Cityscapes [14]. Zero-shot task predictions are highlighted
in blue and yellow, respectively. Bold and underlined values
show the best and second-best results.

Methods MTL SemSeg
mIoU%↑

Depth
RMSE↓

CNN
MTL-baseline-UDA [52] ✓ 57.26 11.85
Consistency-UDA [65] ✓ 62.19 11.33
XTAM-UDA [31] ✓ 63.76 11.15

Transformer

1-task Swin-UDA [41] ✗ 63.88 11.09
MulT-UDA [3] ✓ 66.12 10.35
Our-UDA ✓ 70.93 08.66
1-task Swin-target (Oracle) [30] ✗ 75.97 06.65

Table 4: Unsupervised Domain Adaptation (UDA) results
for Vkitti2 [4]→Cityscapes [14]. Our model outperforms
all the baselines. Bold and underlined values show the best
and second-best results, respectively.

Methods MTL SemSeg
mIoU%↑

Depth
RMSE↓

CNN Consistency [65] ✓ 26.24 0.771
XTAM [31] ✓ 29.13 0.750

Transformer

1-task Swin [30] ✗ 32.09 0.722
ST-MTL [35] ✓ 32.51 0.720
MulT [35] ✓ 33.68 0.701
Our ✓ 40.77 0.652

Table 5: Generalization to novel domains results for
Taskonomy [67]→NYUDv2 [36]. Our model outperforms
all the baselines. Bold and underlined values show the best
and second-best results, respectively.
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tion are those that have investigated UDA in their respec-
tive works [3, 31, 52, 65]. Further details are provided in
the supplementary material.
Generalization to Novel Domains: The TROA and TAA
modules, in our vision transformer adapters, achieve gen-
eralization. In this section, we demonstrate how well
our method generalizes to new domains without any fine-
tuning. We compare our model with the two CNN-based
MTL baselines of Consistency [65], XTAM [31], as well as
the 1-task Swin baseline [30], and vision transformer-based
MTL baselines such as ST-MTL [35], and MulT [3], re-
ported in Table 5. We use the models trained on Taskonomy
dataset [67] and apply them to the NYUDv2 [36] dataset
without fine-tuning, as we find the task affinities are sim-
ilar across these domains. For example, TROA finds how
similar segmentation and depth tasks (c.f. Figure 4) are for
Taskonomy comprising indoor scenes. This affinity when
used together with TAA, ultimately, generalizes to NYU-
v2 comprising indoor scenes. An intuitive observation is
that none of these models generalize to extremely disparate
domains i.e. the networks trained on indoor scenes from
Taskonomy cannot generalize to datasets with ‘faces’ or
‘animals’, simply because the networks have no notion of
such categories of data. Nonetheless, we study the gen-
eralizability of our method to a disparate comics domain
when the network is trained on MS-Coco [28] which con-
tains ’faces’ or ’animals’. We provide these results in the
supplementary.

Model
# Parameters
(Millions)↓

Training time
(mins per epoch)↓

CNN XTAM [31] 304 16
Consistency [65] 228 14

Transformer
Vanilla MTL Swin [30] 348 18
MulT [3] 447 22
Our 105.7 8

Table 6: Parameter and training time comparison of our
model on the Taskonomy [67] benchmark. Our method is
more parameter efficient than all the MTL baselines.

Parameter Comparison In Table 6, we compare the time
taken to train the models, in minutes per epoch. We show
that our method is more parameter efficient than the CNN-
based MTL baselines [31, 65], vanilla Swin model [30],
and the transformer-based MTL approach [3] on ’S-D-N-
E’, thanks to the vision adapters’ bottleneck network that
decreases the computational requirement by over an order
of magnitude. We defer ablations for different modules of
our network, different network sizes, freezing of encoder
layers, and placement of the adapters in the supplementary.

5. Conclusion and Limitations
Our method demonstrates the benefit of task-adaptive

learning for generalizable multitasking. Across the four
settings, our method outperforms not only CNN-based
MTL methods but also vision transformer-based ones.

This shows that our method mitigates task interference
and negative task transfer while promoting more efficient
parameter sharing. Driven by the generalizability of our
model, we hope that our method can help to solve dense
task predictions on domains with limited data labels such
as comics. However, our framework has some limitations:
Data Dependency. Our model is data-intensive in the MTL
setting. When trained on a limited amount of data, it may
not achieve the same performance as reported in this work
which is also the case for all the baselines. However, we
generalize to other tasks and domains, unlike the baselines.
Unpaired Data. Our current MTL model is trained in a
supervised manner, thereby needing paired data. Extending
our methodology to an unsupervised paradigm for MTL is
feasible, as in [50]. Besides addressing these limitations,
employing different pre-training modalities, such as text or
video as in [10], is also feasible.
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